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Abstract
We revisit qubit-qutrit quantum systems under collective dephasing and answer some of the questions which have not been
asked and addressed so far in the literature. In particular, we examine the possibilities of non-trivial phenomena of time-
invariant entanglement and freezing dynamics of entanglement for this dimension of Hilbert space. Interestingly, we find
that for qubit-qutrit systems both of these peculiar features coexist, that is, we observe not only time-invariant entanglement
for certain quantum states but we also find evidence that many quantum states freeze their entanglement after decaying for
some time. To our knowledge, the existence of both these phenomena for a dimension of Hilbert space is not found so far. All
previous studies suggest that if there is freezing dynamics of entanglement, then there is no time-invariant entanglement and
vice versa. In addition, we study local quantum uncertainty and other correlations for certain families of states and discuss
the interesting dynamics. Our study is an extension of similar studies for qubit-qubit, qubit-qutrit, and multipartite quantum
systems.
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1 Introduction

Quantum correlations have their role in potential applica-
tions in quantum information theory. This includes remote
state preparation [1], entanglement distribution [2, 3], trans-
mission of correlations [4], and quantum meteorology [5]
to name a few. This utilization of quantum correlations is
already enough motivation to study, characterize, and quan-
tify them. There are classical correlations which have no
quantum part in it. It is hard task to characterize and quan-
tify quantum correlations. Entanglement, quantum discord,
and local quantum uncertainty are three kinds of quantum
correlations. Several authors have proposed different tech-
niques to compute entanglement and quantum discord. The
quantum correlations have attracted a lot of interest and
considerable efforts have been devoted to develop a theo-
retical framework for it [6–8]. Meantime, the advancements
in experimental setups have enabled us to work for realistic
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realizations of quantum devices utilizing quantum correla-
tions. Due to unavoidable interactions of delicate quantum
systems with their environment, it is essential to simulate
the effects of noisy environments on quantum correlations.
Such investigations are already an active area of research
[9] and several authors have studied decoherence effects
on quantum correlations for both bipartite and multipartite
systems [10–39].

There are several types of experimental setups to test
the ideas of quantum information. One of the technologi-
cal advanced setup is to trap the ions/atoms and perform
quantum computations by logic gates, measurements, etc.
In these experiments, the typical noise is caused by inten-
sity fluctuations of electromagnetic fields which leads to
collective dephasing process. This process degrades quan-
tum correlations and there are several investigations on the
effects of collective dephasing on entanglement for bipar-
tite and multipartite quantum systems [40–47, 49–53]. It
has been reported in these studies that collective dephasing
process offers not only the expected exponential decay of
entanglement but also the abrupt end of entanglement (sud-
den death of entanglement). In addition to these two dynam-
ical behaviors, some of the recent studies demonstrated
that there are two other types of non-trivial dynamics of
entanglement present/observed under collective dephasing.
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First, there is so-called time-invariant entanglement [47,
49, 53]. Time-invariant entanglement does not necessarily
mean that the quantum states live in decoherence-free sub-
spaces (DFS). In fact, the quantum states may change at
every instance whereas their entanglement remains constant
throughout the dynamical process. This feature was first
observed for qubit-qutrit systems [47] and then later on for
qubit-qubit systems as well [49]. Recently, we have investi-
gated time-invariant phenomenon for genuine entanglement
of three and four qubits. We have found no evidence of
time-invariant for three qubits, whereas for four qubits we
have demonstrated its presence explicitly [53]. The second
non-trivial feature of entanglement decay is the so-called
freezing dynamics of entanglement [50–52]. It was shown
that entanglement of a specific two-qubit state may first
decay up to some numerical value before suddenly stopping
decaying and maintaining this stationary entanglement [50,
51]. Recently, we have explored freezing dynamics for var-
ious genuine multipartite specific states of three and four
qubits, including random states, and found evidence for it
[52]. More recently, we have explored the possibility of
either time-invariant entanglement or freezing dynamics for
qutrit-qutrit (3 ⊗ 3) systems [54]. We found no evidence
for time-invariant entanglement; however, we observed the
exclusive evidence for freezing dynamics of entanglement
[54]. We have noticed that in all previous studies on time-
invariant entanglement and freezing dynamics for a given
Hilbert space, there is either time-invariant entanglement or
freezing dynamics behavior. We have not found so far these
two features occurring together for one dimension of Hilbert
space. Interestingly, for qubit-qutrit systems, we find both
these features present. As we show below, there are cer-
tain states which exhibit either time-invariant entanglement
or sudden death of entanglement but never freezing dynam-
ics. On the other hand, some other quantum states exhibit
either freezing dynamics or sudden death but never time-
invariant dynamics. However, we get both peculiar features
for Hilbert space of dimension 6.

The two other quantum correlations which we study
in this work are quantum discord and local quantum
uncertainty. Quantum discord may be defined as the
difference between quantum mutual information and
classical correlations [55–60]. Quantum discord may be
nonzero even for separable states and have applications in
quantum information. Due to the complicated minimization
process, the computation of discord is not an easy task
and analytical results are known only for some restricted
families of states. For 2 ⊗ d quantum systems, analytical
results for quantum discord are known for a specific family
of states [61] and the general procedure to calculate discord
is also worked out [62, 63]. The dynamics of quantum
discord under decoherence has been studied [64–66] and
is found to be more robust than quantum entanglement.

In this work, we also study dynamics of quantum discord
and classical correlation under collective dephasing for a
specific family of states. The other quantum correlation
which we study in this work is recently proposed, known
as local quantum uncertainty [67]. This measure is based
on the idea of skew information and it is discord-type
correlation [68]. Recently, the effects of decoherence on
discord-like measures including local quantum uncertainty
have been studied [69–72]. Here, in this work, we study
local quantum uncertainty for several families of quantum
states under collective dephasing. We find that in situations
where entanglement exhibits time-invariant feature, local
quantum uncertainty first keeps on increasing to a specific
value and then exhibits freezing dynamics after a long time.
On the other hand, where there is entanglement sudden
death, local quantum uncertainty first decays, then increases
and finally tends to freeze for a long time. Whereas, in
situations where entanglement exhibits freezing dynamics,
local quantum uncertainty first decays very slowly to a
value and then decays abruptly and finally tends to exhibit
freezing dynamics as well. Finally, we examine the random
pure states and calculate their entanglement at infinity.
We find that around half of random states maintain their
entanglement at infinity and hence all other correlations as
well under collective dephasing.

This paper is organized as follows. In Section 2, we
briefly discuss our model of interest and obtain the most
general solution for an arbitrary initial density matrix.
In Section 3, we review the idea of entanglement for
qubit-qutrit systems and describe the method to compute
negativity for an arbitrary initial quantum state. We also
briefly examine the concept of quantum discord and how to
compute it for an arbitrary bipartite state. We also briefly
review local quantum uncertainty and how to compute it
for any state for 2 ⊗ d quantum systems. In Section 4, we
provide our main results for various initial states. Finally,
we conclude our work in Section 5.

2 Collective Dephasing for Qubit-Qutrit
Systems

Our physical model consists of a qubit and a qutrit (one
two-level atom and one three-level atom for an example) A

and B that are coupled to a noisy environment, collectively.
The qutrit as an atom, can be realized in any configuration
depending on experimental convenience. There are three
well-known configurations for a three-level atom. In V -type
energy level configuration, the transition among excited
levels is forbidden. This means that the first excited state
will decay to ground level only and similarly the second
excited level will also decay to ground level. In �-type
configuration, the excited level |2〉 can decay either to level
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|1〉 or directly to level |0〉. The transition from |1〉 to |0〉 is
forbidden. The third type of configuration is called cascade
configuration in which the energy level |2〉 first decays
to |1〉 and then energy level |1〉 decays to ground level
|0〉. For amplitude damping, it is very important to specify
the configuration as the atomic transition operators for
each configuration are different and hence the subsequent
dynamics would be different. The atoms are sufficiently
far apart and they do not interact with each other, so that
we can treat them as independent. The collective dephasing
refers to coupling of atoms to the same noisy environment,
which can be stochastic magnetic fields B(t). There are
at least two approaches to write a Hamiltonian for such
physical situations. First, the Hamiltonian could be time
independent, like in case of a qubit H = �ω/2 σz with
ω as energy splitting between excited states of atom. One
can write a unitary propagator U(t) = exp(−iH t/�).
As there are fluctuations in magnetic field strength, the
integration over it will induce a probability distribution
p(w) of characteristic energy splitting. The time evolution
of the atom can be written as an integral over p(ω) and
unitary evolution, i.e., ρ(t) = ∫

p(ω)U(t)ρ(0)U(t)† dω.
The form of p(ω) will determine the nature of noise.
Another approach, which we have taken in this work and
most of the work in literature, is to take the Hamiltonian
as time dependent and embed the fluctuations of magnetic
field in stochastic function B(t), which already includes
the information about characteristic function and so that the
ensemble average over it introduces the decay parameter
�. Both approaches are equivalent and generates the same
dynamics. However, we point out, to our knowledge the
present work and recent works are restricted to a very
specific orientation of magnetic field and the theory of
a general description of magnetic fields in any arbitrary
directions is still not worked out. The Hamiltonian of the
quantum system (with � = 1) can be written as [47]:

H(t) = −μ

2

[
B(t)(σA

z + σB
z )

]
, (1)

where μ is gyro-magnetic ratio and σA
z is standard Pauli

matrix for qubit and σB
z is the dephasing operator for

qutrit B. The stochastic magnetic fields refer to statistically
independent classical Markov processes satisfying the
conditions:

〈B(t) B(t ′)〉 = �

μ2
δ(t − t ′) ,

〈B(t)〉 = 0 , (2)

with 〈· · · 〉 as ensemble time average and � denoting the
phase-damping rate for collective dephasing.

Let |2〉, |1〉, and |0〉 be the first excited state, second
excited, and ground state of the qutrit, respectively. We
choose the computational basis { |0, 0〉, |0, 1〉, |0, 2〉 |1, 0〉,
|1, 1〉, and |1, 2〉 }, where we have dropped the subscripts A

and B with the understanding that the first basis represents
qubit A and second qutrit B. Also, the notation |0〉 ⊗ |0〉 =
|0 0〉 has been adopted for simplicity. The time-dependent
density matrix for the system is obtained by taking ensemble
average over the noisy field, i.e., ρ(t) = 〈ρst (t)〉, where
ρst (t) = U(t)ρ(0)U†(t) and U(t) = exp[−i

∫ t

0 dt ′ H(t ′)].
We assume that there are no initial correlations between the
qubit-qutrit system and the stochastic field, that is, ρ(0) =
ρS ⊗ ρR , where ρS is the density matrix for an arbitrary
quantum state of qubit-qutrit system and ρR is the density
matrix of environment. There are several ways to obtain
the time-evolved density matrix of the qubit-qutrit system.
We prefer to solve the system using the master equation
approach.

According to the general reservoir theory [48], we
consider a qubit-qutrit system (S) interacting with a
reservoir (R). The combined density operator for system
can be written as ρSR . The reduced density operator ρS

for system (S) is calculated using the standard technique of
taking partial trace over the reservoir degrees of freedom,
that is, ρS = TrR(ρSR). In the interaction picture, the
equation of motion can be written as:

i ρ̇SR(t) = [H(t), ρSR(t) ] . (3)

We can simply integrate this equation to obtain:

ρSR(t) = ρSR(ti) − i
∫ t

ti

[
H(t ′), ρSR(t ′)

]
dt ′ , (4)

where ti is starting time of interaction. Substituting (4) back
into (3), we get equation of motion:

ρ̇SR(t) = −i [H(t), ρSR(ti) ]

−
∫ t

ti

[
H(t) ,

[
H(t ′), ρSR(t ′)

] ]
dt ′ . (5)

As the interaction between the system and reservoir is weak,
we look for a solution of (5) of the form:

ρSR(t) = ρS(t) ⊗ ρR(ti) + ρc(t) , (6)

where ρc(t) is of higher order in H(t). For consistency, we
require that TrR(ρc(t)) = 0. Substituting (6) into (5) and
after some simplifications, we get:

ρ̇S(t) = −i TrR [H(t), ρS(ti) ⊗ ρR(ti) ] − TrR

×
∫ t

ti

[
H(t) ,

[
H(t ′), ρS(t ′) ⊗ ρR(ti)

] ]
dt ′ . (7)

In this equation, the reduced density operator ρS(t) depends
on past history from t = ti to t ′. Typically, reservoir have
many degrees of freedom, which leads to delta function
δ(t − t ′). Under Markovian assumption, the system density
matrix ρS(t ′) can be replaced by ρS(t), which is quite
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reasonable since damping destroys memory of past. We can
write (7):

ρ̇S(t) = −i TrR [H(t), ρS(ti) ⊗ ρR(ti) ] − TrR

×
∫ t

ti

[
H(t) ,

[
H(t ′), ρS(t) ⊗ ρR(ti)

] ]
dt ′ . (8)

This is a valid master equation for a system ρS interacting
with a reservoir represented by ρR .

Substituting the Hamiltonian (1) in (8), using the
relations in (2), and doing some algebra, we arrive at
equation for system given as:

ρ̇(t) = −�

4

{
σA

z σA
z ρ(t) − 2 σA

z ρ(t) σA
z + σB

z σA
z ρ(t)

−2 σA
z ρ(t) σB

z + σA
z σB

z ρ(t) − 2 σB
z ρ(t) σA

z

+σB
z σB

z ρ(t) − 2 σB
z ρ(t) σB

z + ρ(t) σA
z σA

z

+ρ(t) σA
z σB

z + ρ(t) σB
z σA

z + ρ(t) σB
z σB

z

}
. (9)

We have dropped the subscript S for system as there is
no chance of confusion now. This is a simple differential
equation, which can be straightforwardly solved to give us
the most general solution of the system as:

ρ(t)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ11 ξ ρ12 ξ4 ρ13 ξ4 ρ14 ξ9 ρ15 ξ16 ρ16
ξ ρ21 ρ22 ξ ρ23 ξ ρ24 ξ4 ρ25 ξ9 ρ26
ξ4 ρ31 ξ ρ32 ρ33 ρ34 ξ ρ35 ξ4 ρ36
ξ4 ρ41 ξ ρ42 ρ43 ρ44 ξ ρ45 ξ4 ρ46
ξ9 ρ51 ξ4 ρ52 ξ ρ53 ξ ρ54 ρ55 ξ ρ56
ξ16 ρ61 ξ9 ρ62 ξ4 ρ63 ξ4 ρ64 ξ ρ65 ρ66

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(10)

where ξ = e−�t/4. We note that DFS [40–42] do appear
in this system as a common characteristic of collective
dephasing. Another interesting property of the dynamics is
the fact that all initially zero matrix elements remain 0.

3 Entanglement, QuantumDiscord,
and Local QuantumUncertainty
for 2 ⊗ 3 Quantum Systems

In this section, we briefly review the correlations, which we
study in this work for qubit-qutrit systems. In Section 3.1,
we briefly review entanglement and a computable measures
of entanglement. In Section 3.2, we review the quantum
discord and how to compute it for any bipartite quantum
state. In Section 3.3, we discuss local quantum uncertainty
and how to compute it for a given state in 2 ⊗ d quantum
systems.

3.1 Quantum Entanglement

The quantification of quantum entanglement for qubit-qubit
(2 ⊗ 2) quantum systems and qubit-qutrit (2 ⊗ 3) quantum

systems has been completely solved. It is well known that
for bipartite quantum systems, if the partial transpose with
respect of any one of the subsystem has at least one negative
eigenvalue then the quantum state is entangled or NPT [73].
Whereas if the partial transposed matrix has all positive
eigenvalues (PPT), then entanglement/separability depends
upon the dimension of Hilbert space. The PPT states for 2⊗
2 and 2⊗3 are separable (not entangled), whereas for larger
dimensions of Hilbert space, there may exist PPT-entangled
states (also called bound entangled states) [6]. There are
many measures of entanglement defined in literature, like
Entanglement of Formation [74], Concurrence [75, 76],
Schmidt number [77], etc. The details of these and all other
measures can be found in review article [6]. However, most
of these measures have closed formulas only for qubit-
qubit quantum system and in general it is not easy to
calculate them for an arbitrary quantum mixed state of
other dimension of Hilbert space. On the other hand, for a
given density matrix of qubit-qutrit system, one can easily
find the eigenvalues of partially transposed matrix (partial
transpose can be taken with respect to any subsystem). It
is not hard to look for possible negative eigenvalues. The
sum of absolute values of all possible negative eigenvalues
is defined as a legitimate measure of quantum entanglement,
namely negativity [78]. Hence, negativity is defined as:

N(ρ) = 2

(
∑

i

|ηi |
)

, (11)

where ηi are possible negative eigenvalues and multipli-
cation with 2 is for normalization so that for maximally
entangled states, this measure should have the numerical
value of 1. For specific quantum states, this definition is
sufficient to compute and study the dynamics of negativ-
ity. For random states, it is more easy to use entanglement
monotone, which is based on the PPT-mixtures idea [79–81]
and very easy to compute numerical value of entanglement
for any density matrix. The description of semi-definite
programming (SDP) and genuine negativity is described in
detail in Refs. [79–81]. We denote this measure by E(ρ) in
this paper. For bipartite systems, this monotone is equivalent
to negativity.

3.2 QuantumDiscord

Quantum discord is one of the measure of quantum
correlations which are captured using von Neumann
entropy. This measure has been intensively investigated in
the previous 18 years in various contexts and many studies
focused on the quantification of this measure for various
dimensions of Hilbert space. The literature on this measure
is so extensive that it is not possible to cite each of them,
so we only provide fundamental references. We discuss the
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main ideas very briefly to compute quantum discord for a
given bipartite quantum state. Any bipartite state may have
both quantum and classical correlations, which are jointly
captured by quantum mutual information. In particular, if
ρAB denotes the density operator of a composite bipartite
system AB, and ρA (ρB ) the density operator of part A

(B), respectively, then the quantum mutual information is
defined as [82]:

I(ρAB) = S(ρA) + S(ρB) − S(ρAB) , (12)

where S(ρ) = −tr (ρ log2 ρ) is the von Neumann entropy.
We take all logarithms base 2 in this work. Quantum
mutual information may be written as a sum of classical
correlation C(ρAB) and quantum discord Q(ρAB), that is,
I(ρAB) = C(ρAB) + Q(ρAB) [55–60]. Quantum discord
can be positive in separable mixed states (that is, with no
entanglement).

Quantum discord can be quantified [55] via von
Neumann type measurements which consist of one-
dimensional projectors that sum to the identity operator.
Let the projection operators {Ak} describe a von Neumann
measurement for subsystem A only, then the conditional
density operator ρk associated with the measurement result
k is:

ρk = 1

pk

(Ak ⊗ IB) ρ (Ak ⊗ IB) , (13)

where the probability pk equals tr[(Ak ⊗ IB) ρ (Ak ⊗
IB)]. The quantum conditional entropy with respect to this
measurement is given by [59, 60]:

S(ρ|{Ak}) :=
∑

k

pk S(ρk) , (14)

and the associated quantum mutual information of this
measurement is defined as:

I(ρ|{Ak}) := S(ρB) − S(ρ|{Ak}) . (15)

A measure of the resulting classical correlations is provided
[55–60] by:

C(ρ) := sup
{Ak}

I(ρ|{Ak}) . (16)

The obstacle to computing quantum discord lies in this
complicated maximization procedure for calculating the
classical correlation because the maximization is to be done
over all possible von Neumann measurements of A. Once
C(ρ) is in hand, quantum discord is simply obtained by
subtracting it from the quantum mutual information,

Q(ρ) := I(ρ) − C(ρ) . (17)

This maximization process is not easy in general and
analytical results for quantum discard are only known for
very specific quantum states. In this work, we have been
only able to calculate it for only one family of quantum
states for 2 ⊗ 3 quantum system.

3.3 Local QuantumUncertainty

First of all, we briefly review the concept of local quantum
uncertainty (LQ). This is a measure of quantum correlations
which has been defined for 2 ⊗ d quantum systems [67].
It is a quantum discord type measure and we will see in
the results below that for certain quantum states, quantum
discord, and local quantum uncertainty captures precisely
same correlations and are equal to each other, whereas for
some other states, they are different measures. It is defined
as the minimum skew information which is obtained via
local measurement on the qubit part only. This measure
has the advantage that there is no need for complicated
minimization over parameters related with measurement
operations. This measure is defined as:

LQ(ρ) ≡ min
KA

I(ρ, KA ⊗ IB) , (18)

where KA is some local observable on subsystem A, and I
is the skew information of the density operator ρ, defined
as:

I(ρ, KA ⊗ IB) = −1

2
Tr( [√ρ, KA ⊗ IB ]2 ) . (19)

It has been shown [67] that for 2 ⊗ d quantum systems, the
compact formula for local quantum uncertainty is given as:

LQ(ρ) = 1 − max {λ1 , λ2 , λ3 } , (20)

where λi are the eigenvalues of 3 × 3 matrix M, whose
matrix elements are calculated by the relationship:

mij ≡ Tr {√
ρ (σi ⊗ IB)

√
ρ (σj ⊗ IB) } , (21)

where i, j = 1, 2, 3 and σi are the standard Pauli matrices.

4Main Results

In this section, we will present our main results for various
families of quantum states.

4.1 Two-Parameter Class of States

The class of quantum states with two real parameters α and
γ in a 2 ⊗ d quantum system [83] is given as:

ρα,γ = α
∑1

i=0

∑d−1

j=2
|i j〉〈i j | + β (|φ+〉〈φ+|

+|φ−〉〈φ−| + |ψ+〉〈ψ+| ) + γ |ψ−〉〈ψ−| , (22)

where { |i j〉 : i = 0, 1, j = 0, 1, . . . , d − 1 } is an
orthonormal basis for 2 ⊗ d quantum system and:

| φ±〉 = 1√
2

( |0 0〉 ± |1 1〉 ) (23)

| ψ±〉 = 1√
2

( |0 1〉 ± |1 0〉) , (24)
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and the parameter β is dependent on α and γ by the unit
trace condition:

2 (d − 2)α + 3β + γ = 1 . (25)

From (22), one can easily obtain the range of parameters as
0 ≤ α ≤ 1/(2(d − 2)) and 0 ≤ γ ≤ 1. We note that the
states of the form ρ0,γ are equivalent to Werner states [84]
in 2⊗2 quantum systems. Moreover, the states ρα,γ have the
property that their PPT (positive partial transpose) region
is always separable [83]. It is also known that an arbitrary
quantum state ρ in 2 ⊗ d can be transformed to ρα,γ with
the help of local operations and classical communication
(LOCC).

We have already calculated quantum discord, classical
correlation, and entanglement for this family in an earlier
work [61]. Here, we simply extend the previous results for
collective dephasing (an additional parameter �t). It turns
out that classical correlations for this family of states do not
depend on decay parameter and are constant in time. The
expression for classical correlations is given as:

C(ρα,γ ) = −(3β + γ ) log(
3β + γ

2
) + 2β log(2β)

+(β + γ ) log(β + γ ) . (26)

The quantum discord is calculated using the standard
procedure discussed in the previous section and is given as:

Q(ρα,γ )(t) = 1 − 2α − 2β − (β + γ ) log(β + γ )

+β + γ + ξ (β − γ )

2

× log

(
β + γ + ξ (β − γ )

2

)

+β + γ − ξ (β − γ )

2

× log

(
β + γ − ξ (β − γ )

2

)

. (27)

We can see that as t → ∞, ξ → 0, and Q(ρα,γ )(∞) =
1 − 2α − 3β − γ = 0 as expected.

The local quantum uncertainty for this family of state
turns out to be:

LQ(ρα,γ )(t) = 1 − 2α − 2β −
[√

β(1 + ξ) + γ (1 − ξ)

√
β (1 − ξ) + γ (1 + ξ)

]
. (28)

We note the similarity between local uncertainty (28) and
quantum discord (27). Indeed, it turns out that for t = 0,
and for the initial states (i) α = β = 0 and γ = 1, (ii)
α = γ = 0, and β = 1/3, (iii) γ = 0, and (iv) β = 0,
local quantum uncertainty and quantum discord turn out to
be exactly equal as can be checked easily. However, for
more general cases with α, β, γ �= 0, and under collective
dephasing, both measures are different as will be shown
below.

The negativity for this family of states is straightforward
to calculate and is given as:

N(ρα,γ )(t) = max [ 0 , ξ (γ − β) − 2β] . (29)

It is easy to see that for β = 0, the states decay asymp-
totically and entanglement is lost only at infinity, whereas
for β �= 0, negativity is lost at:

�t = 4 log
γ − β

2β
. (30)

We plot entanglement, discord, classical correlation, and
local quantum uncertainty for state ρα,γ (t) in Fig. 1. We
have taken specific values of α = 0.1, β = 0.1, and
γ = 0.5. Quantum discordQ(ρα,γ )(t) plotted as a solid line
decays slowly as well as negativity (dashed line) and local
quantum uncertainty (big dashed line). Classical correlation
(dashed orange line) is constant in time with a fixed initial
value. Negativity ends at �t ≈ 2.77, whereas quantum
discord becomes 0 at infinity. Local quantum uncertainty
and quantum discord become 0 at the same time as expected.

Let us take another set of initial values with α = 0.12,
β = 0.12, and γ = 0.4 for state ρα,γ (t). Figure 2 depicts
entanglement (dashed line), classical correlation (thick
dashed orange line), quantum discord (solid line), and local
quantum uncertainty (big dashed line) for this set of values
against decay parameter�t . As we have reduced the fraction
of maximally entangled state (γ ) and increased the noisy
components α and β slightly, nevertheless, the resulting
dynamics is interesting and different from the earlier case.
The numerical values of all correlations are lower than
those of the earlier case. This fact is understandable as we
have reduced the fraction of γ , so maximally entangled
state feeds almost all correlations in ρα,γ . Entanglement
vanishes at �t ≈ 0.61, the so-called sudden death of

0.1, 0.1, 0.5

C

QLQ

N

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

t

Fig. 1 Entanglement (negativity) N(ρα,γ ), classical correlation
C(ρα,γ ), quantum discord Q(ρα,γ ), and local quantum uncertainty
LQ(ρα,γ ) are plotted against parameter �t . It can be seen that all
correlations maintain nonzero values for a long time due to the
presence of decoherence-free subspace
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Fig. 2 Entanglement (negativity) N(ρα,γ ), classical correlation
C(ρα,γ ), quantum discord Q(ρα,γ ), and local quantum uncertainty
LQ(ρα,γ ) are plotted against parameter �t . It can be seen that all
correlations except negativity maintain nonzero values for a long time

entanglement. Classical correlation is constant as mentioned
earlier. Quantum discord and local quantum uncertainty
decay slowly as expected and both become 0 only at infinity.

4.2 Search for Freezing Dynamics of Entanglement

It has already been shown explicitly [47] that certain qubit-
qutrit entangled states exhibit time-invariant entanglement
feature under collective dephasing. However, the question
of freezing dynamics of entanglement has not been explored
so far. Therefore, we look for such possibility encouraged
by the existence of decoherence-free subspaces where
entangled states can reside. Of course, the presence of
such decoherence-free spaces alone does not guarantee that
either time-invariant entanglement or freezing dynamics
must occur. In fact, all previous studies suggest that for
all other dimensions of Hilbert space studied so far, either
time-invariant entanglement appears or freezing dynamics.
To our knowledge, both of these possibilities have never
been observed for any single dimension of Hilbert space.
Interestingly, as we will demonstrate, qubit-qutrit systems
offer all kind of dynamical features of entanglement,
that is, entanglement sudden death, asymptotic decay of
entanglement, time-invariant entanglement, and freezing
dynamics of entanglement under collective dephasing.

Let us define a single-parameter class of states, which are
a mixture of entangled states residing in decoherence-free
subspace and states which decay. The states are defined as:

ρα = α |ψ3〉〈ψ3| + (1 − α) |ψ2〉〈ψ2| , (31)

where 0 ≤ α ≤ 1, the maximally entangled state |ψ2〉 is
defined as:

|ψ2〉 = 1√
2

(|0 1〉 + |1 2〉) , (32)

and another maximally entangled state |ψ3〉 is defined as:
|ψ3〉 = 1√

2
(|0 2〉 + |1 0〉) . (33)

In this mixture, |ψ2〉 decays, whereas |ψ3〉 lives in
decoherence-free subspace. Therefore, the time evolution of
this state can be written as:

ρα(t) = α ρ3 + (1 − α) ρ2(t) . (34)

There are only two possible negative eigenvalues for the
partial transpose of this state, namely:

v1(α) = 1

4

[
(1 − α) −

√
(1 − α)2 + 4α2

]

v2(α, ξ) = 1

4

[
α −

√
α2 + 4 ξ18 (1 − α)2

]
. (35)

Negativity for these states can be written as:

Nα = 2 [max(0, −v1(α)) + max(0, −v2(α)) ] . (36)

It is obvious that v1(α) does not depend on decay parameter
and this value is negative for any α > 0. The other
eigenvalue v2(α, ξ) is also negative for any α > 0 at the start
(�t = 0); however, as decoherence is turned on, this value
quickly becomes positive. So, we can see very clearly that
all states with 0 < α < 1 must exhibit freezing dynamics of
entanglement.

Figure 3 shows negativity plotted against decay parame-
ter �t for various choices of parameter α. It is clear that all
initial amounts of entanglement are determined by choice
of α decay as evident from v2(α) until it becomes 0, and
hence, the residual entanglement in decoherence-free sub-
space becomes dominant as dictated by v1(α). Hence, this
family of states exhibits freezing dynamics of entanglement
such that quantum states change with time but their entan-
glement is locked in time (stationary). It is interesting to
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Fig. 3 Negativity for an initial state ρα(t) is plotted against decay
parameter �t for various values of parameter α. It can be seen that
initial entanglement decays to a specific value (depending on α) and
then although quantum states keep changing with time, entanglement
becomes stationary, hence exhibiting the so-called freezing dynamics
of entanglement. See text for explanations
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note that for qubit-qutrit systems, time-invariant entangle-
ment and freezing dynamics exist. We have not found this
coincidence in any other dimension of Hilbert space so far.

It is straightforward to calculate local quantum uncer-
tainty for ρα which is given as:

LQα = 1 − 1

2

√
α(1 − α) . (37)

This value is symmetric about α = 0.5 as expected because
all correlations must be symmetric about this value. For
time-evolved state, local quantum uncertainty is given as:

LQα(t) = 1 − λα(t) , (38)

where λα(t) = max[w11(t), w33(t)], and
w11(t)= w22(t)

=
√

α
[√

(1−α)(1−ξ9)+√
(1−α)(1+ξ9)

]

2
√
2

, (39)

and

w33(t) = (1 − α)
√
1 − ξ18 , (40)

where wii(t) are the eigenvalues of the symmetric 3 × 3
matrix.

In Fig. 4, we plot the local quantum uncertainty against
decay parameter �t for the same values of parameter α as
in Fig. 3. As can be seen just like entanglement freezing, the
local quantum uncertainty initially decays to some value and
then also tends to freezing dynamics of local uncertainty. At
�t = ∞, the stationary value of local quantum uncertainty
is given as:

LQα(∞) = 1 − max
[
(1 − α),

√
α(1 − α)/2

]
, (41)

which is obviously a nonzero value.
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Fig. 4 Local quantum uncertainty is plotted against parameter �t for
different values of parameter α. It can be seen that the firstLQα decays
but then tends to become stationary

4.3 A Review on Time-Invariant Entanglement
for Qubit-Qutrit Systems

As we have noticed in all earlier reports of time-invariant
entanglement, the quantum state exhibiting this interesting
phenomenon must be a mixture of two entangled states and
one of the state must reside in decoherence-free subspace.
However, we have seen above that if we mix state |ψ3〉 and
|ψ2〉, we do not observe any time-invariant entanglement but
rather freezing dynamics of entanglement. So, this suggests
that we must look for some other entangled state to be mixed
with |ψ3〉. One of such state is:

|ψ1〉 = 1√
2

(|0 0〉 + |1 2〉) . (42)

Actually, the first report of time-invariant entanglement for
qubit-qutrit systems [47] took a state which was a mixture
of these two types of states. To generalize this observation
for more general states, first let us consider the states:

ρ̃α = α |ψ1〉〈ψ1| + 1 − α

6
I6 , (43)

where I6 is 6×6 identity matrix and 0 ≤ α ≤ 1. Such states
are called isotropic states and they are NPT for 1/4 < α ≤
1, and hence entangled. To avoid confusion, we differentiate
these states by taking a tilde over ρα . This could have been
avoided by calling the single parameter by a name other than
α; however, we preferred to keep it like that. We can now
define two-parameter family of states, which are a mixture
of isotropic states and |ψ3〉, given as:
ρα,β = β |ψ3〉〈ψ3| + (1 − β) ρ̃α , (44)

where 0 ≤ β ≤ 1. Entanglement properties for this family
of states are quite interesting. The partial transpose with
respect to subsystem A has a maximum of two possible
negative eigenvalues and the rest of 4 eigenvalues are
definitely positive for the given range of parameters α and
β. The 2 possible negative eigenvalues are such that when
one is positive, the other is negative, and vice versa. They
are never negative at the same time. The time evolution of
these states can be written as:

ρα,β(t) = β |ψ3〉〈ψ3| + (1 − β) ρ̃α(t) . (45)

Hence, ρ̃α(t) decays, whereas |ψ3〉 remains dynamically
invariant as it lives in DFS. Now, there is an additional
parameter �t involved in the density matrix. The two
possible negative eigenvalues of partially transposed matrix
are given as:

x1 = 1

6
[1 + 2α(1 − β) − 4β ]

x2 = 1

6

[
1 + 2β − α (1 − β)(1 + 3 ξ16)

]
. (46)

As we have mentioned earlier, these two eigenvalues can
not be negative at the same time. We also observe that one
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of the eigenvalue x1 does not depend upon ξ , so if this
eigenvalue is negative, then as the other cannot be negative,
this necessarily means time-invariant entanglement. On the
other hand, if x1 is positive then x2 must be negative.
However, x2 depends on ξ and it is not difficult to see
that x2 can become positive in a finite time, leading to
finite time end of entanglement. As long as β > 1/2, x2
is positive for all ranges of α; hence, we can get time-
invariant entanglement, whereas for other values we would
get sudden death of entanglement. Negativity for these
states is given as:

Nα ,β =2 [max (0, −x1(α, β)) + max (0, −x2(α, β, ξ)) ] .

(47)

In Fig. 5, we plot negativity against parameter �t for four
different sets of values of α and β. We see that for β > 1/2,
that is, for α = 0.4, β = 0.7 (red thick dashed line) and
α = 0.5, β = 0.8 (blue thick dashed line), we get time-
invariant entanglement on the one hand and for the other
range, α = 0.9, β = 0.2 (solid line), and α = 0.8, β = 0.3
(thin dashed line), we see end of negativity at finite times.

We have also calculated local quantum uncertainty for
ρα, β(t). Following the procedure mentioned in the previous
section, we get a diagonal matrix and hence the eigenvalues
of the resulting 3 × 3 matrix. It is simple to pick the
maximum eigenvalue for a given set of parameters. In Fig. 6,
we plot LQα, β against parameter �t for the same set of
values for α and β as in Fig. 5. We observe quite interesting
dynamics for local quantum uncertainty compared with
earlier cases. First, we see that for two instances where
we get time-invariant entanglement, the local quantum
uncertainty first increases and then tends to freeze to a
specific positive value. Intuitively, one can understand the
freezing behavior of local quantum uncertainty as due to
stationary correlations (not decaying due to decoherence
subspace) in state |ψ3〉. However, it is not intuitive why

0.9, 0.2

0.8, 0.3

0.5, 0.8

0.4, 0.7

Time invariant Entanglement

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

N ,

Fig. 5 Negativity is plotted against parameter �t for different sets of
α and β. We observe time-invariant entanglement as well as finite time
end of entanglement depending on the range of these two parameters
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Fig. 6 Local quantum uncertainty is plotted against parameter �t

for four sets of values of α and β. It can be seen that in all cases,
local quantum uncertainty tends to become stationary after exhibiting
interesting dynamics at the start

these correlations first increase before becoming stationary.
For the other two instances, where we get sudden death of
entanglement, that is, for (α = 0.8, β = 0.3) (thin dashed
line), local quantum uncertainty first decays for a short time
and then once again increases and then tends to freeze to
a constant value. Whereas for (α = 0.9, β = 0.2) (solid
line), local quantum uncertainty first decreases for a short
time, then increases to a value and then once again decays to
another value and then finally exhibits freezing dynamics.
As we mentioned, the freezing part of correlations can
be explained easily whereas other parts of dynamics are
counterintuitive.

4.4 Comparison with Dynamics of Random States

In order to compare the dynamics of quantum states with
generic states, we have generated 100 random pure states.
A state vector for qubit-qutrit systems, randomly distributed
according to the Haar measure, can be generated in the
following way [85]: First, we generate a vector such that
both the real and the imaginary parts of the vector elements
are Gaussian-distributed random numbers with a zero mean
and unit variance. Second, we normalize the vector. It is
easy to prove that the random vectors obtained this way are
equally distributed on the unit sphere [85]. Note the random
pure states, which we generate in the global Hilbert space of
dimension 6, so the unit sphere is not the Bloch ball.

After generation of 100 random pure states, we find their
time-evolved density matrices interacting with collective
dephasing and compute negativity using PPT-mixture
package [79–81], for each state against parameter �t . From
this data, we can also obtain an error estimate to indicate the
reliability of the measure. This can, for instance, be defined
as a confidence interval [28]:

CI = μ ± √
δ , (48)
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Fig. 7 Entanglement monotone (negativity) is plotted against param-
eter �t for 100 initial random pure states. It can be seen that around
half of states remain NPT and approach a fixed (freezing) value of
entanglement after a sufficiently long time

whereμ stands for mean value and δ for variance of quantity
being measured. Note, however, that this is not a confidence
interval in the mathematical sense.

In Fig. 7, we plot entanglement monotone (negativity)
E(ρ) for random pure states against parameter �t . The
thick dashed (blue) line presents the mean value of
entanglement, whereas thick dashed-dotted (red) lines
represent confidence interval CI with the top line as sum of
mean value and variance, whereas below the thick dashed-
dotted line are difference of mean value and variance. As
we can see, many states tend to exhibit freezing dynamics
of entanglement (about 50%), whereas many exhibit sudden
death of entanglement (about 50%).

Finally, we analyze the asymptotic states by taking ξ =
0 in time-evolved density matrices for random states. We
then compute entanglement monotone (negativity) for these
states and as mentioned earlier about 50% of them are
found to be entangled. In Fig. 8, we show the bar graph for
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Fig. 8 Entanglement monotone (negativity) is shown against number
n for 100 initial random pure states. It can be seen that around half of
all states remain NPT

random states at infinity against number of random states.
It is obvious that all entangled states will be having nonzero
local quantum uncertainty as well.

5 Conclusions

We have studied the dynamics of quantum correlations of
qubit-qutrit systems under Markovian collective dephasing.
We have investigated some aspects of this simple system not
studied before. In particular, we have studied two non-trivial
features of entanglement dynamics, namely, time-invariant
entanglement and freezing dynamics of entanglement. All
previous studies on these two features of entanglement
dynamics for bipartite as well as for multipartite quantum
systems gave the impression that we could not have both
features available for one specific quantum system under
collective dephasing. The reason for this impression was the
observation that for qubit-qubit systems we detected time-
invariant entanglement whereas we did not find any freezing
dynamics of entanglement under the same collective
dephasing model [49]. We did find freezing dynamics for
qubit-qubit systems however for more general directions of
magnetic fields [50] instead of specific z-direction where
we have only the time-invariant feature available. For three
qubits, we found evidence for freezing dynamics of genuine
entanglement whereas we found no evidence for time-
invariant entanglement [53]. On the other hand, for four
qubits, we found no evidence for freezing dynamics of
entanglement but we do found time-invariant entanglement
[53]. More recently, we examined qutrit-qutrit quantum
systems where we found freezing dynamics of entanglement
but no time-invariant entanglement [54]. There is no
concrete mathematical arguments for mutual exclusiveness
of these features for any specific Hilbert space. Contrary
to earlier impression, for qubit-qutrit quantum systems,
we found time-invariant entanglement as well as freezing
dynamics entanglement. The future investigations might
shed more light on relationship between these possibilities
and dimensions of subsystems if there is any such
relationship. In addition, we have studied dynamics of
quantum discord for a specific family of quantum states and
local quantum uncertainty for several families of states. We
have seen that for some states quantum discord and local
quantum uncertainty decay asymptotically and become zero
only at infinity. For these states, only classical correlations
remain constant and do not decay. For other states which
exhibit freezing dynamics of entanglement, local quantum
uncertainty also tends to exhibit freezing dynamics. For
quantum states which exhibit time-invariant entanglement,
local quantum uncertainty first increases to a specific value
and then becomes stationary at nonzero values. For the
same states which exhibit sudden death of entanglement,
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local quantum uncertainty first decays for a short time,
then increases for some time and finally reaches a nonzero
stationary value. Finally, we have compared the dynamics
of specific states with generic states by generating random
pure states. We have seen that most random pure states
under collective dephasing exhibit freezing dynamics of
entanglement and maintain this nonzero value even at
infinity. Some random pure states do become separable at
finite time. Another future avenue would be to explore more
general d ⊗ N quantum systems for d �= N to find more
examples.

Acknowledgments The author is grateful to the referee for his/her
positive comments which brought more clarity in the manuscript.

References

1. B. Dakic et al., Nat. Phys. 8, 666 (2012)
2. A. Streltsov, H. Kempermann, D. Bruß, Phys. Rev. Lett. 108,

250501 (2012)
3. T.K. Chuan et al., Phys. Rev. Lett. 109, 070501 (2012)
4. A. Streltsov, W.H. Zurek, Phys. Rev. Lett. 111, 040401 (2013)
5. K. Modi, H. Cable, M. Williamson, V. Vdral, Phys. Rev. X 1,

021022 (2011)
6. R. Horodecki et al., Rev. Mod. Phys. 81, 865 (2009)
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