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Abstract
In this paper, we report on multistability in a periodically forced Brusselator, which is modeled by a nonlinear
nonautonomous system of two first-order ordinary differential equations. Multistability regions are detected in a cross
section of the four-dimensional parameter space of the model, namely the (ω, F ) parameter plane, where ω and F are
respectively angular frequency and amplitude of an external forcing. Lyapunov exponents spectra are used to characterize
the dynamical behavior of each point in the abovementioned parameter plane. Moreover, basins of attraction, bifurcation
diagrams, and phase-space portraits are used to illustrate the coexistence of periodic and chaotic behaviors.
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1 Introduction

The Brusselator mathematical model given by:

ẋ = α − (1 + β) x + x2y,

ẏ = βx − x2y, (1)

was proposed by Prigogine and Lefever [1], being a
model for chemical reactions with oscillations, therefore
maintaining a prolonged non-equilibrium state. For a
complete description of the x, y dimensionless variables and
the α, β positive control parameters, we suggest consulting
Hannon and Ruth [2]. As explicitly shown in Epstein and
Pojman [3], the Brusselator is a four-step chemical reaction
which represents for example the Belousov-Zhabotinsky
reaction [4], besides several others.

In this paper, we deal with a sinusoidally forced
Brusselator given by:

ẋ = α − (1 + β) x + x2y + F cos ωt,

ẏ = βx − x2y, (2)
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where F and ω are respectively amplitude and angular
frequency of an external periodic forcing. System (2) was
recently investigated by Luo and Guo [5], from the point
of view of analytical solutions of some periodic evolu-
tions. Reference [5] presents for example, the bifurcation
tree of period 1 to period 8 evolutions through frequency-
amplitude characteristics for system (2), among other
equally important results.

Our main goal in this paper is to investigate numerically
the (ω, F ) parameter plane of system (2), with α = 0.4,
β = 1.2 kept fixed, in the search for regions of multista-
bility [6]. Therefore, our contribution to advance knowl-
edge of the forced Brusselator considers (ω, F ) parameter
planes, which are cross sections of the (α, β, ω, F ) four-
dimensional parameter space of system (2). As we will see
in detail in the next section, each (ω, F ) parameter plane
is constructed by considering a mesh of one million points.
The characterization of the dynamical behavior of each of
these points, chaos or regularity, in each parameter plane,
will be done by the respective Lyapunov exponents spec-
trum, computed by the algorithm described in Wolf et al.
[7]. From there, it will be possible to identify, by a sim-
ple visual inspection, the existence of parameter regions of
occurrence of multistability in the forced Brusselator model
(2).

The rest of the paper is organized as follows. Section 2 is
dedicated to investigate aspects related to the multistability
phenomenon. Parameter planes, basins of attraction, bifur-
cation diagrams, and phase-space portraits are presented
and discussed in this section. The paper is summarized in
Section 3.
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2Multistability in the Forced Brusselator

Multistability is an interesting phenomenon connected with
nonlinear dynamics, meaning the coexistence of two or
more attractors in the phase space, for a kept fixed set
of parameters present in the related mathematical model.
Coexisting attractors may be of the same type (stable
equilibrium point, periodic, quasiperiodic, or chaotic) or
not, having been detected in several different discrete-
and continuous-time systems, modeled by different sets of
mathematical equations [8–15]. Therefore, multistability is
a typical phenomenon of nonlinear dynamical systems that
arises as a consequence of its sensitive dependence on initial
conditions. The final state of multistable systems depends
on the initial conditions, being the set of initial conditions
that takes the system to a particular final state called the
basin of attraction of that state.

Our aim in this section is to report on the occurrence
of multistability in system (2), and on coexisting periodic
and chaotic attractors and its respective basins of attraction.
Before presenting the results, we will write (2) for the forced
Brusselator model in a more suitable form to perform all the
necessary numerical manipulations. With this purpose, we
consider a new variable, z = ωt , to obtain the transformed
set:

ẋ = α − (1 + β) x + x2y + F cos z,

ẏ = βx − x2y,

ż = ω, (3)

in order to perform all the necessary numerical computa-
tions.

Figure 1 shows three versions of a same (ω, F ) parameter
plane of system (2), for which α = 0.4, β = 1.2, 0.75 ≤
ω ≤ 1.00, and 0.05 ≤ F ≤ 0.15. Each of the three
versions was obtained in a different way, but in all of them
the dynamical behavior of each point was characterized by
the magnitude of the largest Lyapunov exponent (LLE). For
the diagram in Fig. 1a, the initial condition for the necessary
numerical integration of system (3) was the same for any
pair (ω, F ). Diagrams in Fig. 1b and c in turn were obtained
by following the attractor along lines of F kept fixed.

Obtaining the diagram in Fig. 1b, for example, starts at
(ω, F ) = (0.75, 0.05), with a given arbitrary initial con-
dition. Then, system (3) was numerically integrated using
the fourth-order Runge-Kutta algorithm, the corresponding
time series was obtained, and the associated LLE was cal-
culated. From a technical point of view, the computation of
the LLE is done by using the Gram-Schmidt orthogonal-
ization procedure, and includes determining the magnitude
of expansion and contraction rates along the unstable and
stable directions of the respective phase space. Speaking
explicitly, the computation was done by using a FORTRAN
code which is based on the ODE program that appears in
Appendix A, page 310 of Ref. [7]. In the following, ω was
incremented, and the system (2) was initialized with the
final point (x, y, z) in the time series for the anterior ω

value. System (3) was numerically integrated for the new
point (ω, F ), and the respective LLE was calculated. The

Fig. 1 Stability domains in the (ω, F ) parameter plane of the forced
Brusselator, for α = 0.4, β = 1.2. In each diagram, color is related
with the magnitude of the largest Lyapunov exponent, as the respective

color bar. In a, the initial condition is the same for any pair (ω, F ). In
b, the attractor is followed, and ω is increased for each kept fixed F .
In c, the attractor is followed, and ω is decreased for each kept fixed F
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procedure of increasing ω was repeated until its highest
value ω = 1.00 is reached. Then, F was incremented,
with the procedure being repeated until the pair (ω, F ) =
(1.00, 0.15) is considered in computing. The diagram in
Fig. 1c was obtained by a similar procedure, but now start-
ing at (ω, F ) = (1.00, 0.15). Parameter ω was decreased
until ω = 0.75. Considering F values up to 0.05, the proce-
dure is repeated until the final point (ω, F ) = (0.75, 0.05)

is reached. As we said before in the “Introduction” section,
each diagram in Fig. 1 was discretized in a grid of 1 × 106

points equally spaced, i.e., in each diagram the LLE was
computed for 1 × 106 (ω, F ) pairs of parameters.

The color in diagrams of Fig. 1 is related to the magnitude
of the LLE. Yellow/red color is associated to a positive LLE,
while black color indicates a zero LLE, always according
to the scale shown in the column at the right side, in each
diagram. As is known [7], a positive LLE corresponds to
a chaotic behavior, and a zero LLE means periodicity (or
quasiperiodicity, when the second LLE also is null, which
is not the case here). Therefore, regardless of the considered
diagram in Fig. 1, we can see an oval-shaped chaotic region
in yellow/red, surrounded by a periodic region in black.
Embedded in the chaotic region, we may observe some few
periodic stripes in black: the most apparent identified by
a number that means the period of the respective stripe.
Each of these numbers, for each parameter plane in Fig. 1,
was obtained through bifurcation diagrams constructed for
points along a horizontal straight line F = 0.1, for 0.75 ≤
ω ≤ 1.00.

As an example, Fig. 2 shows the bifurcation diagram
related to the parameter plane in Fig. 1b, constructed for
points along the red straight line drawn there. In Fig. 2 are
plotted the local maxima of the variable y, represented by
ym, as a function of the parameter ω. Such points (the local
maxima) are coincident with those where the the variable
y changes from increasing to decreasing as the parameter

Fig. 2 Bifurcation diagram related to the parameter plane in Fig. 1b.
Plotted are the local maxima of y as a function of ω. Points are
considered along the line F = 0.1 in Fig. 1b

ω varies. They are determined by using the derivative of y

with respect to t , specifically where the derivative changes
sign from positive to negative.

As can be verified in Figs. 1b and 2, when we consider
the increase of ω along the red straight line F = 0.1, the
transition from periodic motion to chaotic motion occurs
via a period-doubling bifurcation route at ω ≈ 0.82. Such
figures also show that the transition from chaotic motion
to periodic motion occurs via a reverse period-doubling
bifurcation route at ω ≈ 0.95. Thus, for F = 0.1,
ω increasing from 0.75, following the attractor, the oval-
shaped chaotic region extends from ω ≈ 0.82 to ω ≈
0.95. It is important to note that the ω values for both
period-chaos and chaos-period transitions are almost the
same, for the cases equal initial condition for every pair
(ω, F ) (diagram in Fig. 1a) and following the attractor
decreasing ω (diagram in Fig. 1c). This behavior is repeated,
even when considering different values for F (different
horizontal lines) in diagrams of Fig. 1.

There are, however, some differences between the
diagrams in Fig. 1. For example, we can note that the
area inside the rectangle at the top right is clearly painted
differently in each diagram. The dot marked with the red
plus sign, namely (ω, F ) = (0.938, 0.130), is located in a
periodic region of Fig. 1b, and in a chaotic region of Fig. 1c.
Therefore, a given point in the (ω, F ) parameter plane
of system (2) may display different long-term behaviors,
which are considered increasing (Fig. 1b) and decreasing
(Fig. 1c) of ω for F kept fixed. In other words, for this
case where the parameters in system (2) are kept fixed as
(α, β, ω, F ) = (0.2, 1.4, 0.938, 0.130), we can have two
different attractors in the (x, y) phase space: one being
chaotic, the other periodic. This is the signature of the
multistability phenomenon.

The basin of attraction of an attractor is defined as
being the set of initial conditions leading a given dynamical
system to a long-time behavior that approaches that
attractor. Therefore, behavior of the long-time state of a
given system can be different, chaotic or regular, depending
on which basin of attraction the initial condition belongs.
Figure 3 shows the (x0, y0) basins of attraction of the forced
Brusselator system (2) for the set of parameters marked with
a red plus sign in diagrams of Fig. 1, i.e., for (α, β, ω, F ) =
(0.2, 1.4, 0.938, 0.130). In this plot, black and red colors are
associated respectively with periodic and chaotic motion.
Therefore, initial conditions chosen in the black region of
Fig. 3 lead system (2) to periodic attractors, while initial
conditions chosen in the red region of the same Fig. 3 lead
to chaotic attractors. The basins of attraction plot in Fig. 3
were obtained by computing the LLE on a mesh of 500×500
(x0, y0) initial conditions. The criterion used to discriminate
between periodic and chaotic dynamical behaviors was to
assume that LLE in the range (−0.005, 0.005) is related to
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Fig. 3 Basins of attraction of system (2), for parameters related to the
dot marked with a red plus sign in diagrams of Fig. 1. The diagram
shows the coexistence of periodic and chaotic attractors. Black and red
are related respectively with periodicity and chaos

periodic attractors, while those that are more positive are
related to chaotic attractors.

Figure 4 shows two attractors for system (2). The one
shown in Fig. 4a is periodic, while the one shown in Fig. 4b
is chaotic. The initial conditions are (x0, y0) = (0.2, 3.35)

(point P in Fig. 3) and (x0, y0) = (1.3, 2.7) (point C

Fig. 4 Two attractors related to system (2). a A periodic attractor,
corresponding to the initial condition (x0, y0) = (0.2, 3.35), point P

in Fig. 3. b A chaotic attractor, corresponding to the initial condition
(x0, y0) = (1.3, 2.7), point C in Fig. 3

in Fig. 3), respectively, for the periodic and the chaotic
attractors. The Lyapunov exponents spectra are 0, −0.01,
−0.44 and 0.04, 0, −0.54 respectively for the periodic case
and for the chaotic case. Ten thousand points were used to
generate the periodic trajectory in Fig. 4, while to generate
the chaotic trajectory used two hundred thousand points.

3 Summary

In this paper, we have investigated a four-parameter non-
linear dynamical system, namely a periodically forced
Brusselator, which is modeled by a set of two nonau-
tonomous first-order ordinary differential equations. A
given cross section of the four-dimensional parameter space
has been used to demonstrate the occurrence of multi-
stability in this system. The dynamical behavior of each
point of this cross section was characterized by the value
of the related largest Lyapunov exponent. In addition,
basins of attraction have been used to show the coexis-
tence of periodic and chaotic attractors in the related phase
space.
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