
https://doi.org/10.1007/s13538-019-00733-x

GENERAL AND APPLIED PHYSICS

A Comparison of Time-Frequency Methods for Nonlinear
Dynamics and Chaos Analysis in an Energy Harvesting Model

Marcus Varanis1 · João Pedro C. V. Norenberg1 · Rodrigo T. Rocha2 · Clivaldo Oliveira1 · José Manoel Balthazar3 ·
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Abstract
In this paper, an energy harvesting model based on a portal frame structure, modeled as a duffing system, with a non-
ideal excitation force, DC motor with an unbalanced mass, is presented and the piezoelectric coupling is designed to exhibit
nonlinear characteristics. Nonlinearity included provides higher power output over a wide frequency range. This analysis
was carried out by numerical simulation of the proposed mathematical formulation. Thus, the bifurcation diagram and the
largest Lyapunov exponents are plotted to investigate the dynamic behavior by ranging the voltage applied to the DC motor.
In this way, power harvesting is analyzed for two different dynamic responses: periodic and chaotic behavior. Furthermore,
this work exhibits an application of frequency-domain techniques, such as short-time Fourier transform, continuous wavelet
transform, synchrosqueezed wavelet transform, and Wigner-Ville distribution methods. These methods are often used to
analyze non-stationary signals, allowing the verification of dynamic behavior and power harvesting. Therefore, this paper
aims to apply the time-frequency methods, mentioned previously, to analyze the mechanical system response in different
behaviors.
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1 Introduction

Scientific development has been advancing in new
microtechnologies, inducing a positive perspective in the
field of engineering. Thus, the development of mobile and
energy-efficient electronic devices caught the attention of
many researchers, as they do not require an electrical or
chemical charge for their operation.

One way to power these electronic devices is through
natural sources in the environment, such as heat, vibration,
sunlight, and wind, since they are usually dissipative sources
and freely available. Some works present an energy harvest
vibration studies, and in [1–3], there are a review of these
devices. The vibration energy conversion can occur through
electromagnetic, electrostatic, and piezoelectric methods,
the latter being the most often used.
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Many works in the current literature related to mechan-
ical energy harvest systems using piezoelectric have been
published, providing relevant results [4–6]. A power harvest
device review can be seen in [7]. Also, there is a book that
deals only with piezoelectric energy harvesting, as written
by [9].

This paper proposes a model of energy harvesting in
the portal structure excited by a non-ideal DC motor with
an unbalanced mass, which can generally be observed
in practical cases. A major challenge in theoretical and
experimental scientific research is to consider the non-ideal
source of excitation and to understand the behavior of the
dynamic system [10]. Research on non-ideal excitation has
been studied in [11–14].

This structure was selected to have nonlinearities as
duffing. Duffing stiffness describes a nonlinear spring with
restorative force. According to [9], nonlinearities in the
energy harvesting system increase the harvested power over
a higher frequency bandwidth. Besides, the piezoelectric
was modeled to have a nonlinear coupling, as shown in
[15–17]. Studies indicate that the nonlinear modeling of
piezoelectric coupling is an approximation to experimental,
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since there is a nonlinear relationship between deformation
and electric field in the piezoceramic material [18, 19].

The study of the nonlinear energy harvesting model
requires a detailed investigation of the dynamic response
since nonlinear systems can be sensitive to initial condi-
tions, unstable, and exhibit chaotic behavior. On the other
hand, they have a higher power output over a wide fre-
quency range [8]. Thus, it is necessary to characterize the
dynamic response under different excitation conditions. An
important tool is the bifurcation diagram that analyzes the
effect of varying control parameters on dynamics. Another
evaluation to be performed is the sensitivity to the initial
conditions, where the calculation of the Lyapunov expo-
nent provides this evaluation. They are important tools for
qualifying and quantifying the stability of a system, making
it possible to find periodic and chaotic behaviors. Thus, it
allows verifying the characteristics of the dynamic response
and system application conditions.

Further, frequency domain analyses are used to observe
the dynamic responses. And for this case, a non-stationary
analysis is required, since the behaviors studied vary over
time and may present chaos. In this manner, a Fourier
analysis made using the fast Fourier transform (FFT)
method, seen in [20], is not effective because this analysis is
more applicable in periodic signals or stationary cases [21].
However, some methods allow a time-frequency analysis
in a non-stationary regime, more precisely, such as the
short-time Fourier transform (ST-FT). Short-time Fourier
transform (ST-FT) is a Fourier-related transformation used
to determine the sinusoidal frequency and phase content
of local sections of a signal as it varies over time [22].
This spectral analysis is time-dependent and the function
is partitioned at smaller intervals, so that the spectrum can
be considered constant within each one. Then, the variation
of the Fourier transform is applied at each interval. In
[23], there is an overview and presents an algorithm for
estimating ST-FT signal.

The wavelet transform (WT) can be used for multi-
scale analysis of the signal, providing features extracted
from the frequency and time of the signal. An important
wavelet transform feature is that the frequency varies in
proportion to the change in center frequency and makes this
method suitable for the non-stationary and discontinuous
signal [24, 25]. It can be deepened in studies in [26].
One extension is the synchrosqueezed wavelet transform
(SWT), which is a time-frequency analysis proposed by
[27]. It is an empirical mode decomposition tool and has
enhanced anti-noise capability and improved frequency and
time resolution compared with WT [29]. SWT was applied
in engineering in [28], and in [30] presented an analysis
for low-frequency oscillations, and all obtained satisfactory
results.

Another widely used time-frequency signal processing
tool is the Wigner-Ville distribution (WVD), which can
generalize the relationship between the power spectrum and
autocorrelation function applied to the non-stationary signal
[31]. The WVD can be deepened in [32–34].

The purpose of this paper is to evaluate the different
responses of the mechanical system based on the men-
tioned time-frequency methods and, through this evaluation,
conclude which time-frequency tool is best suited to char-
acterize a dynamic behavior and verify the highest power
harvested.

The article is organized as follows. Some definitions are
presented in Section 2 as the proposed mathematical model,
the equations of motion, and nonlinearities introduction.
The dynamic response of the system is performed through
the numerical solution, the bifurcation diagram, and the
calculation of Lyapunov exponents that are presented in
Section 3. Section 4 describes the energy harvesting analysis
and Section 5 presents the time-frequency methods used to
characterize the system and to distinguish it quantitatively
between periodic and non-periodic. Section 6 shows the
numerical results of a non-ideal energy harvesting system
in terms of classical qualitative indicators, as well as
its quantitative characterization through time-frequency
analysis methods. The article ends with some conclusions.

2Mathematical Background

2.1 Mechanical System and Equations of Motion

In this paper, a portal frame structure with layers of
piezoelectric element (piezoceramic) on both sides of a
column is proposed and an electric DC motor as a non-ideal
excitation with an unbalanced mass is attached as shown

Fig. 1 Mechanical system studied
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in Fig. 1. It is considered the horizontal motion of a portal
frame structure and rotation angle of the DC motor.

The configuration of the non-ideal mechanical system
consists of the unbalanced mass (m2), structure mass
(m1), linear damping (b), displacement of oscillator (X(t)),
angular displacement of the rotor (ϕ(t)), inertia moment
(J ), and eccentricity (r). Also, P1 and P2 represent the
piezoelectric film of the bi-morph configuration.

The columns of the portal frame structure are a duffing
type that has a cubic nonlinearity; likewise, the system’s
stiffness is represented as klX(t) + klnX(t)3, where kl is a
linear stiffness and knl is a non-linear stiffness, representing
the term of restorative force. There are several studies about
the cubic nonlinearity, and in [35–37], models are proposed
and validated experimentally.

The non-ideal excitation is represented by an equation,
which describes the interaction of power supply with the
driven system. In this paper, the function that defines the
energy source is linear and represents the curve of torque
versus velocity of DC motor based on [38, 39]. Thus, L(ϕ̇)−
H(ϕ̇) = V1 − V2ϕ̇, where V1 is the voltage applied and V2

is a constant for each model of the DC motor.
Besides, there is an electrical circuit that represents the

piezoelectric coupling to the mechanical component, that in
according to [17] is given by d(X)

C
q, where q is the electrical

charge, d(X) is a strain-dependent coupling coefficient, and
C represents the piezoelectric capacitance. Thus, the voltage
V across the piezoelectric material has the form by (1). And
the voltage can also be represented as V = R q̇, where R is
the piezoelectric resistance.

V = −d(X)

C
X + q

C
(1)

Therefore, the equations of motion are given by (2).

(m1 + m2)Ẍ + bẊ + klX + klnX
3 = ...

... m2 r (ϕ̈ sin ϕ − ϕ̇2 cos ϕ) + d(X)
C

q

(J + m2 r2) ϕ̈ = m2 rẌ cos ϕ + V1 − V2ϕ̇

R q̇ − d(X)
C

X + q
C

= 0

(2)

And based on [38], it is valid to normalize the coordinates
and time.

τ = ω1t, x = rX, ω1 =
√

kl

m1 + m2
, α = b

(m1 + m2)ω1

β1 = kl

(m1 + m2)ω
2
1

, β3 = knlr
2

(m1 + m2)ω
2
1

δ1 = m2ω1

m1 + m2
, ρ1 = V1

(J + r2m2)ω
2
1

ρ2 = V2

(J + r2m2)ω
2
1

, ρ = R C ω1, d̂(X) = θ(1 + 
 |X|)

d̂(X) = r

qo

d(r), θ = r

qo

dlin, 
 = r dnlin

According to [16, 17], they are considered the function to
dimensionless piezoelectric coupling coefficient as d̂(X) =
θ(1 + 
 |X|), where θ is a linear part and 
 is a non-linear
part. Consequently, we may reduce the governing equations
of motions as (3).

x′′ + αx′ + β1x + β3x
3 − θ(1 + 
 |x|)v = ...

...δ1ϕ
′′sin(ϕ) + δ1ϕ

′2cos(ϕ)

ϕ′′ = ρ2 − ρ3ϕ
′ + ρ1x

′′sin(ϕ)

ρv′ − θ(1 + 
 |x|)x + v = 0

(3)

3 Dynamic Response Analysis

3.1 Bifurcation Diagram

The bifurcation diagram is a classic tool used in dynamic
behavior studies. It employs to evaluate the system
dynamic behavior as a function of the variation of the
control parameter. This evaluation is made qualitatively,
representing only the orbit of each control parameter.
Therefore, in this work, we obtain the bifurcation diagram,
in which the control parameter is the term as a function of
the voltage applied to the DC motor (ρ2), in other words, the
external excitation applied to the structure.

3.2 Lyapunov Exponents

The Lyapunov exponent of a dynamic system describes
the phase velocity which two close points in the physical
space approach or move apart. The study of the Lyapunov
exponent is interesting to observe only the largest Lyapunov
exponent because it determines the overall system behavior.
A negative exponent represents the convergence of two
temporal signals with close initial conditions, being
characterized as insensitive to the initial conditions.
However, a positive exponent represents the divergence
of these signals, demonstrating a sensitivity to the initial
conditions. Therefore, the Lyapunov exponent provides the
quantification of the dynamic behavior, in which the larger,
the more sensitive to the initial conditions.

4 Power Harvesting

The piezoelectric coupling is considered as an equivalent
circuit, as shown by the third equation of (3). Therefore, to
determine the power harvested, the electrical power of the
circuit is calculated.

Thus, knowing that power from the electrical circuit
is V 2/R. Then, the non-dimensional power harvested is
obtained from (4) by [17].

P = ρv′2 (4)
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5 Time Frequency Analysis

5.1 Short-Time Fourier Transform

Firstly, the power spectral density (PSD), which describes
how the energy of a signal will be distributed across the
frequency, is studied. Thus, this tool assists in frequency
capture and periodicity identification. The power spectral
density is using fast Fourier transform (FFT).

In sequence, the short-time Fourier transform (ST-FT) is
calculated, which is an extension of the Fourier transform
and, however, provides the time-localized frequency infor-
mation, as for situations that frequency components of a
signal vary over time. The STFT mathematical formulation
is written as [22]:

STFT(τ, ω) =
∫ ∞

−∞
x (t) w (t − τ) e−jωtdt (5)

where w is the Hanning window, note that there is a
difference between the window function w and frequency ω

and x(t) is the signal to be transformed.

5.2 ContinuousWavelet Transform

The continuous wavelet transform (CWT) was studied to
overcome the window size limitation, the resolutions �t and
�f , which vary in the time-frequency plane to obtain all the
information contained in the frequency plane [26].

And the CWT of signal F is defined as:

WF (u, s) =
∫ ∞

−∞
F(t)ψ∗

u,s(t)dt (6)

where ψ∗
(u,s) is:

ψ∗
(u,s) = 1√

s
ψ

(
t − u

s

)
(7)

For u ∈ R and s > 0.
Thus, it is possible to obtain the scalogram of F in

according to (8), denoted by ς as [40]:

ς := ||WF (u, s)|| =
√∫ ∞

−∞
∣∣F(t) ψ∗

u,s(t) du
∣∣2 (8)

where the parameter u refers to the scale and s a translation
or location of the wavelet analyzed ψ . The parameter
u controls a dilation/contraction of the function. As the
parameter s varies, the signal F and analyzed locally around
it. Thus, one can analyze the multi-scale aspects of the
non-stationary signals studied. And the ς is known as the
wavelet coefficient.

5.3 SynchrosqueezedWavelet Transform

The synchrosqueezed wavelet transform (SWT) is a time-
frequency analysis method that was based on an empirical
mode decomposition (EMD)–like tool. According to [27],
the corresponding frequency of each scale from WT is given
by the derivative of the wavelet coefficients concerning
time. Add the scale of the same frequency to obtain the
higher resolution time-frequency curve. In this way, it
allows improving the energy divergence of WT and time-
frequency resolution.

Thus, taking partial derivative of instantaneous frequency
WF (u, s) with respect to s and get ωs(u, s):

ωs(u, s) = −i(WF (u, s))−1 ∂WF (u, s)

∂s
(9)

Through (9) and calculation u, s and ωs(u, s) as
discretized, it is determined the SWT as:

Ts(ωs1 , s) = (�ωs)
−1 ∑

ε WF (uk, s) ...

...u−3/2
k (�u)k

(10)

which ε = uk : ∣∣ωs (uk, s) − ωsl

∣∣ ≤ �ωs/2, (�u)k = uk −
uk−1 and �ωs = ωsl − ωsl−1 .

5.4Wigner-Ville Distribution

In recent years, alternative time-frequency representations
have been studied and the Wigner-Ville distribution (WVD)
has received great attention in the signal processing
researchers.

According to [41, 42], the WVD can be derived by
generalizing the relationship between the power spectrum
and the autocorrelation function for the non-stationary
signal.

For a continuous signal x(t), the Wigner-Ville distribution
is defined as:

WVDx (t, f ) =
∫ ∞

−∞
x

(
t + τ

2

)
x∗ (

t − τ

2

)
e−j2πfτ dτ

(11)

A deeper study on the method is presented in [43].

6 Results

To perform the numerical simulation, the parameters
considered for dynamic system are α = 0.1, β1 = 1,
β3 = 2, δ1 = 8.373, ρ1 = 0.05, ρ3 = 200, θ = 0.2, and

 = 0.6, and ρ2 is the control parameter that represents the
voltage applied on the DC motor. The equations of motion
were solved by the Runge-Kutta scheme (4th order).

Figure 2 shows the bifurcation diagram to the model
proposed.
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Fig. 2 Bifurcation diagram
ranging the parameter of voltage
applied

Fig. 3 Largest Lyapunov
exponents. (λ1) the first most
significant and (λ2) the second
most significant
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Fig. 4 Power harvesting, periodic cases: a ρ2 = 87 and b ρ2 = 93 and chaotic cases: c ρ2 = 82 and d ρ2 = 100
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Fig. 5 Power spectral density, periodic cases: a ρ2 = 87 and b ρ2 = 93 and chaotic cases: c ρ2 = 82 and d ρ2 = 100

Then, it can check which parameter (ρ2) will exhibit a
periodic and chaotic behavior. The range of ρ2, between
82 and 92, has a periodic behavior, and chaotic behavior is
found in the ranges 75 to 82 and 92 to 105.

Besides, the largest Lyapunov exponents were calculated
by varying the control parameters, as shown in Fig. 3, where
(λ1) is the first most significant and (λ2) is the second most
significant. For the variation of the control parameter, the sys-
tem presented only one positive Lyapunov exponent (for
chaotic behavior) or all negative exponents (for periodic behav-
ior).

Investigating Fig. 3 and the bifurcation diagram, periodic
behaviors show that all the largest exponents are negative
and, in chaotic cases, all the largest exponents are positive.
Also, it is possible to quantify sensitivity to initial
conditions as mentioned above. Thus, the largest Lyapunov
exponents provide important information to complement the
analysis of the bifurcation diagram and to characterize the
dynamic behavior.

To analyze the energy harvesting system, it is required to
determine the output energy, as in (4). And Fig. 4 shows the
power harvested for periodic behaviors and chaotic behaviors.

Fig. 6 STFT, periodic cases: a ρ2 = 87 and b ρ2 = 93 and chaotic cases: c ρ2 = 82 and d ρ2 = 100
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Fig. 7 CWT, periodic cases: a ρ2 = 87 and b ρ2 = 93 and chaotic cases: c ρ2 = 82 and d ρ2 = 100

Therefore, it can evaluate which behavior will harvest
the most energy. It is noteworthy that the angular velocity
of the DC motor in chaotic cases (Fig. 4c and d) is higher
than that in periodic cases (Fig. 4a and b). Thus, the
torque applied to the structure with higher speeds tends to
provide higher vibration amplitudes. However, according to
Fig. 4, it can be seen that the average power collected in
chaotic cases is lower than that in periodic cases, due to its
instability observed in the temporal response, resulting in
high amplitude variations.

Figure 5 shows the power spectral density.
Through the power spectral density, it is not possible to

analyze the signal, and only a greater amount of energy is
noted in 0- to 3-Hz frequency range, which are the internal
and external frequencies of the system.

In sequence, Fig. 6 shows the SFTF.
Using STFT makes it possible to verify the energy

and frequency spectrum varying over time, providing a
more refined analysis than PSD analysis. Thus, the STFT
graph shows that over time, the frequency band with the

Fig. 8 SWT, periodic cases: a ρ2 = 87 and b ρ2 = 93 and chaotic cases: c ρ2 = 82 and d ρ2 = 100
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most energy is the same, 0 to 3 Hz. The spectra for the
periodic and chaotic cases are indistinguishable, making
their analysis unfeasible.

Figure 7 shows the CWT for two different behaviors. In
all simulations based on the wavelet transform, the Morlet
wavelet was used.

The use of CWT allowed observing regions with energy
concentrations. In the frequency domain, the region with
the highest concentration (yellow regions) implies higher
energy harvest, and it can be observed that the periodic
cases (Fig. 7a and b) have larger amplitudes than in chaotic
cases (Fig. 7c and d), as noted in Fig. 4. Moreover, there is
a discontinuous and continuous variation in the frequency
spectrum for chaotic and periodic behaviors, respectively,
thus allowing explicit characterization of chaotic behaviors.

Figure 8 shows the time-frequency analysis using SWT
for two different behaviors.

The use of SWT also allows the visualization of the
frequency domain. Thus, it was possible to notice in cases
of periodic orbits ρ2 = 87 (Fig. 8a) and ρ2 = 93 (Fig. 8b),
the stability, and predominance of the natural frequency of
the system. And for the chaotic case ρ2 = 82 (Fig. 8c) and
ρ2 = 100 (Fig. 8d), besides showing the natural frequency,
other frequencies that damage the energy intensity due to
its instability, as can be observed in the spectrum. Also,
it is possible to characterize the nonlinearity effects of the
system. Then, the SWT is better suited to characterize the
dynamics of the system; however, the power harvest is not
well characterized.
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Fig. 9 WVD, periodic cases: a ρ2 = 87 and b ρ2 = 93 and chaotic cases: c ρ2 = 82 and d ρ2 = 100

Applying the WVD to periodic and chaotic signal, it is
possible to vizualize in Fig. 9.

WVD allows verifying the energy concentration around
the natural frequency of the system in the analyzed cases.
In the chaotic case, there is a shift in frequencies, explicitly
at higher frequencies, seen through the discontinuity of
energy concentration. Therefore, WVD can characterize the
frequency change shown by chaotic signals, but this tool is
not efficient to evidence higher energy concentration in the
periodic case, as seen in CWT.

7 Conclusions

In this paper, a mathematical model of an energy harvester
and a portal frame structure with a non-ideal drive was
studied. The nonlinearity included in the system provides
higher power over a wide frequency range. Thus, the
analysis was carried out through the bifurcation diagram to
evaluate the dynamic behavior and determine the periodic
and chaotic orbits. Besides, the largest Lyapunov exponent
allowed us to verify some system characteristics, such as
periodicity and sensitivity to initial conditions. And through
these important nonlinear dynamic study tools, an analysis
was made to harvest vibration energy for two different
dynamic behaviors, periodic and chaotic.

Time-frequency analysis was also used to contribute
to frequency spectrum verification for both dynamic
behaviors, chaotic response characterization, and energy
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harvest analysis, using the following methods: STFT, CWT,
SWT, and WVD.

It is recognizable that classical signal processing methods
based on the Fourier transform are not suitable for this
type of analysis. However, STFT is a tool that makes it
possible to analyze transient signals due to their short-range
partition. And its application made to characterize a chaotic
behavior was not adequate, featuring no difference between
periodic and chaotic signal, as already expected according
to the literature cited previously.

On the other hand, wavelet transform analysis was
adequate for the studied mechanical systems. Wavelet
transform analysis has the advantage of identifying the
dynamic behavior of nonlinear systems based on time
response, energy harvest analysis, and the ability to detect
short transients.

The synchrosqueezed wavelet transform method is an
extension of the wavelet transform that adds empirically
decomposed elements and frequency reassignment tech-
niques. This new tool produces a well-defined frequency
representation over time, allowing the identification of
instantaneous frequencies in non-stationary signals to high-
light individual components, allowing for improved non-
linearity characterization. However, like STFT, it was not
efficient in analyzing the harvested energy spectrum.

Finally, WVD allowed us to verify the energy concen-
tration around the natural frequency and to characterize
the chaotic behavior through frequency spectrum discon-
tinuities. However, for energy harvest analysis, it was not
efficient to present energy concentration as seen in CWT.

Therefore, the study makes it possible to examine the
energy harvested by two different behaviors and excitations.
In the periodic case, more energy is harvested than chaotic,
even with a lower excitation charge. In periodic behavior,
the system frequencies are stable, as analyzed in the time-
frequency spectrum, which allows the piezoelectric element
layers to deform more and generate more energy.

Overall, results presented using STFT, CWT, SWT,
and WVD break down an input signal into time-varying
harmonic signal sets. Generally, STFT is the first option
to be applied to a signal due to its versatility, ease,
and low-cost computation; however, it is not suitable
for the proposed application. CWT’s variable time and
frequency resolution allow the characterization of chaotic
behavior and very explicit verification and differentiation of
energy concentration for two different dynamic behaviors.
SWT and WVD presented satisfactory results only in
the identification of chaotic dynamics characteristics.
Each transformation used, therefore, has its strengths and
weaknesses, making them strongly complementary and
widely applied in nonlinear signal analysis.
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