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Abstract
We analyze the effect of immunization by vaccination on deterministic models for epidemic spreading. We use an approach 
to vaccination in which the number of individuals that acquire immunization by vaccination is considered to be a given func‑
tion of time. For the susceptible–infected–susceptible model, if the fraction of individuals that in the long term have been 
vaccinated is larger than a certain value then the disease becomes extinct. For the susceptible–infected–removed model, the 
effect of vaccination is the flattening of the epidemic curve.

Keywords Epidemic spreading models · SIR model · SIS model

1 Introduction

The deterministic approach to the spreading of a contagious 
disease consists of a description in terms of ordinary dif‑
ferential equations for the number of members in each class 
of individuals [1–5]. The main characteristics of the models 
for the spreading of disease that concern us here are (a) the 
presence of at least two classes of individuals, the infected 
and the susceptible, and (b) the catalytic infection of the  
susceptible. Examples are the susceptible–infected–susceptible  
(SIS) model and the susceptible–infected–removed (SIR)  
model [5].

The SIS model describes the spreading of an epidemic 
among a community of individuals of only two classes: the 
susceptible and the infected. A susceptible becomes infected 
in contact with an infected and an infected becomes sus‑
ceptible spontaneously. If the infection rate is greater than 
a certain critical infection rate, the spreading sets in even 
if the number of infected is small. The number of infected 
individuals increases exponentially and reaches an asymp‑
totic nonzero value in the long term. In other words, the SIS 
predicts a persistence of the disease.

In contrast to the SIS model, the SIR model predicts the 
extinction of the disease in the long term. The SIR model 
consists of three classes of individuals: the susceptible, the 
infected, and the removed, which are the individuals that 
have acquired permanent immunity. A susceptible becomes 
infected catalytically and an infected becomes recovered 
spontaneously. If the infection rate is greater than the critical 
rate, the disease sets in and the number of infected increases, 
reaches a maximum and then decreases and reaches the zero 
asymptotic value. In the long term, the disease disappears.

Here we are concerned with finding the conditions under 
which the spreading of epidemic can be controlled by immu‑
nization through vaccination. In the case of the SIS model, 
specifically, we wish to find the conditions under which the 
disease becomes extinct in the long term. The introduction 
of the process of immunization by vaccination in models for 
the spreading of a contagious disease has been considered in 
several studies. Usually it is introduced in a manner similar 
to that processes of the SIR model in which an infected indi‑
vidual becomes recovered [6–16], which is an internal pro‑
cess of immunization. Here, we propose a distinct approach 
to the process of vaccination, which is an external process 
of immunization.

In addition to the classes of individuals of a certain 
model, a new class of individuals is introduced which are 
composed by the individuals that have acquired permanent 
immunization by vaccination. The fraction of its members 
is denoted by v and we assume that v(t) is a known func‑
tion of time and that in the long term it approaches a value 
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k understood as the total fraction of individuals that have 
acquired immunization by vaccination. A possible depend‑
ence of v with time is the following function

where � is the rate in which the individuals acquire immu‑
nization by vaccination.

Our study of the SIS model with vaccination allows us to 
draw the following conclusion. If the fraction k of individu‑
als that have been vaccinated is larger than a certain value 
that depends on the parameters of the original SIS model, 
the asymptotic value of infected individuals vanishes and 
the disease becomes extinct. Our results for the SIR model 
show that the vaccination flattens the epidemic curve. The 
flattening is greater the larger is the fraction k of individuals 
that have been vaccinated.

2  SIS Model with Vaccination

Let us denote by x and y the fraction of susceptible and 
infected individuals. The time evolution of these quantities 
in accordance with the SIS model is

where b is the infection rate and c is the recovery rate. If we 
sum these two equations, we find that x + y is constant in 
time which allows us to set x + y = 1 . For long times, the 
fraction of susceptible and infected individuals approach the 
asymptotic values x∗ and y∗ , which are the stationary solu‑
tion of these equations and are given by

valid as long as b ≥ c . If b < c , the solution is y = 0 , and 
x = 1.

Let us consider as an initial condition that the overwhelm‑
ing majority of individuals are susceptible, that is, at t = 0 
y = y0 and x = 1 − y0 where y0 is very small. To determine 
the solution for the initial times, we take into account that y 
is small and neglect terms of second order in y in which case 
the equation for y becomes

and y will increase exponentially with time if b > c and 
decrease to zero otherwise.

(1)v = k
(

1 − e−�t
)

,

(2)
dx

dt
= −bxy + cy,

(3)
dy

dt
= bxy − cy,

(4)x∗ =
c

b
, y∗ =

b − c

b
,

(5)
dy

dt
= (b − c)y,

From the above results, we conclude that if b > c , that is, 
if the infection rate is larger than its critical value c, the dis‑
ease will spread, and for long times, there remains a fraction 
y ∗= (b − c)∕c of infected individuals. In other words, the 
disease spreads and becomes persistent with a nonzero frac‑
tion y∗ of infected individuals. If b < c , the disease does not 
spread and the final value of infected individuals vanishes.

We modify this model so as to include vaccination and 
we focus on the case b > c and seek for the conditions for 
the extinction of the disease. That is, we wish to find the 
conditions leading to a vanishing of the asymptotic frac‑
tions of infected individuals. To this end, we add to the SIS 
model the class of individuals that have acquired permanent 
immunization through vaccination and denote the fraction 
of these individuals by v. We consider a process of vaccina‑
tion in which in the long term only a certain fraction k of 
the individuals will acquire the permanent immunization. 
According to our assumptions, the variable v is considered 
to be a known function of time which approaches the value 
k for large values of t.

We consider that only the susceptible individuals are vac‑
cinated leading to the modification of Eq. (2), which now 
reads

where v�(t) = dv∕dt and is understood as the rate in which 
the susceptible individuals are acquiring permanent immu‑
nization by vaccination. This equation together with Eq. (3) 
constitute the set of equation of the SIS model with vaccina‑
tion, as v(t) is a known function of time.

If  we sum Eqs.  (3) and (6),  we see that 
(dx∕dt) + (dy∕dt) = −(dv∕dt) from which follows that 
x + y + v is a constant which we choose to be equal to the 
unity. Replacing x = 1 − y − v into Eq. (3), we find

which gives the time evolution of y as long as v is given as 
a function of time.

Let us determine the solution of Eq. (7) for large times. 
In this regime, v approaches k and the fraction of infected 
individuals approaches an asymptotic value y∗ which is the 
solution of

Thus either y∗ = 0 or

This last solution occurs whenever b > bo , where 
bo = c∕(1 − k) ; otherwise, the solution is y∗ = 0 . Therefore, 

(6)
dx

dt
= −bxy + cy − v�(t),

(7)
dy

dt
= by(1 − y − v) − cy,

(8)by(1 − y − k) − cy = 0.

(9)y∗ =
b(1 − k) − c

b
.
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the disease disappears if the infection rate b is below the 
value bo . Alternatively, it disappears if the fraction k of vac‑
cinated is larger than the threshold value ko = (b − c)∕b.

If initially all individuals are susceptible except for 
a small fraction y0 of infected individuals, then we may 
assume that y is small and Eq. (7) becomes

We suppose that the process of vaccination is continuous 
and begins at t = 0 . That is, v is a continuous function of 
time and vanishes at t = 0 . Therefore, we may set v = 0 in 
Eq. (10) and draw the following conclusion. If b > c, then 
the number of infected will increase exponentially and the 
epidemics sets in. Otherwise, there is no spreading of the 
disease, which is the same conclusions concerning the origi‑
nal SIS model.

The results for the SIS with vaccination are summarized 
in the diagram of Fig. 1. If b ≤ c , there is no spreading of the 
disease. If b > c , then for larger values of the fraction k of 
the vaccinated individuals the disease disappears; otherwise, 
it becomes persistence.

We have solved numerically Eq. (7) by employing the spe‑
cific time dependence of v given by Eq. (1) with � = 0.1 and 
varying values of the fraction k of vaccinated individuals. We 
considered the case b = 2 , c = 1 , which corresponds to the 
spreading of the disease. Figure 2 shows the epidemic curve, 
which gives the fraction f = bxy of susceptible individuals 
that are being converted into infected as a function of time. 
In accordance with the above results, when k is above the 

(10)
dy

dt
= y(b − c − bv).

threshold value ko = (b − c)∕b , or ko = 0.5 , the asymptotic 
value of the fraction y of infected individuals as well as f van‑
ishes, and the disease disappears.

3  SIR Model with Vaccination

The SIR model has three classes of individuals. In addition to 
the susceptible and infected, there is another class of individu‑
als which is the class of the recovered. A susceptible becomes 
infected by contact with an infected and an infected becomes 
recovered spontaneously. A recovered individual acquires per‑
manent immunization and remains forever in this condition. 
Denoting by x, y, and z the fractions of susceptible, infected, 
and recovered, the equations of the SIR model with immuni‑
zation are

where b is the infection rate, c is the recovery rate, and v(t) 
is the fraction of vaccinated individuals. Again, the sum‑
mation of these equations gives the constraint x + y + z + v 
equal to a constant, which we choose to be equal to the unity. 
Considering that v�(t) vanishes at t = 0 , a linear stability 
analysis lead us to conclude that the state free from disease, 
defined by x = 1 , y = 0 , z = 0 , is stable if b < c . Therefore, 
the spreading of the epidemics occurs when b > c.

(11)
dx

dt
= −bxy − v�(t),

(12)
dy

dt
= bxy − cy,

(13)
dz

dt
= cy,

0

b/c

k

1

0
1

P

E

N

Fig. 1  Diagram showing the behavior of the SIS model with vacci‑
nation, where b/c is the ratio of the infection rate and the recovered 
rate and k is the fraction of individuals that have acquired permanent 
immunization by vaccination. In the region N, there is no spread‑
ing of the disease, whereas in P and E the disease spreads. In P, it 
becomes persistent, with a nonzero fraction of infected, and in E, it 
becomes extinct, with a zero fraction of infected
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Fig. 2  Epidemic curve for the SIS model with vaccination, showing 
the fraction f of susceptible that are being converted into infected as 
a function of time t, for several values of the fraction k of vaccinated 
individuals, and b = 2 , c = 1 , � = 0.1 . If k is less than or equal to 0.5, 
f vanishes in the long term

1855Brazilian Journal of Physics (2021) 51:1853–1857



1 3

For large times, v is assumed to approach k and v�(t) van‑
ishes, and the asymptotic fraction of infected individuals van‑
ishes. Thus, the SIR model predicts the disappearance of the 
disease with or without vaccination. The effect of vaccination 
in this model lies on the flattening of the epidemic curve as 
shown in Fig. 3. This result was obtained by solving numeri‑
cally the set of Eqs. (12) and (13) replacing x by 1 − y − z − v 
and using the specific form of v(t) given by Eq. (1). We used 
� = 0.1 and several values of k. The values of b and c were 
set equal to 2 and 1, which correspond to the spreading of the 
disease. The greater the value k of the fraction of vaccinated 
individuals, the larger the flattening of the epidemic curve and 
the smaller the integral of the epidemic curve, which is the 
total number of individuals that has got the disease.

4  SIRS Model with Vaccination

The SIRS model is similar to the SIR model with three classes 
of individuals. A susceptible becomes infected by contact with 
an infected, and an infected becomes recovered spontaneously 
and acquires immunity. However, the immunization is only 
partial and the individual may become susceptible again. 
Denoting by x, y, and z the fractions of susceptible, infected, 
and recovered, the equations of the SIRS model with immu‑
nization is

(14)
dx

dt
= −bxy + az − v�(t),

(15)
dy

dt
= bxy − cy,

(16)
dz

dt
= cy − az,

where b is the infection rate, c is the recovering rate, a is the 
rate of loss of immunization, and v(t) is the fraction of vac‑
cinated individuals. Again, the summation of these equations 
gives the constraint x + y + z + v equal to constant, which we 
choose to be equal to the unity.

Replacing x = 1 − y − z − v in Eq. (15), it becomes

which with Eq. (16) are to be solved for y and z. Considering 
that v(t) vanishes at t = 0 , a linear stability analysis leads 
us to conclude that the state x = 1 , y = 0 , z = 0 is stable if 
b < c . When b > c , the spreading of the epidemics sets in.

For long times, v approaches k and the fractions of 
infected and recovered individuals approach the asymptotic 
values y∗ and z∗ , solutions of

The nontrivial solution of these equations is

which give the following asymptotic value x∗ for the fraction 
of the susceptible individuals, x∗ = c∕b . These results are 
valid as long as b ≥ bo where bo = c∕(1 − k) . If b ≤ bo , the 
asymptotic value of the fraction of the infected vanish and 
the disease disappears.

The above results lead us to conclude that the effect of 
vaccination on the SIRS model is similar to that of the SIS 
model, and in fact, the diagram of possible states is identical 
to that of Fig. 1. If the fraction k of vaccinated individuals is 
larger than bo = (b − c)∕b, the infectious disease disappears 
in the long term.

5  Conclusion

We have analyzed the effect of vaccination on deterministic 
models for epidemic spreading. Our approach to the pro‑
cess of vaccination considers that the number of individuals 
that acquire immunization through vaccination is a given 
function of time, and in this sense, it differs from previous 
approach to the process of vaccination. For the SIS and SIRS 
models, which predict a persistence of the disease for long 
times, we have found that if the fraction of vaccinated indi‑
viduals is large enough, the disease disappears. For the SIR 

(17)
dy

dt
= b(1 − y − z − v)y − cy,

(18)b(1 − y − z − k)y − cy = 0,

(19)cy − az = 0.

(20)y∗ =
a(b − c − bk)

b(a + c)
,

(21)z∗ =
c(b − c − bk)

b(a + c)
,

t
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Fig. 3  Epidemic curve for the SIR model with vaccination, showing 
the fraction f of susceptible that are being converted into infected as 
a function of time t, for several values of the fraction k of vaccinated 
individuals, and b = 2 , c = 1 , and � = 0.1
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model, which predicts the disappearance of the disease, we 
found that the epidemic curve becomes flattened. The larger 
the fraction of vaccinated individuals, the larger the flatness.

These main results were obtained by considering general 
properties of the function v(t) describing the fraction of vac‑
cinated individuals. The general property of v(t) is that it 
vanishes at the initial time t = 0 , increases monotonically 
and reaches the asymptotic value k, which is the total frac‑
tion of the vaccinated individuals. We remark that when we 
say a vaccinated individual we mean in fact an individual 
that has acquired permanent immunization by vaccination.
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