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Abstract
The existing study observed 3-D Darcy-Forchheimer MHD Casson fluid, steady flow between the gap of a disk and a cone 
in a spinning scheme. Energy ascription is considered in the existence of thermophoresis effect and Brownian motion. Mass 
transfer and gyrotactic microorganism are also considered, and the impact of the various embedded constraints has been 
observed on these profiles. The similarity alterations are used to transform the partial differential equations into the set of 
ordinary differential equations (ODEs). To solve the ODEs, we have chosen the homotopy analysis method of BVPh 2.0 
package. The important physical parameters of interest like, heat transfer rate, mass transfer, and motile have been calculated 
numerically and discussed. The obtained results show that the velocity profiles decreased for inertial parameter F

1
 , magnetic 

field M , and permeability constraint Kr . The effects of other constraints such as Brownian motion constraint N
b
 , Schmidt 

number Sc , Prandtl number Pr , and thermo physical constraint on the concentration and temperature fields have been analyzed 
and debated. The accumulative standards of the Casson constraint are declining the fluid motion. But the temperature field 
is rising with growing Casson parameter. It is detected that the motile density of microorganisms displays a falling behavior 
for rising values of Lewis and Peclet numbers.

Keywords Magnetohydrodynamics (MHD) · Conical gap · Rotation · Casson fluid · Stretching surface · Heat transfer · 
Gyrotactic microorganisms · Darcy-Forchheimer medium · HAM

1 Introduction

The investigations of flow over the disk and cone surfaces 
are regularly experienced in several industrial processes. Just 
restricted consideration has been centered on this sort of 
study. The fluid flows through a cone have propelled consid-
eration because of ongoing enhancements in creative tech-
nologies. Fluid flows have fantastic applications in many 
engineering and modern fields. Spinning cone has wide-
extending usage in different fields of progressive nanotech-
nology and designing like nuclear reactor cooling system, 

flash pyrolysis of biomass, fluid atomizers in oil burners, and 
chemical industries. The capability of noteworthy advance-
ment equipment like fluid degasser, rotating cone, centrifu-
gal film evaporators, centrifugal disc atomizers, and rotating 
packed-bed reactors that are noticeably impacted relies on 
the disseminations of pressure and the natural fluid motion. 
Himasekhar et al. [1] offered to solve the fluid flow past an 
upright cone in a gyrating system. The fluid flow past a rotat-
ing disk and cone with thermal analysis has been deliberated 
by Wang [2]. The joint investigations of mass and heat trans-
fer analysis in the rotational system using cone apparatus 
were discussed by Roy and Anilkumar [3]. The fixed twist-
ing cross-flow vortices were first detected by Gregory et al. 
[4] past a gyrating disk, and this work is further improved 
by Turkyilmazoglu et al. [5–7]. Takhar et al. [8] inspected 
the fluid flow using the thermophysical properties of gases. 
Hayat et al. [9] inspected the irreversibility portrayal of the 
convective fluid flow through a turning cone.

The scrutiny of fluid movement because of turning disk 
has been getting progressively famous in fluid dynamic 
exploration for the interest not only practical as well as 
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scholastic. The flow above a rotating plate is important on 
account of its extensive presentations in various operations 
like mechanical, geothermal, and innovative zones. Hayat 
et al. [10] mathematically explored the MHD nanofluid flow 
because of a pivoting disk with a slip impact. Also, Imtiaz 
et al. [11] deliberated the warm radiation impacts for the 
nanofluid flow between stretchable disk. Mahanthesh et al. 
[12] researched and analyzed the impact of the CNTs near a 
pivoting stretchable plate. Rehman et al. [13] examined the 
flow over a pivoting circle with the effect of MHD. Asma 
et al. [14] have studied the magnetized nanofluid flow over 
a spinning disk activation energy.

Bioconvection is the impulsive arrangement of base 
fluid profiles, like declining paths. It consists of mainly 
two assortments of up spinning micro-organisms that typi-
cally functional in bioconvection investigate plump algae 
and firm oxytactic microorganism. The appliance of bio-
convection includes numerous practices like fuels, bio reac-
tors, oil reclamation, biomicrosystems, and the product of 
plants. Kuznetsov [15] examined the flow suspension of 
bioconvection nanofluids considering water based directed 
on oxytactic microbes. Using a level surface to design the 
nanoparticles involving gyrotactic microorganisms simu-
lated by Basir et al. [16]. Khan et al. [17] evaluated the 
bioconvection because of the joint effect of nanoparticles 
with gyrotactic microbes that revealed the conductivity 
will upsurge with growing the buoyancy factor within the 
existence of convective form. Zuhra et al. [18] investigated 
the heat enhancement with the thermophoresis factor of 
second-grade fluid by the influence of nanoparticles and 
gyrotactic microbes.

Bhattacharyya et al. [19] researched the Casson fluid with 
the MHD impact scientifically. They found that expansion of 
the magnetic factor causes an increment in the scope of the 
mass exchange parameter for which steady flow is conceiv-
able. Nadeem et al. [20] developed qualities of Casson fluid 
for boundary layer heat exchange fluid flow in participation 
with radiation towards an exponential extended casing. The 
exact model was proposed by Casson [21] while examin-
ing the flow curves of deferments of shades in lithographic 
paints. It accounts for that Casson’s constitutive condition 
depicted precisely the silicon suspensions [22].

Cone-plate gadgets, in which flow creates in hole 
between a pivoting cone and a fixed plate, are utilized in 
viscometry [23–25]. Medication utilizes such gadgets for 
sustaining endothelial cells that develop a single layer over 
the non-pivoting plate, though the cone turns gradually 
to renovate the nourishing fluid and concurrently did not 
harm the cells [26–28]. Shevchuk et al. [29] described the 
heat transmission and hydrodynamics in a centrifugal flow 

between parallel turning discs in the case when the tangen-
tial inlet flow velocity is bigger than the tangential disc 
velocity. Disk and cone viscometers and stream chamber 
gadgets are customarily used to measure and examine shear 
reactions on cells and fluids, which differs with flow phe-
nomena, for example, angular velocity, cone angle, and the 
slit between the cone and disk were deliberated by Spruell 
et al. [30]. Thien [31] reported the flow of Oldroyd-B fluid 
using the disk and cone-apparatus. Turkyilmazoglu [32] 
reported the rate of heat transfer phenomena using the 
cone-disk apparatus is a gyrating system. Gul et al. [33] 
have extended the above idea using the CNT-nanofluids 
and observed the heat and mass transfer analysis.

The above studies witness that no exertion so far has been 
made to examine the 3D flow model for the fluid between 
the disk-cone gap in a gyrating system with thermophoresis 
and Brownian motion about the disk and cone as moving or 
stationary, under the influence of magnetic field. The origi-
nality of the current work is pointed out as follows:

1. The existing models [32, 33] are extended with the ther-
mophoresis analysis and Brownian motion in a 3D-fluid 
flow model.

2. The Darcy-Forchheimer and magnetic field also added 
to the basic flow model.

3. The non Newtonian Casson fluid has been used, while 
the existing literature [32, 33] is limited to the Newto-
nian fluid.

4. The present work is also extended to the mass transfer 
analysis and gyrotactic microorganisms.

5. For the solution of the proposed problem HAM tech-
nique has been used.

2  Problem Formulation

The Darcy-Forchheimer Casson nanofluid flow between 
the disk-cone gap is considered in a gyrating system. The 
upright magnetic field is imposed to the flow arrangement. 
The disk and cone apparatus are considered to be rotating 
or in rest. The geometry of the fluid is revealed in Fig. 1.

All the assumptions of the published work [32] are used 
as liker radially flexible wall temperature Tw = T∞ + crm at 
the disk and T∞ is the ambient temperature. The mass trans-
fer and bi-convection equations are also in countered with   
Cw = C∞ + crm and nw = n∞ + crm at the wall.

The basic equations are defined as [17, 18, 32, 33]:
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Now, u, v, and w are the velocity elements along x, y, 
and z directions, respectively, and � represents the density 
of base fluid, �0 is the strength of the magnetic field, and �f  , 
�f  , 

(

�cp
)

f
 , and �f  are the kinematic viscosity, thermal dif-

fusivity, heat capacity, and dynamic viscosity. � is the elec-
trical conductivity. F∗, k∗, �, Db, Dt, and � are the non-
uniform inertia coefficient, porous medium permeability, 
Casson parameter, coefficient of the Brownian diffusion, 
coefficient of the thermophoretic diffusion, and ratio of the 
nanoparticles and effective heat capacity, while BCs are

The following transformation for the model work are 
introduced as [32, 33]

Transformed equations are
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(8)

u = 0, v = �r,w = 0, T = Tw ,C = Cw , n = nw at z = 0,

u = 0, v = Ωr,w = 0, T = T∞ , C = C∞, n = n∞ at z = r tan � .
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Fig. 1  Physical interpretation of the problem
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Correspondingly physical conditions are

Dimensionless parameters:

Above the symbols M, Ec, L
b
, Sc, Pr, N

b
, N

T
, Re

w
,

ReΩ, andPe
 , respectively, denote magnetic parameter, Eck-

ert number, Lewis number, Schmith number and Prandtl 
number, Brownian motion parameter, thermophoretic 
parameter, rotation parameter at the disk surface, and the 
rotation parameter at the cone surface.

2.1  Quantities of Interest

The Nusselt and Sherwood numbers Nud, Shd at the disk sur-
face and the same numbers at the cone surface are denoted 
by Nuc, Shc . Motile of the microorganism at the disk surface 
is J�(0) , and motile of the microorganism at the cone surface 
is as [18, 32, 33]

3  HAM Solution

The problem solution in Eqs. (10–16) using the physical 
conditions (17) is obtained by way of the homotopy analysis 
method HAM [34–40]. Trail solution:
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For Eqs. (11–14), the 0th-order system is written as

While BCs are

(27)
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|

|

|

|𝜂=0

= 0,
⌢

H(𝜂;𝜁)
|

|

|

|𝜂=0

= 0,
⌢

G(𝜂;𝜁)
|

|

|

|𝜂=0

= Rew,

⌢

Θ(𝜂;𝜁)
|

|

|

|𝜂=0

=
⌢

𝜙(𝜂;𝜁)
|

|

|

|𝜂=0

=
⌢

J(𝜂;𝜁)
|

|

|

|𝜂=0

= 1

⌢

F(𝜂0;𝜁)
|

|

|

|𝜂0=tan 𝛾

=
⌢

H(𝜂0;𝜁)
|

|

|

|𝜂0=tan 𝛾

=
⌢

Θ(𝜂0;𝜁)
|

|

|

|𝜂0=tan 𝛾

=
⌢

𝜙(𝜂0;𝜁)
|

|

|

|𝜂0=tan 𝛾

=
⌢

J(𝜂0;𝜁)
|

|

|

|𝜂0=tan 𝛾

= 0,

⌢

G(𝜂0;𝜁)
|

|

|

|𝜂0=tan 𝛾

= ReΩ,

While the embedding constraint is � ∈ [0, 1][0, 1] , to 
regulate for the solution convergence  �⌢

F

, �⌢

G

, �⌢

H

, �⌢

Θ

, �⌢

𝜙

 , 

and �⌢

J

 are used. When � = 0 and � = 1 , we have

Expand the 
⌢

F(𝜂;𝜁) ,
⌢

G(𝜂;𝜁),
⌢

H(𝜂;𝜁),
⌢

Θ(𝜂;𝜁),
⌢

𝜙(𝜂;𝜁) , and 
⌢

J(𝜂;𝜁) through Taylor’s series for � = 0

While BCs are

(36)

⌢

F(𝜂;1) =
⌢

F(𝜂),
⌢

G(𝜂;1) =
⌢

G(𝜂),
⌢

H(𝜂;1) =
⌢

H(𝜂),
⌢

Θ(𝜂;1) =
⌢

Θ(𝜂),

⌢

𝜙(𝜂;1) =
⌢

𝜙(𝜂),
⌢

J(𝜂;1) =
⌢

J(𝜂),

(37)

⌢

F(𝜂;𝜁) =
⌢

F0(𝜂) +
∑∞

n=1

⌢

Fn(𝜂)𝜁
n

⌢

G(𝜂;𝜁) =
⌢

G0(𝜂) +
∑∞

n=1

⌢

Gn(𝜂)𝜁
n

⌢

H(𝜂;𝜁) =
⌢

H0(𝜂) +
∑∞

n=1

⌢

Hn(𝜂)𝜁
n

⌢

Θ(𝜂;𝜁) =
⌢

Θ0(𝜂) +
∑∞

n=1

⌢

Θn(𝜂)𝜁
n

⌢

𝜙(𝜂;𝜁) =
⌢

𝜙0(𝜂) +
∑∞

n=1

⌢

𝜙n(𝜂)𝜁
n

⌢

J(𝜂;𝜁) =
⌢

J0(𝜂) +
∑∞

n=1

⌢

Jn(𝜂)𝜁
n

(38)

⌢

Fn(𝜂) =
1

n!

𝜕
⌢

f (𝜂;𝜁 )

𝜕𝜂

|

|

|

|

|

|

|p=0

,
⌢

Gn(𝜂) =
1

n!

𝜕
⌢
g(𝜉;𝜁 )

𝜕𝜂

|

|

|

|

|

|p=0

,

⌢

Hn(𝜂) =
1

n!

𝜕
⌢

H(𝜂;𝜁 )

𝜕𝜂

|

|

|

|

|

|

|p=0

,
⌢

Θn(𝜉) =
1

n!

𝜕
⌢

Θ(𝜂;𝜁 )

𝜕𝜂

|

|

|

|

|

|

|p=0

,

⌢

𝜙n(𝜉) =
1

n!

𝜕
⌢

𝜙(𝜂;𝜁 )

𝜕𝜂

|

|

|

|

|

|

|p=0

,
⌢

Jn(𝜉) =
1

n!

𝜕
⌢

J(𝜂;𝜁 )

𝜕𝜂

|

|

|

|

|

|

|p=0

.

(39)

⌢

F(0) =
⌢

H(0) = 0,
⌢

G(0) = Rew,
⌢

Θ(0) =
⌢

𝜙(0) =
⌢

J(0) = 1 and

⌢

F(𝜂0) =
⌢

H(𝜂0) =
⌢

Θ(𝜂0) =
⌢

𝜙(𝜂0) =
⌢

J(𝜂0) = 0,
⌢

G(𝜂0) = ReΩ.
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Now

(40)

ℜ

⌢

F
n
(𝜂) = 2

(

1 +
1

𝜆

)

⌢

F���

n−1
+ 3𝜂

⌢

F�

n−1

+

(

1 +
1

𝛽

)

(

𝜂

w−1
∑

j=0

⌢

Fw−1−j

⌢

F�

j
−

w−1
∑

j=0

⌢

Hw−1−j

⌢

F�

j
+

⌢

F2
n−1 −

⌢

G2
n−1

)

+

(

2
⌢

pn−1 + 𝜂
⌢

p�
n−1

−M
⌢

Fn−1 − F1

⌢

F2
n−1

− Kr
⌢

Fn−1

)

(41)

ℜ

⌢

G
n
(𝜂) = (1 + 𝜂2)

⌢

G��

n−1

−

(

1 +
1

𝛽

)

(

𝜂

w−1
∑

j=0

⌢

Fw−1−j

⌢

G�

j
−

w−1
∑

j=0

⌢

Hw−1−j

⌢

G�

j

)

−M
⌢

Gn−1 − F1

⌢

G2
n−1

− Kr
⌢

Gn−1

(42)

ℜ

⌢

F
n
(𝜂) =

�

1 + 𝜂2
�⌢

H��

n−1
+ 3𝜂

⌢

H�

n−1

+

�

1 +
1

𝛽

�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜂

w−1
�

j=0

⌢

H�

w−1−j

⌢

Fj

−

w−1
�

j=0

⌢

Hw−1−j

⌢

H�

j
+

⌢

Hn−1 +

w−1
�

j=0

⌢

Hw−1−j

⌢

Fj

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

−
⌢

p�
n−1

(43)

ℜ

⌢

Θ

n
(𝜂) = (1 + 𝜂2)

⌢

Θ��

n−1
+ +𝜂

⌢

Θ�

n−1
− Pr

w−1
∑

j=0

⌢

Θ�

w−1−j

(

⌢

Hj − 𝜂
⌢

Fj

)

−PrNb

(

𝜂2 + 1
)

w−1
∑

j=0

⌢

Θ�

w−1−j

⌢

𝜙�

j
− Nt Pr

(

1 + 𝜂2
)⌢

Θ�2
n−1

,

(44)

ℜ

⌢

𝜙
n
(𝜂) =

(

1 + 𝜂2
)⌢

𝜙��

n−1
+ 𝜂

⌢

𝜙�

n−1

− Sc

w−1
∑

j=0

⌢

𝜙�

w−1−j

(

⌢

Hj − 𝜂
⌢

Fj

)

+

+
Nt

Nb

(

(

1 + 𝜂2
)⌢

Θ��

n−1
+ 𝜂

⌢

Θ�

n−1

)

(45)

ℜ

⌢

J
n
(𝜂) =

⌢

J��
n−1

− PrLb

w−1
∑

j=0

⌢

J�
w−1−j

(

⌢

Hj − 𝜂
⌢

Fj

)

− Pe

(

w−1
∑

j=0

⌢

J�
w−1−j

⌢

𝜙�

j
+

w−1
∑

j=0

⌢

Jw−1−j
⌢

𝜙��

j

(

1 + Ω1

)

)

(46)While𝜒n =

{

0, if 𝜁 ≤ 1

1, if 𝜁 > 1.

4  Results and Discussions

The system (10) to (16) is numerically solved by homotopy 
analysis technique. Noticeable performances of the inter-
esting constraints on velocity, fixation, concentration, the 
density of self-moving microorganisms, and temperature are 
graphically investigated.

4.1  Velocity Profile

Figure 1 displays the physical draught of the work. Conspic-
uous behaviors of various relevant factors like magnetic fac-
tor (M) , Casson factor (�) , porosity parameter (Kr) , and iner-
tial factor 

(

F1

)

 on F(�) and G(�) are examined in Figs. 2−9. 
Figures 2 and 3 display the influence of magnetic parameter 
(M) on F(�) and G(�) correspondingly. Here for escalating 
estimations of magnetic factor, (M) improves the opposing 
force (Lorentz force) to decline the flow and consequently 
both components of the velocity are condensed. Figures 2 

Fig. 2  Impacts of M and � on F(�) when Kr = 0.4,F
1
= 0.4

Fig. 3  Impacts of M and � on G(�) when Kr = 0.4,F
1
= 0.4
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and 3 have also indicated that advanced estimations of the 
Casson parameter enhance more resistance to the system. 
In fact, these outcomes in tougher frictional force causing 
a decline in (F(�) andG(�)) . Physically, the advanced fluid 
viscosity for expanding estimations of � ends-up in progress 
of the yield stress, which in turn stands answerable for the 
given variety in the two velocities of fluid (F(�) andG(�)) . 
Figures 4 and 5 reveal the impacts of F1 and Kr on F(�) and 
G(�) , respectively. The permeable medium played out a key 
part during fluid flow events. Fundamentally, the porosity 
factor upsets the limit layer flow of fluid which, thus, deliv-
ered resistance to the fluid flow and, from now on, a decrease 
in the speed of the fluid. Besides, F1 and Kr reduced the 
fluid flow at the outward of the inside the conical gap and 
the exteriors of disk and cone. This conduct happened in 
light of the fact that the permeable medium was added to 
the flow wonders which diminished the coefficient of inertia, 
and thus, the fluid velocity was diminished. In particular, 
the impact of Casson parameter � on H(�) is exposed in 

Fig. 6. The amassed estimations of the Casson factor, i.e., 
the declining yield stress, subdue the velocity field H(�) . 
It is perceived that H(�) and the associated boundary layer 
thickness are declining function of �.

4.2  Temperature Profile

Prominent behaviors of numerous pertinent parameters like 
(Pr) , 

(

Nb

)

 , and 
(

Nt

)

 on the temperature field Θ(�) . The per-
formance of the thermal distributions for the variety of the 
(Pr) can be commenced in Fig. 7. It is perceived that the 
thermal field reduces with expanding (Pr) . The constraint 
(Pr) declines the thermal field for the larger values. For all 
estimations of (Pr) , wall temperature gradient is negative, 
which implies that the heat is constantly moving from the 
shallow to the ambient fluid. The important improvement is 
noted in temperature distribution Θ(�) when Brownian fac-
tor 

(

Nb

)

 is upsurges as shown in Fig. 8. Since, an expansion 

Fig. 4  Impacts of F
1
 and Kr on F(�) when M = 0.5, � = 0.3

Fig. 5  Impacts of F
1
 and Kr on G(�) when M = 0.1, � = 0.3

Fig. 6  Impact of � on H(�) when M = 0.1,Kr = 0.3

Fig. 7  Impact of Pr on Θ(�) when N
t
= 0.8, N

b
= 0.7
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in the strength of the Brownian movement measure causes 
a compelling development of the nanoparticles which pro-
gresses the thermal efficiency of the fluid. The thermopho-
resis marvel has a noteworthy commitment in numerous pro-
ductions. The thermophoresis is a movement cycle of heated 
fluid particles towards the cool area, because of which the 
temperature increments. Figure 8 depicts the consequence 
of 
(

Nt

)

 on Θ(�) . It is due to the fact that heat radiation has 
a profound effect on the fluid temperature and it creates the 
shallow heat flux, which results in enhancement of the tem-
perature. Influence of (Nb) and (Nt) on thermal profile is 
portrayed in Fig. 8. One can detect from the figure that rise 
in values of (Nb) and (Nt) improves the thermal gradient. 
Here, due to Brownian motion and thermophoresis, analysis 
affects the interaction of nanoparticles and generates addi-
tional heat which results in the enrichment of temperature. 
(Nt) strengthens the thermophoresis forces which carry the 
nanoparticles from warmer region to the chiller region, 

and Brownian motion is the effect of individual motion of 
the small particles, which upshots in reduction of thermal 
boundary layer thickness, and hence, the temperature enrich-
ment is detected for increasing values of (Nb) and (Nt).

4.3  Concentration Profile

Figure 9 is the outcome of Schmidt constraint Sc on the 
concentration field (�(�)) . Growing the estimation of Sc 
drops the concentration (�(�)) of fluid. Expanding Sc 
prompts the lower estimation of the concentration field 
since diminishes in Brownian diffusivity has the opposite 
connection along Sc . In Fig. 10, the outcomes are enforced 
for concentration field for dissimilar estimations of 

(

Nt

)

 . 
It is seen that expansion in the estimation of Nt , the con-
centration of nanoparticles upgraded. The thermophore-
sis wonder is frequently found in the different physical 

Fig. 8  Impact of N
b
 and N

t
 on Θ(�) when Pr = 10.1

Fig. 9  Impact of Sc on �(�) when N
t
= 0.4, N

b
= 0.5

Fig. 10  Impact of N
b
 and N

t
 on �(�) when Sc = 0.4, Pr = 6.4  

Fig. 11  Impact of L
b
 and P

e
 on J(�) when Ω

1
= 0.4  
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circumstances where the transfer of heat achieves more 
significance. Because of higher temperature close to the 
shallow, the fluid particles move to the contingency cool 
surface because of the gradient temperature and accord-
ingly concentration distribution improved. An ascent in 
the nanoparticle concentration distribution is examined. 
Brownian motion Nb quantity contributions on concentra-
tion (�(�)) are captured in Fig. 10. As Brownian movement 
is the irregular movement of the particles in base fluid, by 
enhancing Nb , concentration profile (�(�)) is decreased.

4.4  Motile Microorganism

The impact of Pe and Lb upon the motile microorganism 
profile J(�) is shown in Fig. 11. Since the increasing val-
ues of Pe and Lb cause a reduction in diffusion of micro-
organism, this ultimately results in reduction of density 
of micro-organism. Hence, the density of micro-organism 
reveals a reducing response to augmented values of Pe and 
Lb as shown in Figs. 11 and 12. Figure 12 indicates the 
effect of Ω1 on J(�) . This is clear from the figure that the 
thicknesses of boundary layer of both the micro-organisms 
and density decay for amassed approximations of Ω1.

4.5  Tables Discussion

Table 1 shows the influence of Brownian factor (Nb) and 
thermophoretic factor on the Nussult number for both cone 
and disk. For increasing values of (Nb) and (Nt) , Nusselt 
number is rising. In fact, the heat transfer rate augmented 
with the larger magnitude of these parameters and conse-
quently the Nusselt number increases.

Table 2 displays the influence of Schmidt number Sc , 
Brownian factor Nb , and thermophoretic parameter on Sher-
wood number for both cone and disk. For cumulative values 
of Schmidt number Sc and Nb , Sherwood number is decreas-
ing for both cone and disk. For amassed estimations of ther-
mophoretic factor, Nussult number is rising. Table 3 shows 
the impression of bioconvection Lewis number, bioconvec-
tion concentration difference parameter, and bioconvection 
Peclet number on the local density number 

(

Nnx
)

  for both 
cone and disk. For rising estimations of bioconvection Lewis 
number, bioconvection concentration difference constraint, 
and bioconvection Peclet number, the local density number 
(

Nnx
)

 is decreasing for both cone and disk.

Fig. 12  Impact of Ω
1
 on J(�) when P

e
= 0.7,L

b
= 0.5

Table 1  Nusselt number at various values of embedded parameters

N
b

N
t

−Θ�(0) −Θ�(�0 = 1)

0.5 0.6 1.40574 0.25251
0.6 1.42033 0.36362
0.7 1.43552 0.37484

0.6 1.43561 0.38435
0.7 1.45067 0.38639
0.8 1.46503 0.41234

Table 2  The rate of mass transfer at various values of physical 
parameters

Sc N
b

N
t

−��(0) −��(�0 = 1)

0.4 0.4 0.3 1.4124 0.11762
0.6 1.4235 0.12873
0.8 1.4346 0.12984

0.4 1.42057 0.12462
0.6 1.43283 0.11375
0.8 1.42152 0.106741

0.3 1.42876 0.17532
0.5 1.49833 0.19564
0.7 1.50222 0.28964

Table 3  Local density number 
(

Nn
x

)

 at various values of embedded 
parameters

P
e

L
b

Ω1 −J�(0) −J�(�0 = 1)

0.1 0.4 0.2 1.07367 0.129214
0.2 1.13867 0.22874
0.3 1.20367 0.37341

0.4 1.20458 0.38902
0.5 1.20504 0.15324
0.6 1.20819 0.16421

0.2 1.20958 0.17542
0.3 1.21425 0.18765
0.4 1.22512 0.19324
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5  Conclusions

Here we analyzed the bioconvectional Darcy-Forchheime 
Casson nanofluid flow between a cone and disk with gyro-
tactic microorganisms. The magnetic field is imposed per-
pendicular to the flow field. The transformed equations are 
solved through HAM technique. The followings are the main 
observations of the present study.

• For the rising estimations of Casson factor � , porosity 
factor (Kr) , and inertial parameter 

(

F1

)

 and magnetic fac-
tor (M) , the velocity profile decreases.

• The temperature decreases with increasing (Pr) while for 
increasing values of 

(

Nb

)

 and 
(

Nt

)

 , Θ(�) is decreasing.
• By enhancing Nb , concentration profile, (�(�)) is decreas-

ing, while for increasing of thermophoresis parameter 
(

Nt

)

 ,concentration profile (�(�)) is increasing.
• Density of motile micro-organism reveals a reducing 

response to amplified values of Pe,Ω1 and Lb.
• The small value of concentration profile leads by increas-

ing Sc because declines in Brownian diffusivity have the 
inverse relation with Sc.

• The heat transfer rate enhances with the larger magnitude 
of the 

(

Nb

)

 and 
(

Nt

)

 . Physically, the heat transfer rate aug-
mented with the larger magnitude of these parameters, 
and consequently, the Nusselt number increases.

• The cumulative values of Schmidt number Sc and Nb and 
Sherwood number are decreasing for both cone and disk 
apparatus.

• Rising estimations of Lewis number, bioconvection, 
and Peclet number, the local density number 

(

Nnx
)

 , are 
decreasing for both cone and disk apparatus.
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