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Abstract
The propagation of dust ion acoustic solitary waves (DIASWs) is investigated in dusty plasma with non-Maxwellian
electrons. The Korteweg-de Vries (KdV) equation and modified Korteweg-de Vries (mKdV) equation are derived with the
help of reductive perturbation method and their solitary wave solutions are analyzed. The effects of relevant parameters
(viz., κ-deformed parameter and dust concentration μ) on the dynamics of solitary structures are discussed in detail.
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1 Introduction

In the absence of collisions, ions can still transmit vibra-
tions to each other owing to their charge. Since the motion
of massive ions is involved, these vibrations are of low fre-
quency and are called ion acoustic (IA) waves [1]. A solitary
wave is a localized wave which emerges from the balance
between the nonlinear and dispersive effects. A solitary
wave is called soliton if it further possesses two proper-
ties, that is, it moves with constant speed and maintains its
shape. Secondly when a soliton interacts with another one,
it emerges from the collision unchanged except for a phase
shift (nonlinear superposition) [2]. The discovery of soliton
in connection with numerical integration of Korteweg-de
Vries (KdV) equation was made by Zabusky and Kruskal
[3] . In a mathematical sense, solitons are basically special
solutions of some integrable nonlinear partial differential
equations which possess all the above mentioned proper-
ties, i.e., they are localized and stable, and survive collision,
while solitary waves are solutions of near integrable par-
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tial differential equations, which are also localized, but
do not possess particle-like property such as elastic colli-
sion property. Usually the terms solitary wave and soliton
are used interchangeably in physics. Ion acoustic solitary
waves (IASWs) are a important class of nonlinear phenom-
ena in different plasma systems. The properties of such
waves in different plasma systems are the targeted areas of
many researchers. The nonlinear properties of ion acoustic
waves (IAWs) in quantum plasma are studied by Misra and
Bhowmik [4]. Pakzad et al. [5] studied the characteristics
of IASWs in three-component plasma containing nonther-
mal electrons, cold electrons, and positrons. The IA solitons
and supersolitons in magnetized plasma with two groups of
electrons, i.e., nonthermal hot and Boltzmann cold elec-
trons, are studied in Ref. [6]. In Ref. [7], the properties
of such waves which obliquely propagate in magnetized
plasma are discussed in detail.

Due to its existence in real charged particle systems, such
as in space and laboratory plasmas, the field of dusty plasma
is attracting increasing attention from many researchers.
This interest is also due to the involvement of novel physics
in its description which is mainly due to the theoretical
prediction and later experimental confirmation of two new
plasma modes, namely the dust-acoustic wave (DAW)
and the dust-ion acoustic wave (DIAW). The detailed
description of the aforementioned new acoustic modes
seen in Refs. [8–21] has a unique value in astrophysical
phenomena. The physical mechanism involved in DIAWs is
similar to the IAWs, wherein the restoring force is provided
by the inertialess electron while inertia comes from the ion
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mass. However, on the time scale of DIAW, the stationary
dust does not contribute to the wave dynamics.

Kaniadakis introduced a new distribution function,
the so-called κ-deformed distribution in Ref. [22], and
demonstrated that it can cover the nonextensive distribution
and conventional Maxwell-Boltzman distribution. After
that, Beck and Cohen proposed that the distribution
presented by Kaniadakis which is κ-deformed distribution
can be represented as the result of more generalized
statistics which is named superstatistics [23]. Ourabah et al.
have also described that the superthermal and nonthermal
empirical distributions can be recovered from superstatistics
(demonstrated by Beck and Cohen) [24]. So, in this
sense, the κ-deformed distribution may be considered the
more general form of those distribution functions. The
Kaniadakis statistics or the κ-deformed distribution has
been applied to cosmic rays [25], quark-gluon plasma
formation [26], kinetics of photons and interacting atoms
[27], nonlinear kinetics [28], blackbody radiation [29], and
in quantum entanglement [30]. Gougam and Tribeche used
the κ-deformed distribution function to study the electron-
acoustic solitary waves (EASWs) and have shown that the
characteristics of EASWs are altered by the parameter κ

of the distribution [31]. Lourek and Tribeche described the
properties of IASWs in unmagnetized electron ion plasma
with Kaniadakis distributed electrons by using Sagdeev
approach. They showed that the κ-deformed parameter very
slightly changes the structural properties of IASWs [32].
The qualitative analysis of the positron acoustic waves in
four-component plasma in which electron and hot positron
obey κ-deformed distribution has been carried by Saha
and Tamang [33]. The use of κ-deformed Kaniadakis
distribution in the context of arbitrary amplitude IASWs
in a magnetized plasma (composed of cold fluid ions and
non-Maxwellian electrons), where the electrons obey the κ-
deformed Kaniadakis distribution, was made very recently
in Ref. [34]. In our present work, we make the qualitative
analysis of the DIASWs in unmagnetized dusty plasmas
with κ-deformed Kaniadakis distributed electrons. For this
purpose, we find the KdV equation for such a system,
then the mKdV equation for the case where KdV equation
fails. We also investigate the effects of different physical
parameters on the solitary wave solutions of the KdV and
mKdV equations.

This paper is organized as follows: In Section 2, the
basic equations for the system are presented. In Section 3,
the KdV equation is derived. The solitary wave solution
of KdV equation is presented in Section 4. The derivation
and solitary wave solution of mKdV equation are given
in Section 5. The effects of parameters on solitary wave
solutions are discussed in Section 6, and Section 7 is
reserved for conclusion.

2 Basic Equations

We consider an unmagnetized dusty plasma consisting of
fluid ions, stationary negatively charged dust grains, and
nonthermal electrons. To study DIAWs, the following set of
normalized fluid equations is employed:

∂n

∂t
+ ∂

∂x
(nu) = 0 (1)

∂u

∂t
+ u

∂u

∂x
= −∂φ

∂x
(2)

∂2φ

∂x2
= (1 − μ) ne − n + μ (3)

Here, n and ne are the ion and electron number densities
which are, respectively, normalized by their equilibrium
counterparts, i.e., n0 and ne0. The ion fluid velocity u is

normalized by IA speed Cs =
√

Te

m
and φ = eφ

Te
is the

normalized electrostatic wave potential. The space (x) and
time (t) variables have been normalized by Debye length

λD =
√

Te

4πn0e
2 and ω−1

pi =
√

m

4πn0e
2 , respectively, with Te

representing the electron temperature and m the ion mass.
Moreover, μ = nd0

n0
is the dust concentration ratio, with nd0

representing the equilibrium number density of dust grains.
The electrons follow κ-deformed Kaniadakis distribution

[25], which is given as:

f (κ)
e (v) = Aκ expκ

(
−mev

2/2 − eφ

Te

)
, (4)

with

expκ (x) =
(√

1 + κ2x2 + κx
) 1

κ
, (5)

where Aκ is the normalized constant given by

Aκ = ne0

(
me |κ|
πTe

) 3
2 �

(
1

2|κ| + 3
4

)

�
(

1
2|κ| − 3

4

)
(
1 + 3

2
|κ|

)
. (6)

During the calculation of Aκ , the following standard inte-
gration was used:

∫ ∞

0
xr−1 expκ (−x) dx

= [1 + (r − 2) |κ|] |2κ|−r

[1 − (r − 1) |κ|]2 − κ2

�
(

1
2|κ| − r

2

)

�
(

1
2|κ| + r

2

)� (r) , (7)

Here, κ is a real parameter which tells about the strength of
deformation and � stands for the standard gamma function.
The value of real parameter κ must follow the inequality:
−1 < κ < 1. Also, the value of κ measures the deviation
from the Maxwellian distribution, that is, in the limit when
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κ → 0, the Kaniadakis distribution function is reduced to
the Maxwell-Boltzmann distribution as:

lim
κ→0

f (κ)
e (v) = ne0

(
me

2πTe

) 3
2

exp

(
−mev

2/2 − eφ

Te

)
, (8)

note that limκ→0 expκ (x) ≡ exp (x).
Before going ahead, it is important to restrict the valid

range of κ . The mean square speed
〈
v2

〉
must be calculated

as:
〈
v2

〉
=

∫ ∫ ∫
v2f

(κ)
e (v)d3v∫ ∫ ∫

f
(κ)
e (v)d3v

= 2Te/me

|2κ|5/2
(
1 + 5

2 |κ|
)

�
(

1
2|κ| − 5

4

)

�
(

1
2|κ| + 5

4

) . (9)

As
〈
v2

〉
must be finite, and as the value of

〈
v2

〉
diverges

at |κ| → 0.4, the acceptable value of κ must satisfy the
inequality |κ| < 0.4, in order to keep the physical sense
of

〈
v2

〉
. It should be mentioned here that this limitation has

been taken into account during the calculation of both Aκ

and the average kinetic energy of the particles, m
〈
v2

〉
/2, the

interacting particles are ignored, i.e., φ = 0.
Integrating (4) over velocity space, the number density

for the electrons is obtained as:

ne =
(√

1 + κ2φ2 + κφ

) 1
κ

(10)

For φ � 1, Taylor expansion of (10) up to third order gives:

ne = 1 + φ + 1

2
φ2 +

(
1 − κ2

)

6
φ3 + · · · (11)

Substitution of (11) into (3) gives:

∂2φ

∂x2
� 1 − n + c1φ + c2φ

2 + c3φ
3 + · · · (12)

where the coefficients are c1 = (1 − μ), c2 = 1−μ
2 , and

c3 = (1−μ)
(
1−κ2

)
6 .

3 Derivation of KdV Equation

To derive the KdV equation, we make use of the reduc-
tive perturbation technique. We introduce the following
stretching of coordinates:

ς = ε1/2 (x − V t) and τ = ε3/2t (13)

where ε is a very small parameter and V is the phase
velocity of the wave which is to be determined later.

Now, we expand the field quantities in the following
form:⎡
⎣

n

u

φ

⎤
⎦ =

⎡
⎣
1
0
0

⎤
⎦+ε

⎡
⎣

n1
u1
φ1

⎤
⎦+ε2

⎡
⎣

n2
u2
φ2

⎤
⎦+ε3

⎡
⎣

n3
u3
φ3

⎤
⎦ ...... (14)

Using (13) and (14) in (1), (2), and (12), we get the following
set of equations in the lowest order of ε as follows:

n1 = u1

V
= φ1

V 2
(15)

u1 = φ1

V
(16)

n1 = c1φ1 (17)
Comparison of (15) and (17) gives the following expression
for phase velocity:

V =
√

1

c1
(18)

We get the following set of equations in the next highest
order of ε:

−V
∂n2

∂ς
+ ∂u2

∂ς
+ ∂

∂ς
(n1u1) + ∂n1

∂τ
= 0 (19)

−V
∂u2

∂ς
+ ∂φ2

∂ς
+ ∂u1

∂τ
+ u1

∂u1

∂ς
= 0 (20)

∂2φ1

∂ς2
+ n2 = c1φ2 + c2φ

2
1 (21)

Multiplying (19) by V and adding with (20), we get:

V
∂n1

∂τ
− V 2 ∂n2

∂ς
+ V

∂

∂ς
(n1u1)

+∂u1

∂τ
+ u1

∂u1

∂ς
+ ∂φ2

∂ς
= 0 , (22)

Substituting (15)–(17), and (21) in (22), we obtain the KdV
equation as:

∂�

∂τ
+ α�

∂�

∂ς
+ β

∂3�

∂ς3
= 0 (23)

with the nonlinear coefficient

α = 3

2V
− V

2
(24)

and dispersion coefficient

β = V 3

2
(25)

It is clearly seen that both α and β depend upon the dust
concentration μ. In (23), φ1 is replaced by �.

4 SolitaryWave Solution

In order to find the nonlinear solution of (23), let us define
a travelling wave transformation of the form ζ = ς −
v0τ where v0 is the velocity of the nonlinear structure in
comoving frame. Using this transformation, (23) takes the
form:

−v0
d�

dζ
+ α�

d�

dζ
+ β

d3�

dζ 3
= 0 (26)
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Integrating twice (26), and using boundary conditions � →
0, d�

dζ
→ 0, d2�

dζ 2
→ 0 at |ζ | → ∞, we finally obtain the

solitary wave solution:

� (ζ) = ψ0 sec h2
(

ζ

w

)
(27)

where ψ0 = 3v0
α

and w =
√

4β
v0

are the peak amplitude and
width of DIASW respectively.

5 Derivation of mKdV Equation

It has been pointed out that the KdV equation fails at
α = 0. For example, in the present plasma model, we
notice that at a critical value of μ, i.e., μc = 2/3, α

vanishes [see (24)]. To investigate IAWs in such a situation,
we take into account the higher order nonlinearity and
derive the mKdV equation. In this context, we again use
the reductive perturbation technique, and introduce the
modified stretching of coordinates as:

ς = ε (x − V t) and τ = ε3t (28)

Substituting (14) and (28) into (1), (2), and (12), we get
the same equations in the lowest order of ε as in the KdV
derivation (i.e., (15), (16), and (17)). In the next highest
order of ε, the second-order momentum equation results in
the following:

u2 = φ2

V
+ 1

2V 3
φ2
1 (29)

Substituting (14) and (28) into (1), (2), and (12), the third-
order terms in ε are obtained as:

−V
∂n3

∂ς
+ ∂u3

∂ς
+ ∂n1

∂τ
+ ∂

∂ς
(n2u1)+ ∂

∂ς
(n1u2) = 0 (30)

−V
∂u3

∂ς
+ ∂u1

∂τ
+ ∂

∂ς
(n2u1) + ∂φ3

∂ς
= 0 (31)

∂2φ1

∂ς2
+ n3 = c1φ3 + 2c2φ1φ2 + c3φ

3
1 (32)

Fig. 1 Variation of α, β versus μ

Fig. 2 Variation of � (ζ) given by (27) versus ζ for different values of
dust concentration μ, with v0 = 0.1

Solving (30)–(32), along with the first- and second-order
contributions, we finally obtain the mKdV equation as:

∂�

∂τ
+ ��2 ∂�

∂ς
+ β

∂3�

∂ς3
= 0 (33)

where

� = 3V

4
+ 3

2V 3
−

(
1 − κ2

)
V

4
(34)

Again, in (33), � is used instead of φ1.
The solitary wave solution of mKdV equation is:

� (ζ) = ±
√
6v0
�

sec h

(√
v0

β
ζ

)
(35)

6 Results and Discussion

α and β given in (24) and (25), respectively, are strongly
affected by as the dust concentration μ. In Fig. 1, we give
a graph of how α and β vary as the dust concentration
μ is increased from 0 to 0.8. It is seen that the nonlinear
coefficient α takes positive as well as negative values while
the dispersion coefficient β is always positive. It is pointed
out that α is 0 at μ = μc = 2/3, while α is positive
in the range 0 ≤ μ < μc, which defines the existence
region for compressive DIASWs having positive potential.
Also, α is found negative in the range μc < μ < 1 which
corresponds to the existence region for rarefactive DIASWs

Fig. 3 Variation of � (ζ) given by (27) versus ζ for different values of
dust concentration μ, with v0 = 0.1
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Fig. 4 Variation of � (ζ) given by (35) versus ζ for different values of
the κ-deformed parameter κ at critical composition, with v0 = 0.1

having negative potential. Thus, in the considered model,
both compressive and rarefactive solitary structures exist.

The behavior of DIASWs for varying values of μ is
shown in Figs. 2 and 3. From Fig. 2, it is clear that the
width and amplitude of the positive potential DIASWs
are enhanced as the value of μ is increased. However,
Fig. 3 displays the opposite behavior of negative potential
DIASWs in contrast to the positive potential DIASWs
with increasing values of μ. Here, the increasing values
of μ result in lower (in amplitude) and smaller (in width)
rarefactive DIASWs. The effect of μ on DIASWs is
consistent with the results of Ref. [35]. Physically, the
nonlinear coefficient α decreases (increases) for positive
potential (negative potential) DIASWs with increasing
values of μ (see Fig. 1). As the amplitude (ψ0 = 3v0/α) has
inverse relation with α, the amplitude of positive (negative)
potential DIASW is enhanced (reduced) with higher values
of μ.

In Fig. 4, the variation of DIASW solution � of mKdV
equation (defined by (35)) against ζ is presented for differ-
ent values of κ , i.e., κ = 0 (black curve), κ = 0.20 (dashed
red curve), and κ = 0.39 (dot-dashed blue curve). The coex-
istence of compressive and rarefactive DIASWs is observed
for the critical composition. It is seen that the width
and amplitude of rarefactive and compressive DIASWs
decrease with increasing values of κ . Thus, the compressive
and rarefactive DIASWs abate as κ is increased, i.e., the
compressive and rarefactive DIASWs shrink as the electrons
evolve far away from its Maxwell–Boltzmann equilibrium.
It is important to note that the value of κ has no effect on the
DIASWs associated with the KdV equation (23), whereas
the values of κ have a significant effect on DIASWs linked
with the mKdV equation (33).

7 Conclusion

To conclude, we have studied the propagation characteris-
tics of DIASWs in an unmagnetized dusty plasma consisting
of fluid ions, negatively charged stationary dust grains, and

Kaniadakis distributed electrons. We have derived the KdV
and mKdV equations by using the famous reductive pertur-
bation technique. The solitary wave solution of the KdV and
mKdV equations is determined. Due to the variation of dust
concentration μ, the KdV equation admits a combination
of compressive and rarefactive wave structures in the given
dusty plasma system. It was found that the nonlinear coeffi-
cient α becomes 0 at μ = μc = 2/3 and the KdV equation
is not valid at α = 0. We, therefore, take into account
the higher order nonlinearity in the vicinity of this critical
regime, and derive the mKdV equation. It is evident from
KdV equation that DIASWs have dependence only on the
parameter μ, while DIASWs linked with mKdV equation
depend both on μ and κ as well. Our present investigations
are helpful in the context of cosmic ray spectrum [25] as
well as in astrophysical plasma environments [36, 37].
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