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Abstract
The Mach–Zehnder interferometer is a particularly simple device for demonstrating the wave-particle duality. This duality is
particularly exhibited in the quantum delayed choice experiment where one realizes a superposition of wave- and particle-like
behaviors. Considering this experiment as a generalizedmeasurement described by a positive operator–valuedmeasure (POVM),
it realizes a joint measurement of path and interference obeying some duality relations.
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1 Introduction

In 1928, Bohr proposed the principle of complementarity
which played a key role in quantum mechanics. This comple-
mentarity states that quantum systems possess properties that
are equally real but mutually exclusive [1] and has been con-
tinuously studied till our days [2]. A celebrated example is the
illustration of wave-particle duality by considering single pho-
tons in a Mach–Zehnder interferometer (MZI) (Fig. 1). If the
output beam splitter BS2 is removed, detecting the photon in
one of the detectors D1 or D2 reveals unambiguously which
path it has gone through so that no interference appears: the
photon behaves like a classical particle. If BS2 is inserted, one
observes interference fringes (dependence on the phase differ-
ence φ): photons behave as a classical wave which goes
through both paths of the interferometer. When do photons
decide to travel one way or two ways? This was answered
by the Wheeler delayed choice (WDC) experiment [3] where
one chooses to whether insert BS2 or not, when the photon has
already entered the interferometer. Many WDC experiments
have been realized [4–7]; they have all indicated that it does
not matter whether the choice of arrangement is made before
the photon reaches the first beam splitter BS1 or only after; the

counting statistics are quite independent of this. This led
Wheeler to his famous sentence: “No elementary quantum
phenomenon is a phenomenon until it is a registered
phenomenon.”

In the WDC, the choice of inserting or removing
BS2 is classically controlled by a random number gen-
erator. Recently [8], a quantum delayed choice (QDC)
experiment was proposed and realized [9–14]. In this
experiment, the action of BS2 is controlled by an ancil-
lary qubit: when the ancillary is in one basis state or
the other, BS2 is removed or inserted and the photons
show, correspondingly, a particle or a wave behavior.
When the ancilla is in a superposition state, the wave-
and particle-like behaviors of the photon can be jointly
observed. An important feature of the QDC setup is that
the quantum control allows to reverse the temporal or-
der of the measurements: the photon can be detected
before the ancilla, i.e., before choosing to remove BS2
or to insert it, this means the possibility to choose the
particle- or wave-like behaviors of the photon after it
has already been detected.

In the present article, we describe the QDC experiment as a
generalized measurement characterized by a positive
operator–valued measure (POVM). POVMs [15] are in fact
the natural framework in which complementary observables
(like interference and path) can be jointly measured.

The layout of this work is as follows. In Section 2, we recall
briefly the essential features of the QDC experiment. Section 3
is devoted to a description of the QDC experiment as a joint
generalized measurement of path and interference; duality re-
lations are also deduced. Section 4 is devoted to a conclusion.
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2 The Quantum Delayed Choice Experiment

Consider aMach–Zehnder interferometer (Fig. 1). A photon is
first split by a balanced beam splitter BS1, travels inside the
interferometer with a tunable phase φ, and is finally
recombined (or not) at the second beam splitter BS2 before
detection at D1 or D2. In the QDC, BS2 is a quantum beam
splitter which may be (as explained above) in a superposition
of | −〉 (absent) and | +〉 (present) states:

jqBSi ¼ cosθj−i þ sinθjþi; 0≤θ≤
π
2
: ð1Þ

Labelling by | 1〉 and | 2〉 the two input states of a photon
impinging the interferometer, the action of the beam splitters
BS1 and BS2 (when this latter is in the + state) is given by

j1i→ 1ffiffiffi
2

p j1i þ j2ið Þ

j2i→ 1ffiffiffi
2

p j1i−j2ið Þ

8>><
>>:

: ð2Þ

We consider that the input state of the photon, before BS1,
is a general combination of the states | 1〉 and | 2〉 and so is the
state | ψi〉 just after BS1:

jψii ¼ αj1i þ βj2i; αj j2 þ βj j2 ¼ 1
� �

: ð3Þ

The state of the photon and the quantum beam splitter just
after BS1 is

jψei ¼ jψii⨂jqBSi: ð4Þ

After evolution inside the interferometer and just before D1
and D2, the system’s state transforms to the entangled one:

jΨ f
� ¼ cos θjparticleij−i þ sin θjwaveijþi; ð5Þ

where the wave functions

jparticlei ¼ αj1i þ βeiφj2i ð6Þ
and

jwavei ¼ 1ffiffiffi
2

p αþ βeiφ
� �j1i þ 1ffiffiffi

2
p α−βeiφ

� �j2i
� 	

ð7Þ

describe particle and wave behaviors, respectively.
Considering the simple case where α ¼ β ¼ 1ffiffi

2
p (corre-

sponding to | 1〉 as an input state of the photon before BS1),
Eqs. 6 and 7 become jparticlei ¼ 1ffiffi

2
p j1i þ eiφj2ið Þ and

jwavei ¼ ei
φ
2 cos φ2 j1i−isinφ2 j2

�� �
, respectively. The probabil-

ity to detect a photon in D1 is then P(D1) = Tr[ρe| 1〉〈1| ],
where ρe is the photon’s reduced density matrix:

ρe ¼ Tr2jΨ f
�
Ψ f j

 ¼ cos2θjparticlei particlejh

þ sin2θjwavei wavejh ; ð8Þ

P D1ð Þ ¼ 1

2
cos2θþ sin2θcos2

φ
2
: ð9Þ

Without correlating the photon data with the different states
of the quantum beam splitter, an interference pattern with re-
duced visibility V = sin2θ (deduced from Eq. 9) is observed.
The photon has a mixed behavior between a particle and a
wave. On the other hand, if the photon is correlated with the
measured state of the quantum beam splitter (see Eq. 5), the
photons exhibit either a perfect wave-like behavior (BS2 in | +〉)
or a particle-like one (BS2 in | −〉). The authors of [8] concluded
that contrary to Bohr’s opinion, we do not have to change the
experimental setup to measure complementary properties—we
can measure both properties in a single experiment, provided
that a component of the apparatus is a quantum object in a
superposition state. Note that the photon can be detected before
the measurement of the state of the quantum beam splitter, i.e.,
before choosing if the interferometer is open or closed. This
implies that the behavior of the photon as a particle or as a wave
can be chosen after it has already been detected.

3 Generalized (POVM) Measurement
Description of the Quantum Delayed Choice
Experiment

In quantum mechanics, physical quantities have been first
represented by Hermitian operators. These operators have
spectral representations consisting of projection operators
Πm defined by

Πm≥0;Π2
m ¼ Πm;∑mΠm ¼ I I the identity operatorð Þ: ð10Þ

The projection operators Πm are said to generate a
projection-valued measure (PVM).

It is by nowwell known that this formalism is too restricted to
encompass all possible experiments within the domain of appli-
cation of quantum mechanics. Many experiments performed in
actual practice are of the type of generalized measurements
yielding probabilities determined by the expectation values of

Fig. 1 Mach–Zehnder interferometer
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so-called positive operator–valued measures (POVM) [15] rath-
er than projection-valued ones. A generalized observable (i.e., a
generalizedmeasurement) is represented by a POVM, generated
by a set of non-negative operators Mm (called effects) that in
general are not projection operators and obey to

Mm≥0;∑mMm ¼ I : ð11Þ

When a quantum system is in the state | Ψ〉, measurement of
{Mm} gives an outcome νm with probability

pm ¼ Ψ jMmjΨh i: ð12Þ

PVMs are POVMs for which the effects are projection
operators. A POVM for which the effects are all proportional
to the identity operator provides no information on the mea-
sured quantum state. In this case, the probabilities for different
outcomes do not, in fact, depend on the state.

Consider the quantum delayed choice experiment as
recalled above. On the final state Eq. 5, the sharp output ob-
servable with projectorsΠkl = | k〉〈k|⨂| l〉〈l| (k = 1, 2; l = + , −)
is measured. The probability to find the photon in detector Dk
and BS2 in the state | l〉 is ⟨ψf| Πkl| ψf⟩. This defines a
generalized measurement on the photon input state | ψi〉 = α|
1〉 + β| 2〉 characterized by the POVM E ¼ Eklf g whose ef-
fects Ekl(k = 1, 2; l = + , −) are defined by the relation [2, 17]

ψ f jΠkljψ f


 � ¼ ψijEkljψih i: ð13Þ

Note that this definition assures thatE is a POVM, and note
also that no chronological order of the measurements of the
photon and the quantum beam splitter is considered.

In Eq. 13, the left and right members constitute positive
quadratic forms of α and β; the identification of their coeffi-
cients allows the calculation of the matrix elements of the
operators Ekl:

Ψ f jΠ1−jΨ f

 � ¼ cos2θ αj j2 ¼ ψijE1−jψih i;
Ψ f jΠ2−jΨ f

 � ¼ cos2θ βj j2 ¼ ψijE2−jψih i;
Ψ f jΠ1þjΨ f

 � ¼ 1

2
sin2θ αþ βeiφ

�� ��2 ¼ ψijE1þjψih i;
Ψ f jΠ2þjΨ f

 � ¼ 1

2
sin2θ α−βeiφ

�� ��2 ¼ ψijE2þjψih i:

ð14Þ

Considering the two states | 1〉 and | 2〉 as eigenvectors of
the Pauli matrix σz, one obtains

E1− ¼ cos2θ
2

I þ σzð Þ;

E2− ¼ cos2θ
2

I−σzð Þ;

E1þ ¼ sin2θ
2

I þ cosφσx−sinφσy
� �

;

E2þ ¼ sin2θ

2
I−cosφσx þ sinφσy
� �

;

ð15Þ

Consider first the two limiting cases θ = 0 and θ ¼ π
2. For θ

= 0 (open interferometer) the measured observable is the PVM
ℙ = {P+, P−},

Pþ ¼ 1

2
I þ σzð Þ;

P− ¼ 1

2
I−σzð Þ;

ð16Þ

(E1+ and E2+ are both vanishing). P+ and P− are the projec-
tion operators corresponding, respectively, to the eigenvalues
+1 and −1 of the Pauli matrix σz. We have σz = (+1)P+ +
(−1)P− . This PVM represents, then, a sharp path
measurement.

For θ ¼ π
2 (closed interferometer), the measured observable

is the PVM ℚ = {Q1, Q2},

Q1 ¼
1

2
I þ cosφσx−sinφσy
� �

;

Q2 ¼
1

2
I−cosφσx þ sinφσy
� �

:
ð17Þ

This is the observable σn ¼ σ!: n!, where n! is the unit
vector n!¼ cosφex−sinφey. This PVM represents a sharp in-

terference measurement.
What kind of measurement is represented by the POVM E

Eq. 14, for arbitrary?

3.1 The QDC as a Mixture of Sharp Path and Sharp
Interference Measurements

On the one hand, consider the marginals F ¼ F1f ; F2g and
G ¼ G1f ;G2g of the POVM E defined by

F1 ¼ E1− þ E2− ¼ cos2θI
F2 ¼ E1þ þ E2þ ¼ sin2θI

�
ð18Þ

and

G1 ¼ E1− þ E1þ ¼ cos2θPþ þ sin2θQ1

G2 ¼ E2− þ E2þ ¼ cos2θP− þ sin2θQ2

�
ð19Þ

The first marginal is a trivial observable, not yielding
any information on the state of the photon. The second
marginal is a mixture of the PVMs ℙ and ℚ. In fact,
Ludwig [16] (see also [17, 18]), by analogy with a non-
ideal state preparation described by a convex combina-
tion of two density operators: ρ = p1ρ1 + p2ρ2 (p1 + p2
= 1), has proposed the following definition of a non-
ideal measurement. A convex combination of two
POVMs could represent a mixture of measurement pro-
cedures, in which the fluctuations of the measuring in-
strument induce a stochastic alternation of these two
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POVMs. Thus, given POVMs M 1
m


 �
and M 2

m


 �
, ac-

cording to this definition the POVM

s1M 1
m þ s2M 2

m


 �
; s1; s2≥0; s1 þ s2 ¼ 1 ð20Þ

represents a non-ideal measurement.
The POVM shown in Eq. 20 yields a correct representation

of a measurement process if each individual measurement can

be represented either by POVM M 1
m


 �
or by POVM M 2

m


 �
.

This can be the case if the duration of the measurement inter-
action is much shorter than the characteristic time of the fluc-
tuations in the measuring instrument.

From Eq. 19, we see that the POVM G is a mixture of the
PVMs ℙ and ℚ with s1 = cos2θ and s2 = sin2θ; it represents a
joint non-ideal measurement of sharp path and sharp interfer-
ence observables.

In the QDC experiment, the fluctuations in the measuring
instrument are quantum mechanically controlled by the mea-
surement of the state of the quantum beam splitter which can
be done before as well as after the photon has arrived at the
detectors. Each individual measurement is represented either
by ℙ (BS2 in the state | −〉) or by ℚ (BS2 in the state | +〉). In
this measurement, one can say that a fraction cos2θ of the
photons impinging the interferometer really behave as parti-
cles and a fraction sin2θ really as a wave.

3.2 The QDC as a Joint Measurement of Unsharp Path
and Interference Observables

On the other hand, from the original POVM, let’s define the
following POVMs:

ℂ = {C1, C2, C3} and I ¼ I1f ; I2; I3g, where

C1 ¼ E1−
C2 ¼ E2−

C3 ¼ E1þ þ E2þ

8<
: and

I1 ¼ E1þ
I2 ¼ E2þ

I3 ¼ E1− þ E2−

8<
: ; ð21Þ

One can rewrite these formulae in the matrix form

C1

C2

C3

0
@

1
A ¼

cos2θ 0
0 cos2θ

sin2θ sin2θ

0
@

1
A Pþ

P−

� 	
ð22Þ

and

I1
I2
I3

0
@

1
A ¼

sin2θ 0
0 sin2θ

cos2θ cos2θ

0
@

1
A Q1

Q2

� 	
: ð23Þ

An important feature of Eqs. 22 and 23 is that one POVM
contains information only on the sharp path observable,
whereas the other only refers to the sharp interference
observable.

Equations 22 and 23 are applications of another general
definition of a non-ideal measurement: a POVM {Mi} is said
to represent a non-ideal measurement of a POVM {Nj}, if [17,
18]

Mi ¼ ∑
j
λijN j;λij≥0;∑

j
λij ¼ 1: ð24Þ

This expression compares the measurement procedures of
POVMs {Mi} and {Nj}. The first is interpreted as a non-ideal
or an inaccurate version of the second, the non-ideality matrix
λij representing the inaccuracy. A convenient measure of this
non-ideality is the average row entropy of the non-ideality
matrix [17],

Jλ ¼ −
1

N
∑
ij
λijln

λij

∑
j0
λi j0

; ð25Þ

where N is the number of effects of the POVM {Nj}.
Jλ is positive and is bounded from above by lnN: 0 ≤ Jλ ≤ ln

N [17].
The POVMs ℂ and I are non-ideal measurements of the

PVMs ℙ and ℚ, respectively. They represent non-ideal mea-
surements of path and interference, respectively.

The POVMsℂ and I are simultaneously determined by the
original POVM E ; the quantum delayed choice experiment
is, then, a non-ideal joint measurement of path and interfer-
ence. Using the definition Eq. 25, the non-idealities of these
measurements are given, respectively, by

JC ¼ sin2θ ln2 and J I ¼ cos2θ ln2 ð26Þ
and satisfy the relation

JC þ J I ¼ ln2: ð27Þ

Equation 27 is an instance of the so-calledMartens inequal-
ity1 expressing the complementarity principle. In fact, from
this equation, one has not simultaneously JC = 0 (sharp path
measurement) and JI = 0 (sharp interference measurement),
which means the impossibility of joint measurement of the
incompatible sharp path and interference observables. This
is the orthodox Bohr’s complementarity principle: the photon
behaves as a particle or as a wave but not simultaneously as
both. For 0 < θ < π

2, Eq. 27 is a duality condition which is a

1 Martens inequality: Consider two generalized observables represented by
two POVMs {Mm} and {Nn} which are non-ideal measurements of two
PVMs {Pm} and {Qn}:
Mm ¼ ∑

m0
λmm0Pm0 , λmm0 ≥0, ∑

m0
λmm0 ¼ 1,

Nn ¼ ∑
n0
μnn0Qn0 , μnn0 ≥0, ∑

n0
μnn0 ¼ 1.

If {Mm} and {Nn} are jointly measurable, then J λð Þ þ J μð Þ≥−ln

max
m;n

Tr PmQnð Þ
� �

(see [17]).
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less orthodox expression of the complementarity principle;
wave and particle attributes coexist, but a stronger manifesta-
tion of the particle nature leads to a weaker manifestation of
the wave nature and vice versa.

Note that Eq. 27, being independent of the initial vector
state of the photon, refers to the measurement procedure alone
and is understood as a consequence of the mutual exclusive-
ness of measurement arrangements for measuring incompati-
ble standard (PVM) observables. We agree with the conclu-
sion in [8] that the complementarity resides in the experimen-
tal data, rather than resulting from the experiment’s physical
arrangement; but the experimental data is a consequence of
the experiment’s arrangement which has, here, the particular-
ity that it is quantum mechanically controlled.

4 Conclusion

In this paper, we have described the QDC experiment as a
generalized measurement on the photon state and described
by a POVM. This measurement may be seen as a mixture (Eq.
19) of path and interference measurements where a fraction of
the photons behave as particles and a fraction as a wave. It
may also be seen as a joint measurement of unsharp path and
interference obeying a duality relation. This duality relation
expresses the fact that wave and particle attributes coexist, but
a stronger manifestation of the particle nature leads to a weak-
er manifestation of the wave nature and vice versa.
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