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Abstract
The mean-field theory is revisited in the classical and quantum mechanical limits. Taking into account the boundary condi-
tions at the phase transition and the third law of the thermodynamics, the physical properties of the ordered and disordered 
phases are reported. The equation for the order parameter predicts the occurrence of a saturation of Ψ2  ~1 near Θ

S
 , and  

the temperature below the quantum mechanical ground state is reached. The theoretical predictions are also compared with  
high-resolution thermal expansion data of SrTiO

3
 single crystals and other some previous results. An excellent  

agreement has been found suggesting a universal behavior of the theoretical model to describe continuous structural phase 
transitions.

Keywords Order parameter · Continuous phase transition · Quantum mechanics

1 Introduction

Mean-field theory, first developed by Landau [1–3], has suc-
cessfully described most of the continuous phase transitions, 
such as structural distortions [4], magnetic [5], and super-
conducting transitions [6], by introducing an order parameter 
( Ψ ) which describes many physical properties based upon 
the fraction of both order and disordered phases coexisting 
in a given temperature below the critical temperature of the 
phase transition [3].

This theory is better applied near the phase transition 
( T ∼ TC ), where Ψ2 is small, because the free energy can be 
computed by a power series of Ψ . The solution to minimize 
the free energy near TC provides Ψ ∝ 

(

TC − T
)� , with � = 

0.50 [7, 8]. Some authors have recognized this as the classi-
cal limit of the mean-field theory [9, 10].

On the other hand, describing the physical properties at 
low temperature limit ( T ≪ TC ) is a challenge since Ψ2 ∼ 1 
and free energy cannot be expressed by a mathematical 
series [11]. This is only true far from a quantum phase 
transition (or when quantum fluctuations are negligible). 
This is the quantum limit in which physical properties must 
reach saturations due to a quantum mechanical ground state 
[12–14].

One of the most successful theoretical description which 
takes into account the saturation of order parameter has to do 
with Thomas, Salje and collaborators [11, 15–18], who have 
included a harmonic oscillation term in the free energy due 
to the soft phonon modes related to the continuous displa-
cive phase transitions [19–22]. The model was successfully 
applied to described several physical properties of the many 
materials [4, 11, 15, 16, 18–20, 22–25] and seems to hold an 
universal behavior for this type of structural phase transition 
(see for instance Fig. 1 in reference [17]).

Despite the success of this model, our recent results  
on high-resolution thermal expansion  (HRTE)  
measurements [26], which has relative resolution 100 to 1000 times  
better than diffractometric techniques [27] as well as thousands  
of data points in each measurement, performed in SrTiO3  
single crystals [28], have brought some important insights 
regarding the order parameter saturation, especially due to the 
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saturation of the volumetric thermal expansion at low temper-
atures, which must respect the third law of thermodynamics,  
i.e., the thermal expansion coefficient, Ω = 1∕VC d(ΔV)∕dT  
must be zero as the temperature approaches absolute zero.

Thus, we have revisited the theoretical model by 
Salje et al. [17] in order to carefully take into account 
the boundary conditions at the phase transition ( T = TC ), 
which should respect the continuity of the free energy (G), 
volume (V), entropy (S), and energy (U) of the ordered and 
disordered phases, and, at zero temperature, in which S 
and Ω must be equal to zero in order to attend the third law 
of the thermodynamics [29, 30]. In addition, the equations 
for the physical properties in the classical limit should be 
recovered when the characteristic temperature that holds 
the ground state in quantum mechanical limit vanishes.

HRTE measurements performed in SrTiO3 single crys-
tal shown unambiguously quadratic temperature depend-
encies in a large temperature interval below the phase 
transition. The cubic to tetragonal structural transition 
in this compound has been well described by the model 
reported here. We found a direct experimental evidence 
that the thermal expansion coefficient is the best physical 
property to describe the order parameter of this transition.

2  Classical Model

Taking the classical mean-field theory by Landau [1–3] 
for a continuous phase transition, the Gibbs free energy is 
generically given by

where a and b are constants, and GD is the Gibbs free energy 
of the disordered phase, when Ψ = 0. Keeping only the first 
three terms of the series, the equilibrium order parameter 
can be obtained by

which implies

for disordered phase (D) at T > TC and,

which describes the order parameter at T ≤ TC . Inserting 
Eq. 4 into Eq. 1 provides

(1)G = GD + a
(

TC − T
)

Ψ2 + bΨ4 + ...

(2)
dG

d(Ψ2)
= 0,

(3)Ψ2 = 0,

(4)Ψ2 = −
a
(

TC − T
)

2b
,

(5)G = GD −
a2

4b

(

TC − T
)2
.

Taking into account only the effects of entropy and vol-
ume in a structural phase transition, the Gibbs free energy 
is a function of the temperature and pressure, G = G(T ,P) , 
that implies

in which

and

Comparing Eqs.  5 and 6, and remembering that the 
entropy of the disordered phase is assumed to be tempera-
ture independent, which is given by

one can find

where G0 is a constant which defines a reference for the free 
energy.

Furthermore, taking into account the boundary conditions 
G = GD = GO , S = SD = SO = SC , and Ψ2 = 0 at the phase 
transition ( T = TC ), and S = 0 and Ψ2 = 1 at T = 0 for the 
antidistortive phase transition case, it is possible to show that

and

or

Taking the derivative of Eq. 14 with regard to tempera-
ture, it is possible to find that

(6)dG = −SdT + VdP

(7)−S =
(

�G

�T

)

P
,

(8)V =
(

�G

�P

)

T
.

(9)SD = −

(

�GD

�T

)

P

,

(10)GD = G0 − SDT ,

(11)a = −SC,

(12)b =
1

2
SCTC,

(13)Ψ2 =

(

TC − T
)

TC
= 1 −

T

TC
,

(14)G = G0 − SCT − SC
(

TC − T
)

Ψ2 +
1

2
SCTCΨ

4,

(15)G = G0 − SCT −
1

2

SC

TC

(

TC − T
)2
.

(16)S = SC
(

1 − Ψ2
)

= SC
T

TC
.

1530 Brazilian Journal of Physics (2021) 51:1529–1538



1 3

Furthermore, such as V and S are independent variables, 
one can use the relation [31]

to demonstrate that

and remembering that 
(

1 − Ψ2
)

= T∕TC from Eq. 13

where TC holds all the pressure dependence of Ψ2 in Eq. 18 
and dTC∕dP measures the pressure dependence of the criti-
cal temperature.

But at T = TC , Ψ2 = 0 , which implies that the thermal 
expansion coefficient of the ordered phase ( ΩO ) is different 
than that of the disordered phase ( ΩD ) due to the lambda-type 
jump at the transition temperature. Thus, from Eq. 19, one 
can write

which put back into Eq. 19 leads to

Thus, Ψ2 can be described as a function of the fundamental 
thermodynamic properties T, S, or Ω as

and,

which predict linear dependencies of S and Ω as a function 
of the temperature.

3  Quantum Mechanical Model

Regarding the saturation of order parameter at low tem-
perature, Thomas, Salje, and other coworkers [11, 15–18] 
have proposed a modification of the free energy to take 
into account quantum mechanical aspects, especially 
the harmonic oscillations due to soft modes, which are 

(17)−
(

�S

�P

)

T
=
(

�V

�T

)

P
= VCΩ,

(18)−
(

�S

�P

)

T
= −

(

�SC

�P

)

T

(

1 − Ψ2
)

+ SC

(

�Ψ2

�P

)

T

,

(19)VCΩ = VCΩD

(

T

TC

)

+ SC
T

T2

C

(

dTC

dP

)

T

,

(20)VC

(

ΩO − ΩD

)

= SC
1

TC

(

dTC

dP

)

T

,

(21)Ω = ΩO

(

1 − Ψ2
)

.

(22)Ψ2 = 1 −
T

TC
,

(23)Ψ2 = 1 −
S

SC
,

(24)Ψ2 = 1 −
Ω

ΩO

,

developed below the critical temperature of the structural 
phase transition. The free energy given by Eq. 1 from clas-
sical limit can be rewritten in the following form related 
to the quantum mechanical limit

As far as we know, this equation has appeared for the 
first time in the report by Salje et al. in 1991 (see Eq. 37 in 
reference [17]). They have applied it to describe the behav-
ior of many displacive transitions in several compounds. 
The ΘS measures a temperature in which ground state in 
quantum mechanical limit becomes relevant.

After an extensive mathematical work using similar 
procedure and the same boundary conditions at TC and 
at zero temperature to find the equations for the classi-
cal limit, we were able to find the physical parameters 
a, b, and GD of Eq. 25, and thermodynamic properties of 
the continuous phase transition in the quantum mechani-
cal limit (see Appendix). The Gibbs free energy can be 
rewritten as

The first important difference from the previous reports 
[11, 15–17, 20, 25] has to do with the first two terms of 
Eq. 25, which are related to free energy ( GD ) of the dis-
ordered phase, that has a temperature dependence more 
complicated than in the classical limit ( GD ∝ T  ). The dis-
cussion afterward will demonstrate that this term plays 
an important role in the quantum mechanical descrip-
tion of the total entropy in the low temperature regime. 
Furthermore, the second relevant observation has to do 
with the third law of thermodynamics, which requires S 
= zero at zero temperature, implying a saturation in the 
order parameter at Ψ2 = 1 as T approaches zero ( T < ΘS ). 
This is an important difference since previous reports [11, 
16] in which it predicts a saturation of Ψ2 at a fraction of 
one. This has to do with the pre-factor b in Eq. 25 which 
normalizes Ψ2(T) between zero at T = TC and 1 at T → 0 . 
Equation 26 allowed us to find the order parameter in the 
low temperature phase as

Futhermore, Eq. 26 yields the analytical determination 
of the thermodynamic properties in the quantum mechani-
cal limit, as shown in Table 1 (see details in the Appendix). 

(25)
G = GD +

a

2
ΘS

[

coth
(

ΘS∕T
)

− coth
(

ΘS∕TC
)]

Ψ2 +
b

4
Ψ4.

(26)

G = G0 − SCΘS coth
(

ΘS∕T
)

− SCΘS

[

coth
(

ΘS∕TC
)

− coth
(

ΘS∕T
)

]

Ψ2 +
1

2
SCΘS

[

coth
(

ΘS∕TC
)

− 1
]

Ψ4.

(27)Ψ2 =
coth

(

ΘS∕TC
)

− coth
(

ΘS∕T
)

coth
(

ΘS∕TC
)

− 1
.
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They are compared with those from the classical limit. Equa-
tions for the classical limit are naturally recovered when the 
quantum mechanical characteristic temperature ΘS is van-
ished (compare first and last columns).

In order to better understand the equations in this model, 
in Fig. 1 are plotted the behavior of the main properties for 
the quantum mechanical (black and red lines) and classi-
cal limits (blue and green lines) using ΘS = 20 K and TC = 
100 K. The results compare the behavior of the properties 
below TC , which are composed by the contribution of both 
order and disordered phase densities balanced by the order 
parameter, with those related only by the disordered phase, 
indicated with subindex D.

In Fig. 1a is shown the free energy behavior taking G0 = 
zero for simplicity. Both curves of each limit reach the same 
G value at T = TC , since at this point the phase has the same 
free energy. In addition, the free energy of the ordered phase 
is lower than in the disordered phase, in both classical and 
quantum mechanical limits, as expected due to the earlier 
phase be energetically favourable.

Figure 1b displays the expected behavior for the heat 
capacity at constant volume as a function of the tem-
perature. In the classical limit, Cv ∝ T  in the ordered 
phase and zero at disordered phase ( SD is supposed to be 
constant).

In Fig. 1c are shown the behaviors for the total entropy 
in the ordered phase (S) and the entropy related to the dis-
ordered phase ( SD ). In the classical model, the entropy due 
to disordered phase is considered temperature independent 
(green line), and total entropy decreases linearly propor-
tional to the temperature based upon the ratio T∕TC , from 
TC down to the ground state at absolute zero (blue line). 
On the other hand, the results for the quantum mechani-
cal regime show temperature dependencies which must be 
carefully discussed. First of all, S (red line) tends to zero 
at finite temperature of the order of ΘS , which is in agree-
ment with the expected by the quantum ground state and the 
third law of the thermodynamic. Interesting is the behavior 
of the total entropy, which is almost linear as a function 
of the temperature in the interval T∕TC = 0.3 to 1, for the 
ΘS and TC values used in Fig. 1. This observation has to 

do with the weak dependence of SD of approximately 10 % 
in this temperature interval. This seems to explain why the 
classical model, Ψ2 ∝

(

TC − T
)

 , has been frequently used 
to describe quantum mechanical phase transitions (com-
pare equations for order parameter in Table 1). In order to 
clarify that, we also plotted the total entropy in the linear 
regime (see blue dash line in Fig. 1c), which is given by 
S = SC

(

T − ΘS

)

∕
(

TC − ΘS

)

 . Besides of the expected the 
agreement near TC , interesting is to notice that the extrapo-
lation to S = zero yields T = ΘS directly.

Figure 1d shows the behavior of the Ψ2 as a function of 
the temperature. Ψ2 in the classical limit is linear from zero 
up to TC , while in the quantum mechanical regime shows a 
clear saturation at Ψ2 = 1 in temperatures above absolute 
zero, which is clearly related to the ground state with S = 
0. The expected behavior of Ψ2 for T ≫ ΘS is also shown 
in Fig. 1d (see the dashed line). Its extrapolation to Ψ2 = 1 
yields directly ΘS = 20 K, which agrees with the fact that of 
a quantum mechanical ground state is reached close to this 
temperature.

Furthermore, the temperature dependence of SD is very 
important for the reduction of the total entropy of the 
ordered state which reaches the ground state (S = 0) in a 
thermal energy of the order of kBΘS . Interesting is to note 
that not only S goes to zero near ΘS but also SD . Thus, we 
can understand ΘS as the temperature below which leads 
the compound to a quantum mechanical ground state mak-
ing S to vanish faster than in the classical limit (S = 0 only 
at T = 0).

The effect of ΘS on SD is displayed in Fig. 2a for several 
different ΘS values, remembering that TC does not play 
any role on SD . It is possible to observe that the higher ΘS 
the easier the ground state is reached. Furthermore, if one 
makes T = ΘS , the equation for SD given in Table 1 leads to 
SD = SC csch2(1) = 0.724SC , which is shown by the dashed 
line in Fig. 2a. Interesting is to observe that making ΘS 
= 0, the classical limit is recovered in which SD = SC = 
constant (black line).

In order to evaluate how ΘS chances the behavior of the 
order parameter, in Fig. 2b are shown some Ψ2 curves as 
a function of the temperature for different ΘS values using 

Table 1  Some thermodynamic 
properties in the classical and 
quantum mechanical limits for 
the mean-field model described 
in this work. The last column 
displays the equations for the 
quantum mechanical limit for 
ΘS much smaller than T and TC

Parameter Classical limit Quantum mechanical limit T ≈ TC ≫ ΘS

GD G
0 − SCT G

0 − SCΘS coth
(

ΘS∕T
)

G
0 − SCT

SD SC SC

(

ΘS∕T
)2 csch 2

(

ΘS∕T
)

SC

G
GD −

SC

2

(TC−T)
2

TC

GD −
SCΘS

2

[coth (ΘS∕TC)−coth (ΘS∕T)]
2

[coth (ΘS∕TC)−1]
GD −

SC

2

(TC−T)
2

(TC−ΘS)

Ψ2
(

TC − T
)

∕TC [coth (ΘS∕TC)−coth (ΘS∕T)]
[coth (ΘS∕TC)−1]

(

TC − T
)

∕
(

TC − ΘS

)

S SD

(

1 − Ψ2
)

Ω ΩO

(

1 − Ψ2
)

1532 Brazilian Journal of Physics (2021) 51:1529–1538



1 3

a constant TC = 100 K. It is possible to observe that Ψ2 
reaches the ground state at finites temperatures, if ΘS ≠ 0. 
Furthermore, the classical behavior is recovered making 
ΘS = 0, which represents the linear temperature depend-
ence, Ψ2 ∝

(

TC − T
)

.
Another important aspect is the shape of the Ψ2 curves, 

which are extremely dependent of the ΘS∕TC ratio. The 
higher is ΘS∕TC , the higher is the saturation due to the 
ground state ( Ψ2 = 1 and S = 0). Additionally, one can 
note that if ΘS∕TC ratio tends to infinite, Ψ2 becomes a 
step-like function (see ref. [32] and references therein). 
This behavior reminds a discontinuous (or first order) 
phase transition, in which the transition from high (dis-
ordered) to low (ordered) temperature phase happens 
abruptly at T = TC (the origin of this observation will be 
addressed elsewhere).

Inset of Fig. 2b displays the behavior of Ψ2 near TC for the 
different ΘS values. All the curves show linear temperature 
dependence given by

Fig. 1  Predicted behavior in the classical and quantum mechanical limits for 
the (a) free energy, (b) heat capacity at constant volume, (c) entropy, and (d) 
order parameter. The curves were plotted using Θ

S
 = 20 K and T

C
 = 100 K

Fig. 2  (a) Temperature dependence of the entropy for the disordered 
phase for different Θ

S
 values. The dashed horizontal line indicates the 

points where T = Θ
S
 . When Θ

S
 = zero the classical limit of the mean-

field theory is recovered. In (b) are shown Ψ2 as a function of the 
temperature for different Θ

S
∕T

C
 values. Inset shows the linear tem-

perature dependence near T
C
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Due to this linear behavior near TC , probably many 
authors have used the classical mean-field theory to describe 
phase transitions instead taking into account the quantum 
mechanical effects.

Although there are many similarities between the 
model reported here with that reported previously by 
Salje et al. [17], but some important differences can be 
noticed. The most important is, in their results Ψ2 never 
reaches 1, even at T = 0. We understand this difference 
because Ψ2 = 1 must happen at T = 0, since a ground 
state with S = 0 is required due to the third law of the 
thermodynamics. We have a direct experimental evidence 
for that using Ω determined by HRTE experiments per-
formed in SrTiO3 single crystals as shown in the next 
section.

4  Comparison with Experiments

Recent HRTE measurements have been performed by us in 
SrTiO3 single crystals [28]. Figure 3 shows the tempera-
ture behavior of the volumetric thermal expansion ( ΔV∕VC ) 
measurement performed using a capacitance quartz cell, 
which shows a clear quadratic behavior in a large tem-
perature interval below the phase transition temperature 
(105.65 K). This result was also observed in other two oxy-
gen vacancy doped SrTiO3 single crystals. Thanks to HRTE 
[26] which has resolution 100 to 1000 times better than dif-
fraction methods [27], has better precision than metallic 
cells [33, 34], and provides thousands of data points in the 
temperature measurement interval.

Figure 3 also shows the volumetric thermal expansion 
coefficient ( Ω ). A clear linear behavior is observed from ∼ 
30 K up to near the critical transition temperature. Further-
more, a saturation at low temperature is also clearly noticed, 
in which Ω approaches zero at low temperature. Based upon 
these results, we see a direct connection with the model for 
the quantum mechanical limit described in section 2. Addi-
tionally, as pointed out in several previous works [11, 24], 
the rotation angle � , which measures the antidistortive angle 
from the cubic to tetragonal in the transition of the SrTiO3 
compound has been directly related to the order parameter. 
However, our recent results on HRTE [28] suggest that is 
better to use Ω as the order parameter instead � , since the 
last one is proportional to ∫ ΩdT  , which is not necessarily 
zero at T = 0. Thus, in agreement to the model developed in 
this work, Ω should be related to the Ψ2 , such as shown in 
Table 1 and in Appendix. Hereafter, we discuss the impli-
cation of these observations on the HRTE results obtained 
in SrTiO3.

(28)Ψ2 =
(

TC − T
)

∕
(

TC − ΘS

)

.

First of all, the equation for thermal expansion coefficient 
in the quantum mechanical limit near the critical tempera-
ture can be written as

Thus, taking the temperature at the peak as the critical 
temperature TC = 105.65 K and making a linear fit (shown 
by the dashed blue line) yields directly ΩO = 2.99 × 10−5 
K −1 and ΘS = 19.5 K, without much efforts to find the fit-
ting parameters as in previous reports [11]. Additionally, 
one must keep in mind that Ω must be taken subtracting off 
the background in order to make Ψ2 zero right above TC , as 
required by the mean-field theory.

Now, the temperature dependence of the Ψ2 and Ω , given 
by the correspondent equations in the Table 1, can be com-
pared. An excellent agreement between experimental data 
and theoretical curves in full temperature interval below TC 
can be noticed in Fig. 4a. Saturation near Ψ2 = 1 can be 
clearly observed, as expected. Additionally, the blue dashed 
line fits well the behavior near TC and extrapolates to T = ΘS 
at Ψ2 = 1. This demonstrate that the Ω instead � is the best 
order parameter to describe the antidistortive phase transi-
tion in the SrTiO3 , in agreement with our recent work [28].

In order to show the quality of the agreement between 
the experimental data and the theoretical description in this 
work, we compare in Fig. 4b the results for the angle � , 

(29)Ω = ΩO

(

T − ΘS

TC − ΘS

)

.

Fig. 3  (Right scale) Volumetric thermal expansion ( ΔV∕V
C
 ) meas- 

urement of SrTiO
3
 single crystal (for details see reference [28]). A  

clear quadratic temperature dependence can be observed and is 
indicated by the fitting displayed by the blue line. Inset displays 
a magnification at low temperature in which the expected devia-
tion of the quadratic behavior due to the saturation of ΔV∕V

C
 is 

observed. (Left scale) Thermal expansion coefficient determined from 
Ω = d(ΔV∕V

C
)∕dT . The linear behavior and the saturation at low tem-

perature can be noticed. T
C
 , Ω

O
 , Ω

D
 , and ΔΩ are directly determined 

from linear extrapolation near the phase transition. Only 25% of the 
data points are shown in both curves [35]
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obtained from HRTE measurements in SrTiO3 samples, with 
the theoretical prediction for Ω(T) , using TC , ΩO , and ΘS 
directly obtained from Fig. 3a (for more details, see refer-
ence [28]) with some other theoretical curves reported previ-
ously [11, 18, 36, 37]. Although all the theoretical models 
show fits close to the experimental data, the model proposed 
here shows the best fit. Furthermore, the previous reports 
[11] are based upon fittings which need 4 to 6 parameters. 
In the present work, the direct determination of parameters 
from Ω(T) near the phase transition allows us to find the 
temperature dependence of � in the full temperature range, 
which suggest that the model is correct.

Finally, we compare the theoretical model for the 
quantum mechanical limit with some data available on 
literature, especially reported by Salje et al. [17]. Figure 5 

displays the scaling of the data for our SrTiO3 data [28], 
along with SiO2 [25], LaAlO3 [24], and Pb3(PO4)2 [23], 
all related to the n = 2 in Eq. 37 reported by Salje [15] 
(the data available for n = 4 will be addressed elsewhere) 
based upon the following equation.

where f
(

ΘS∕T
)

= coth
(

ΘS∕T
)

− 1 and T∕ΘS is the reduced 
temperature which measures the ration between thermal 
energy and quantum mechanical energy that leads the 
ordered phase to the ground state.

An excellent collapse, shown in Fig. 5a for the data of all 
samples and the theoretical prediction displayed by the black 
lines, are clearly observed, suggesting a universal behavior, 
despite the definition of the order parameter chosen in the 

(30)
(

1 − Ψ2
)[

coth
(

ΘS∕TC
)

− 1
]

= f
(

ΘS∕T
)

,

Fig. 4  (a) Comparison of the order parameter determined from HRTE 
data for SrTiO

3
 single crystal with theoretical prediction. T

C
 , Θ

S
 , and 

Ω
O
 are determined in Fig. 3. Blue dashed line describes the expected 

behavior near T ≈ T
C
 . In (b) is shown the distortive angle � for the 

cubic to tetragonal phase transition in SrTiO
3
 determined from HRTE 

measurements [28] and by numerical integration using the equation 
for Ω . Other theoretical predictions reported previously are plotted 
along in order to compare the fittings [11, 36, 37]. Insert compares 
the experimental data with the theoretical predictions near T

C

Fig. 5  In (a) is displayed the collapse of the order parameter data pre-
viously reported in the references [17, 23, 24] using Eq. 30, plotted 
along with the HRTE data for the SrTiO

3
 single crystal. Insert shows 

the way T
C
 and Θ

S
 are determined. They agree with the data reported 

for LaAlO
3
 [24]. (b) It is shown the collapse in linear form for the 

data shown in (a). Inset displays the collapse around the saturation 
of Ψ2
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previous reports [11, 17, 24]. The linear behavior displayed 
in Fig. 5b confirms the agreement between the experimen-
tal and the quantum mechanical model with the corrections 
introduced in this works.

5  Conclusion

Quantum mechanical model for the order parameter has 
been revisited. Taking into account the boundary condi-
tions, at the continuous phase transition and at the absolute 
zero temperature, which must obey the third law of thermo-
dynamics, the pre-factor terms of the free energy equation 
were naturally found.

Based upon free energy equation, the temperature 
dependencies of the physical properties related to the order-
disordered phase transition were derived. The theoretical 
model showed that the entropy of the disordered phase 
plays a very important role in the ordered state, since it has 
a strong temperature dependence, which reaches a ground 
state near the characteristic temperature, ΘS , defined previ-
ously by Salje et al. [17]. Furthermore, it also carries on the 
total entropy to zero near the same temperature.

Interesting is to note that the model predicts that the order 
parameter is related to one of the three fundamental proper-
ties, temperature, entropy, or thermal expansion coefficient. 
The experimental results on HRTE performed in SrTiO3 
single crystals [28] provide direct evidence that the volu-
metric thermal expansion coefficient is the appropriated fun-
damental physical property to describe the order parameter 
of the cubic to tetragonal distortive phase transition in this 
compound, instead the antidistortive angle � [11, 17, 24]. 
Another evidence that the model works well is the universal 
collapse of the previous results for the order parameter, both 
in linear limit ( Ψ2

→ 0 ) and also at the saturation regime 
( Ψ2

→ 1 ), for the structural continuous phase transitions in 
other compounds [17, 38]. The fits of these data need only 
the determination of TC and ΘS , in comparison with previous 
reports, which have to find 4 to 6 fitting parameters [11].

Finally, preliminary analyses of other experimental data 
suggest that the theoretical model reported here can also be 
applied to other types of continuous phase transitions, such 
as magnetic and superconducting transitions. In such cases, 
the energy related to each transition must be added to the 
entropy term in the free energy equation.

Appendix

Taking the quantum mechanical model for the continuous tran-
sition predicted by Salje et al. [17], the free energy is given 
generically by

Making

provides

for T > TC (disordered phase), and

for T ≤ TC (ordered phase).
Taking Ψ2 = 1 for T = 0, implies

which is a normalization for Ψ2.
Thus

implies

or

Such as G = G(T ,P) , then

or

which provides the following equation for the entropy of the 
disordered phase, making S = 0 and Ψ2 = 1 as T → 0,

Futhermore, when ΘS → 0, SD → SC , and a → SCΘS due 
to the classical limit which can be noticed in Fig. 2a. Thus,

but taking

(31)G = GD + a
[

coth
(

ΘS∕T
)

− coth
(

ΘS∕TC
)]

Ψ4 + bΨ4.

(32)
�G

�
(

Ψ2
) = 0,

(33)Ψ2 = 0,

(34)Ψ2 = −
a
[

coth
(

ΘS∕T
)

− coth
(

ΘS∕TC
)]

2b
,

(35)
2b

a
= −

[

1 − coth
(

ΘS∕TC
)]

,

(36)Ψ2 =

[

coth
(

ΘS∕T
)

− coth
(

ΘS∕TC
)]

[

coth
(

ΘS∕TC
)

− 1
] ,

(37)
G = GD − a

[

coth
(

ΘS∕TC
)

− coth
(

ΘS∕T
)]

Ψ2

− a∕2
[

1 − coth
(

ΘS∕TC
)]

Ψ4,

(38)G = GD −
a

2

[

coth
(

ΘS∕TC
)

− coth
(

ΘS∕T
)]2

coth
(

ΘS∕TC
)

− 1
.

(39)
(

�G

�T

)

P
= −S,

(40)−S = −SD + aΨ2
(

ΘS∕T
2
)

csch
2
(

ΘS∕T
)

,

(41)SD = a
(

ΘS∕T
2
)

csch
2
(

ΘS∕T
)

.

(42)SD = SC
(

ΘS∕T
)2
csch

2
(

ΘS∕T
)

,
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one can show that

where G0 is a reference for the free energy and appears due 
to the integration constant.

Thus,

which is the equation by Salje et al. [17], with pre-factors 
determined based upon the boundary conditions at the criti-
cal temperature and absolute zero.

Then,

which provides

or

that leads to

which has the same format as the equation for the classical 
limit, but takes into account the Ψ2 saturation effect near 
T = ΘS.

With reagard to thermal expansion, it can be obtained 
using the following relation for Ω [31]

which provides

where

(43)
(

�GD

�T

)

P

= −SD,

(44)GD = G0 − SCΘS coth
(

ΘS∕T
)

,

(45)

G = G0 − SCΘS coth
(

ΘS∕T
)

− SCΘS

[

coth
(

ΘS∕TC
)

− coth
(

ΘS∕T
)

]

Ψ2 −
SCΘS

2

[

1 − coth
(

ΘS∕TC
)]

Ψ4.

(46)G = GD −
SCΘS

2

[

coth
(

ΘS∕TC
)

− coth
(

ΘS∕T
)]2

coth
(

ΘS∕TC
)

− 1
,

(47)−S = −SD + SCΘSΨ
2csch

2
(

ΘS∕T
)

(48)S = SD − SDΨ
2,

(49)S = SD
(

1 − Ψ2
)

,

(50)−
(

�S

�P

)

T
=
(

�V

�T

)

P
= VCΩ,

(51)−
(

�S

�P

)

T
= −

(

�SD

�P

)

T

(

1 − Ψ2
)

+ SD

(

�Ψ2

�P

)

T

,

(52)

(

�Ψ2

�P

)

T

=
ΘS

T2

C

[

coth
(

ΘS∕T
)

− 1
]

[

coth
(

ΘS∕TC
)

− 1
]2
csch

2
(

ΘS∕TC
)

(

dTC

dP

)

T

,

and ΘS is assumed to be constant with pressure and depend-
ent only of the temperature. Thus, one can write

but at T = TC , Ω = ΩO , providing

which gives

After an algebraic work it is possible to show that the 
terms multiplied by SD cancel each other, remembering that 
(

1 − Ψ2
)

 is given by

thus

Finally, based upon the equations for GD , G, SD , and S, it  
is possible to find the temperature dependencies for heat capac- 
ity at constant volume ( Cv ) and the internal energy (U) (not 
shown).
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