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Abstract
This work deals with the ion-acoustic shock waves (IASWs) around the critical values in an unmagnetized pair–ions plasma 
with ( �, q)-distributed electrons by formulating the correct stationary solution of Burgers-type equations with higher-order 
corrections. By considering higher-order correction of the reductive perturbation technique, the modified Burgers(mB)-, 
and mixed modified Burgers(mmB)-type equations are derived. With the changes of viscosity coefficients of positive and 
negative ions, the electrostatic IASWs and normalized electric fields are investigated around the critical values. The current 
studies might be very useful to understand the behavior of shocks around the critical values in the F- and D-regions of Earth’s 
ionosphere, and the later experimental verification in plasma laboratory.

Keywords Unmagnetized pair–ions plasma · Shock · mB-type equation · mmB-type equation · Stationary shock wave 
solution

1 Introduction

It is well confirmed that plasmas with negative ions (NIs) have 
attracted a lot of interest from the investigators because of 
extensive range of technological tools such as a neutral metal 
source [1], semiconductor and material processing [2], 
Q-machine plasmas [3], etc. Production of NIs by the inclu-
sion of a small amount of SF6 gas to low levels ( ≈ 0.2eV ) of 
potassium plasma in a Q-machine is already confirmed in Ref. 
[4]. Goeler and Ohe [5] generated a CsCl beam into a hot 
tungsten plate of a Q-plasma machine that produces plasma 
containing Cs+ , Cl− and electrons. In addition, NIs are found 
in the astrophysical environments, particularly in the D-, and 
F-region of the Earth’s ionosphere [6–10]. It is a convincing 
evidence that the Cassini spacecraft has confirmed the exi-
tance of heavy NIs in the upper region of Titan’s atmosphere 
[6]. Due to the existence of pair ions not only in laboratory 
but also in many space and astronomical environment, many 
researchers [10–15] investigated the propagation of IASWs in 
plasmas composing of various types of positive ions (PIs), 
(e.g., K+ , Cs+ , C+

60
 , etc.) and NIs (e.g., SF−

6
 , Cs− , C−

60
 , etc.). 

However, the most reliable method is the formation of shocks 
for a reason that it spreads further. Actually, the IASWs are 
produced in plasmas because the relative velocity between the 
rarefaction wave and the plasma overtakes its IA speed, where 
the frequency of the rarefaction wave and the surrounding 
medium is comparatively the same. Adak et al. [14] reported 
IASWs in the (C+

60
,C−

60
) plasma by obtaining the KdV Burgers 

equation. Hussain et al. [15] theoretically described IASWs 
in negative ions plasma having nonextensive electrons. 
Recently, Alam and Talukder [11] investigated collisions 
between two IASWs by suggesting that the plasma system 
consists of pair ions and isothermal electrons. Furthermore, 
the energy of electrons may be nonthermal and less (subther-
mal) or greater (superthermal) than its isothermal energy in 
many environments. When the energy of electrons becomes 
subthermal or superthermal, one can use the nonextensive 
velocity distribution function to determine the density func-
tion of electron as Ne = Ne0

[
1 + (q − 1)

(
eΦ∕kBTe

)] (q+1)

2(q−1) , 
where Φ , Ne0 , q, Te, e and kB are the electrostatic potential, 
unperturbed electron density, strength of nonextensivity, elec-
tron temperature, electron charge and Boltzmann constant, 
respectively [16]. The effects of electron nonextensivity on 
IASWs have already studied by many researchers [16–20]. 
For instance, Ferdousi et al. [20] have reported the effects of 
electron nonextensivity on the properties of IASWs in an 
unmagnetized three-component plasma. They have shown that 
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SWEs are significantly modified and both compressive and 
rarefective shock waves are supported by the influence of the 
strength of nonextensivity. But, the nonextensive distribution 
function fails to address the physical issues for the nonthermal 
electron populations. As a result, one can consider model an 
electron distribution with a population of fast particle by tak-
ing the Cairns velocity distribution function [21–23]  
leading to Ne = Ne0

[
1 − (4�∕1 + 3�)

(
eΦ∕kBTe

)
+(4�∕1

+3�)
(
eΦ∕k

B
T
e

)2]
exp

(
eΦ∕k

B
T
e

)
 , where � is a parameter 

determining the fast particles present in the model considered. 
Later, Tribeche et al. [24] have proposed a unique distribution 
function, the so-called the (�, q)-velocity distribution function 
by generalizing the work of Cairns et al. [21], which provides 
a better fit of the space observations due to the flexibility pro-
vided by the nonextensivity parameter. They have obtained 
electron density by integrating (�, q)-velocity distribution 
function over all velocity space as

One can easily reduce the above electron density to the  
nonextensive and nonthermal electron density by setting  
� = 0 and q → 1 , respectively. Thus, a unique distribution 
function, like (�, q)-velocity distribution function [24] can be 
assumed for examining all the cases of electrons energies. Very 
recently, Hafez et al. [10] proposed an NI plasma for under-
standing the nature of shocks and overtaking collisions of multi-
shocks by deriving a Burgers-like equation. They reported 
that the compressive and rarefactive electrostatic shocks are 
supported in the aforementioned plasma system. But, they 
ignored the features of electrostatic shocks not only around 
the critical values (CVs) but also at the CVs. Also, the shock 
waves phenomena around CVs are reported by incorrectly  
defined solution of mB and mmB equations in most of the 
previous studies [25–27], which is not useful for further veri-
fication in laboratory plasmas. It is therefore essential to study 
shock wave propagation in the plasmas around CVs by form- 
ulating the appropriate solutions of mB and mmB equations.

Thus, this work explores the electrostatic nonlinear prop-
agation of IASWs, not only around CVs but also at CVs in 
a pair ions plasma system, by deriving mB- and mmB-type 
equations with their useful solutions. The effect of some 
parameters on the shocks around CVs and almost at CVs 
are investigated.

2  Governing Equations

To achieve our goal, the following normalized model equations  
are considered, by assuming PI ( M+i and temperature T+i ), NI  
(like SF−

6
 with mass M−i and temperature T−i ) and (�, q)- 

Ne = Ne0

[
1 + (q − 1)

eΦ

kBTe

] (q+1)

2(q−1)
[
1 −

16q�

3 − 14q + 15q2 + 12�

(
eΦ

kBTe

)

+
16q(2q − 1)�

3 − 14q + 15q2 + 12�

(
eΦ

kBTe

)2]
.

distributed electrons, along with 1 = Nr1 + Nr2 , where   
Nr1 = N−i0∕N+i0 , Nr2 = Ne0∕N+i0 , N+i0(N−i0) and Ne0 are 
respectively the PIs (NIs) and electrons unperturbed densi-
ties [10]:

where,

Here, N+i ( N−i ) and Ne are respectively the normalized PIs 
(NIs) and electrons densities normalized by N+i0 , U+i ( U−i ) is the 
normalized PIs (NIs) fluid velocity normalized by the PI speed 
C+is =

√
kBTe∕M±

��
Nr1 + Nr2

�
∕Nr2(1 − Nr1) , Φ is the nor-

malized electrostatic potential, Φ → eΦ∕kBTe , t is the time vari-
able normalized by �−1

+i
= �De∕C+is , z is the space variable nor-

malized by �De =
√
kBTe∕4�Ne0e

2 , and �+i ( �−i ) is the 
normalized PIs (NIs) viscosity coefficient normalized by 
�
−1
+i
∕M±N+i0C

2
+is

 ( �−1
+i
∕M−iN−i0C

2
+is

 ). Additionally, one can use 
(i) q → 1 and � = 0 for the Maxwell-Boltzmann distributed elec-
trons, (ii) q → 1 and � ≠ 0 for the Cairns distributed electrons 
and (iii) � = 0 for superthermal ( 0 < q < 1 ) and subthermal 
( q > 1 ) electrons, respectively, where q is the strength of nonex-
tensivity and � is measuring the population of nonthermal 
electrons.

3  Mathematical Analysis

3.1  Formation of mBE with Stationary Wave 
Solution

In order to study the shock wave phenomena around the 
critical values, one can consider the stretching coordinates 
by taking the higher-order correction of reductive pertur-
bative method [25] as

(1)
�Nji

�t
+

�(NjiUji)

�z
= 0, j = +,−,

(2)
�U+i

�t
+ U+i

�U+i

�z
+

�Φ

�z
+ �+i

�
2U+i

�z2
= 0,

(3)

�U−i

�t
+ U−i

�U−i

�z
−M±

�Φ

�z
+

�ei

N−i

�N−i

�z
+ �−i

�
2U−i

�z2
= 0,

(4)

�
2Φ

�z2
= Npi − Nni − Nr2

{[
1 + (q − 1)Φ

] (q+1)

2(q−1)

×

[
1 −

16q�

3 − 14q + 15q2 + 12�
Φ

+
16q(2q − 1)�

3 − 14q + 15q2 + 12�
Φ2

]}
,

(5)M± =
M+i

M−i

, �ei =
Te(

1 − Nr1

)
T−i

.
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and the expansions for physical quantities as

where Vp and � are the IA linear phase speed and a small 
quantity measuring the weakness of dissipation. By system-
atically inserting Eqs. (6) and (7) into Eqs. (1)−(4), the dif-
ferent order of � equations are easily determined. The O(�3)
-order equations gives the following expressions for N(1)

pi
 , 

N
(1)

ni
 , U(1)

ni
 and Vp:

where

It is obviously found from Eq. (9) that Vp is strongly 
dependent on Nr1 , M± , �ei , Nr2 , � and q, but not on �+i and �−i . 
It is validated for 

(
1 + Nr1M± + �eiNr2Ω1

)2
− 4Nr2Ω1�ei ≥ 0 . 

Again, the O(�4)-order equations (ignored for convenience) 
yields the following relations:

where

(6)X = �
2(z − Vpt), T = �

4t,

(7)

⎡
⎢⎢⎢⎢⎢⎣

N+i

N−i

U+i

U+i

Φ

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1

Nr1

0

0

0

⎤
⎥⎥⎥⎥⎥⎦

+

∞�
i

�
i

⎡
⎢⎢⎢⎢⎢⎣

N
(i)

+i

N
(i)

−i

U
(i)

+i

U
(i)

−i

Φ(i)

⎤
⎥⎥⎥⎥⎥⎦

,

(8)N
(1)

+i
=

1

V2
p

Φ(1),U
(1)

+i
=

1

Vp

Φ(1),N
(1)

−i
= −

Nr1M±

V2
p
− �ei

Φ(1),U
(1)

−i
= −

VpM±

V2
p
− �ei

Φ(1),

(9)
Vp =

√√√√√
(
1 + Nr1M± + �eiNr2Ω1

)
±

√(
1 + Nr1M± + �eiNr2Ω1

)2
− 4Nr2Ω1�ei

2Nr2�ei

,

(10)Ω1 =

[
q + 1

2
−

16q�

3 − 14q + 15q2 + 12�

]
.

(11)

N
(2)

+i
=

1

V2
p

[
3

2V2
p

{
Φ(1)

}2
+ Φ(2)

]
,

U
(2)

+i
=

1

V2
p

[
1

2V2
p

{
Φ(1)

}2
+ Φ(2)

]
,

N
(2)

−i
=

Nr1M±

V2
p
− �ei

[
M±(3V

2
p
− �ei)

2(V2
p
− �ei)

2

{
Φ(1)

}2
− Φ(2)

]
,

U
(1)

−i
=

VpM±

V2
p
− �ei

[
M±(V

2
p
+ �ei)

2(V2
p
− �ei)

2

{
Φ(1)

}2
− Φ(2)

]
,

− Cf

{
Φ(1)

}2
= 0,

and

It is noted that one can determine the critical values 
(CVs) by setting Cf = 0 . But, it is very difficult to formulate 
the mathematical expression for CV. Figure 1 shows the var- 
iation of Cf  with regard to q and � by considering the other 

parameters constant. It is obviously found from Fig. 1 that 
the CVs only occur when the electron energy becomes 
less than its thermal energy, that is, for the subthermal 

(12)Cf =

⎡
⎢⎢⎢⎣
3

V4
p

−
3Nr1V

2
p
M2

±�
V2
p
− �ei

�3
+

�eiNr1M
2
±�

V2
p
− �ei

�3
− 2Nr2Ω2

⎤
⎥⎥⎥⎦
,

(13)

Ω2 =

[
(q + 1)(3 − q)

8
−

q + 1

2
×

16q�

3 − 14q + 15q2 + 12�

+
16q(2q − 1)�

3
− 14q + 15q2 + 12�

]
.

Fig. 1  Variation of Cf  with regard to q and � . The other parameters 
are considered as Mr = 3.75 , Tni = 0.05eV  , Te = 0.2eV  , Nr1 = 0.5 
and Nr2 = 0.01
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electrons based on the considered parametric values as in 
Ref. [10, 11]. For instance, the CV qc for q is determined 
as qc = 3.098638852 by considering � = 0 , M± = 3.75 , 
T−i = 0.05eV  , Te = 0.19eV  , Nr1 = 0.5 and Nr2 = 0.01 . One 
can also find the other CV as qc = 6.176859718 by consider-
ing � = 0 , M± = 3.75 , T−i = 0.05eV  , Te = 0.1eV  , Nr1 = 0.5 
and Nr2 = 0.1 . It is also provided that the CVs are only sup-
ported for subthermal electrons.

Finally, the O(�5)-order provides the following equations:

(14)

1

V2
p

�Φ(1)

�T
− Vp

�N
(3)

+i

�X
+

�U
(3)

+i

�X
+

6

V5
p

{
Φ(1)

}2

�Φ(1)

�X
+

2

V3
p

�

�X

[
Φ(1)Φ(2)

]
= 0,

(15)

1

Vp

�Φ(1)

�T
− Vp

�U
(3)

+i

�X
+

�Φ(3)

�X
+

3

2V4
p

{
Φ(1)

}2

�Φ(1)

�X
+

1

V2
p

�

�X

[
Φ(1)Φ(2)

]
+

�+i

Vp

�
2Φ(1)

�X2
= 0,

(16)

−
Nr1M±

V2
p
− �ei

�Φ(1)

�T
− Vp

�N
(3)

−i

�X
+ Nr1

�U
(3)

−i

�X
−

6Nr1V
3
p
M3

±(
V2
p
− �ei

)4

{
Φ(1)

}2 �Φ(1)

�X
+

2Nr1VpM
2
±(

V2
p
− �ei

)2

�

�X

[
Φ(1)Φ(2)

]
= 0,

(17)

−
VpM±

V2
p
− �ei

�Φ(1)

�T
− Vp

�U
(3)

−i

�X
+

�ei

Nr1

�N
(3)

−i

�X
−M±

�Φ(3)

�X

−
�−iVpM±

V2
p
− �ei

�
2Φ(1)

�X2
+

M2
±�

V2
p
− �ei

� �

�X

�
Φ(1)Φ(2)

�

+

⎡⎢⎢⎢⎣
−
3V2

p
M3

±

�
V2
p
+ �ei

�

2
�
V2
p
− �ei

�4
+

3�eiM
3
±

�
3V2

p
− �ei

�

2
�
V2
p
− �ei

�4

−
�eiM

3
±�

V2
p
− �ei

�3

⎤
⎥⎥⎥⎦

�
Φ(1)

�2 �Φ(1)

�X
= 0,

(18)
0 = − Nr2Ω1

�Φ(3)

�X
− 3Nr2Ω3

[
Φ(1)

]2 �Φ(1)

�X

− 2Nr2Ω2

�

�X

[
Φ(1)Φ(2)

]
+

�N
(3)

+i

�X
−

�N
(3)

−i

�X
,

where,

By simplifying the above equations, the following equa-
tion is derived:

which is the mB-type equation. The coefficients of Eq. (20) 
are determined as

In the previous literature [25–27], the solution of mB 
equation (see Appendix) is incorrectly defined, which is 
not useful for further verification in laboratory plasmas. 
To determine the correct stationary shock wave solu-
tion of Eq. (20), one can convert Eq. (20) by considering 
Φ(1)(X, T) = Ψ(�) with � = X − VrT  ( Vr is the constant 
speed of reference frame) to the following form:

This implies that

By simplifying Eq. (23), the stationary shock wave solu-
tion of Eq. (20) is obtained as

(19)
Ω3 =

[
(q + 1)(3 − q)(5 − q)

48
−

2q�(q + 1)(3 − q)

3 − 14q + 15q2 + 12

+
8q(2q − 1)�(q + 1)

3 − 14q + 15q2 + 12

]
.

(20)A
�Φ(1)

�T
+ B

{
Φ(1)

}2 �Φ(1)

�X
+ C

�
2Φ(1)

�X2
= 0,

(21)

A = 2

⎡
⎢⎢⎢⎣

V2
p
− �ei

Vp

+
Nr1V

3
p
M±�

V2
p
− �ei

�
⎤
⎥⎥⎥⎦
,

B =
15(V2

p
− �ei)

2V4
p

− 3Nr2Ω3V
2
p
(V2

p
− �ei)

+
3Nr1V

2
p
M3

±

�
5V4

p
− 2V2

p
�ei + �

2
ei

�

2
�
V2
p
− �ei

�4

+
�eiNr1M

3
±
V2
p�

V2
p
− �ei

�3
,

C =
�+i

�
V2
p
− �ei

�

Vp

+
Nr1�−iV

3
p
M±�

V2
p
− �ei

� .

(22)C
dΨ

d�
= VrAΨ −

B

3
Ψ3.

(23)∫
C

VrAΨ −
B

3
Ψ3

dΨ = ∫ d� .
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where ΦA =
(
3VrA∕2B

)
 and ΦW =

(
C∕VrB

)
 are respectively 

the amplitude and thickness of IASWs around the critical 
values. The verification of the obtained solution is given in 
Appendix.

3.2  Formation of mmB‑Type Equation with Wave 
Solution

One can easily find that Eq. (20) is not useful to study the 
shock wave phenomena not only at CVs but also around 
CVs. To study the electrostatic shocks not only around 
CVs but also at CVs, one needs to derive another evolution 
equation. To do so, one can take Cf = C0

f
 for q (say) around 

its qc as

where |q − qv| ≡ � (because |q − qc| is small quantity), 
S = 1(−1) for q > qc(q < qc) and G =

(
�Cf

�q

)
q=qc

 . As a result, 

one can re-evaluate from Eq. (4) by adding �(2) ≡ −�3
1

2
SGΦ2 

with the O(�5) equation and yields

Now, simplifying Eqs. (14)–(17) and (26), one obtains

where

Equation (27) is so-called the mmB-type equation 
because the additional nonlinear term is occurred with 
the mBE. One can easily convert mmB-type equation not 
only to mB-type equation but also to B-type equation. It 
is noted that Eq. (27) does not support the IASWs around 
CVs but also at CVs, which is the main advantage of this 
equation.

The appropriate stationary shock wave solution of mmB-
type equation can be defined as

(24)Φ(1) =

√
ΦA

{
1 + tan h

(
�

ΦW

)}
,

(25)C0
f
= h

(
�Cf

�q

)

q=qc

|q − qc| = SG�,

(26)

0 = − Nr2Ω1

�Φ(3)

�X
+ SGΦ(1) �Φ

(1)

�X
− 3Nr2Ω3

[
Φ(1)

]2 �Φ(1)

�X

− 3Nr2Ω2

�

�X

[
Φ(1)Φ(2)

]
+

�N
(3)

+i

�X
−

�N
(3)

−i

�X
,

(27)

A
�Φ(1)

�T
+ SDΦ(1) �Φ

(1)

�X
+ B

{
Φ(1)

}2 �Φ(1)

�X
+ C

�
2Φ(1)

�x2
= 0,

(28)D = V2
p

(
V2
p
− �ei

)(
�Cf

�q

)

q=qc

.

where

4  Discussion

This section explores the effect of �+i , �−i and Vr with physi-
cal explanation on the electrostatic shocks around CVs and 
at the neighborhood of CVs.

Figure 2a, b display the effect of �+i and �−i on the elec- 
trostatic IASWs around qc . It is observed that �+i  
and �−i strongly plays an important role to the formation 
of monotonically shock waves around qc . In addition, the 
thickness of shocks are remarkably increased and slightly 
increased with the increases of �+i and �−i , respectively.  
It is noted that the effect of the viscosity coefficient of NIs  
and PIs on shock wave excitation can be determined on 
the basis of collective friction between the layers of the 
plasma concentration system. In fact, viscosity is the force  
of collective friction between layers of fluid in the afore- 
mentioned plasmas. With the decrease of �+i and �−i , the 
collective friction force is decreased. As a result, the thick-
ness of shocks is decreased. The effect of Vr on electrostatic  
IASWs around qc is displayed in Fig. 3. Figure 3 obviously  
shows that the amplitude and thickness of IASWs are sig- 
nificantly increased with the increase of Vr . Finally, the vari- 
ation of normalized electric field ( E = −gradΦ ) around qc 
for different values of �+i and �−i is presented in Fig. 4. It 
is observed that the electric field becomes monotonically 
hump-shaped with the increase of �+i and �−i . Conse-
quently, the electric field is propagating narrowly with the 
increase of �+i , but smoothly with the increase of �−i (See  
Fig. 4).

Figure  5a, b shows the shape of electrostatic ion 
acoustic mmB shocks for q = 6 < qc = 6.176859718 and 
q = 6.5 > qc = 6.176859718 with Mr = 3.75 , Tni = 0.05 , 
Te = 0.1 , Nr1 = 0.5 , Nr2 = 0.1 , Vr = 0.1 , �−i = 0.01 and 
�+i = 0.5 . Whereas Fig. 6a, b display the effect of �+i and 
�−i on the electrostatic IASWs at the neighboring of qc , that 
is at q = 6.5 . It is found that the monotonic correct solu- 
tion of the shocks are only generated for the viscosity coef-
ficient of NIs in which both amplitude and thickness are 
increased with the increase of the viscosity coefficient of  

(29)Φ(1) =

√
ΦmA

{
1 + tan h

(
�

ΦmW

)}
−

SD

2B
,

(30)

ΦmA =(3Ck∕4B),ΦW = (2∕k),

k =

[
S2
(
D

A

)2

±

√
s4
(
D

A

)4

+ 32CVr

(
B

A

)2
]
÷
[
4C

(
B

A

)]
.
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NIs at the neighboring CVs. However, the amplitude and 
thickness of IASWs are decreased with the increase of the 
viscosity coefficient of PIs at the neighboring CVs. It might 
be predicted from this work that one can study the real 

features of shock wave excitations around CVs by formulat- 
ing the correct solution of the mB and mmB equations.

To conclude, the plasma system involving pair-ions  
and generalized distributed electrons has been considered 
for reporting the features of electrostatic IASWs around 
CVs. To do so, the mB- and mmB-type equations have 
been obtained by employing the reductive perturbation  
method, which reveals the shocks only around the critical 
values in the plasmas. The correct stationary shock wave 
solutions of these equations are first time reported. The 
effect of �+i , �−i and Vr on the electrostatic mB and mmB 
shocks around and at the neighboring of CVs are dis-
cussed. It is found that the mB-type equation is support-
ing monotonic shocks around CVs in which the ampli-
tude is unchanged but the thickness is increased with the 
increase of �+i and �−i . Subsequently, the monotonically 
hump-shaped electric field is propagating narrowly and 
smoothly with the increase of �+i and �−i , respectively, due 
to the correct solution of the mB-type equation. However,  
the mmB-type equation supports monotonic shocks 
around CVs with the influence of �−i only, in which both 
the amplitudes and the thickness are increased with the 
increase of �−i but decreased with the increase of �+i . It  
may be concluded that the results presented in this work 
are not only very helpful to understand the broadband 
shocks noise in the D- and F-regions of the Earth’s iono-
sphere around the critical values, but also in plasma labo- 
ratory experiments.

(a) (b)

- - -

Fig. 2  Electrostatic mB shocks around the critical value qc = 3.098638852 , that is q = 3.5 for different values of (a) �−i and (b) �+i , with 
Mr = 3.75 , Tni = 0.05 , Te = 0.19 , Nr1 = 0.5 , Nr2 = 0.01 and Vr = 0.01

Fig. 3  Effect of the reference speed Vr on electrostatic mB shocks 
around the critical value qc = 3.098638852 , that is q = 3.5 , with 
Mr = 3.75 , Tni = 0.05 , Te = 0.19 , Nr1 = 0.5 , Nr2 = 0.01 , �−i = 0.05 , 
and �+i = 0.3
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(a) (b)

-

-

-

-

-

-

-

- - - -

-

-

-

-

-

Fig. 4  Variation of the normalized electric field around the critical value qc = 3.098638852 , that is q = 3.5 , for different values of (a) �−i and (b) 
�+i , with the same typical values of Fig. 1

Fig. 5  Electrostatic mmB shocks (a) q = 6 < qc = 6.176859718  and (b) q = 6.5 > qc = 6.176859718 , with Mr = 3.75 , Tni = 0.05 , Te = 0.1 , 
Nr1 = 0.5 , Nr2 = 0.1 , Vr = 0.1 , �−i = 0.01 and �+i = 0.5
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Appendix

Verification of solution as in Eq. (23) with the aid of Maple 
18:

It is noted that the stationary solution

provided in the previous literature [25–27] does not satisfy 
the following modified Burgers equation:

which clearly indicates that the above solution of mB equa-
tion is not useful for later experimental verification.

> 𝜁 ∶= X − VrT

> ΦA ∶=
(
3VrA∕2B

)
> ΦW ∶=

(
C∕VrB

)

> Φ(1) =

√
ΦA

{
1 + tan h

(
𝜁

ΦW

)}

> diff (Φ(1), T)

> diff (Φ(1),X)

> diff (Φ(1),X,X)

> A ∗ diff (Φ(1), T) + B ∗ (Φ(1))2 ∗ diff (Φ(1),X) + C ∗ diff (Φ(1),X,X)

0

> 𝜙
(1) =

�������
�
3u0

2B

�⎧
⎪⎨⎪⎩
1 − tan h

⎛
⎜⎜⎜⎝

𝜁 − u0𝜏�
C

u0

⎞
⎟⎟⎟⎠

⎫⎪⎬⎪⎭

��
(1)

��

+ B
{
�
(1)
}2 �Φ(1)

��

= C
�
2
�
(1)

��
2

,
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