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Abstract
Bifurcation analysis of ion-acoustic (IA) superperiodic waves is studied in dense plasmas composed of electrons, positrons,
and positive ions. Employing bifurcation analysis of dynamical systems, all feasible phase plots including superperiodic
trajectory and superhomoclinic trajectory are obtained based on positron concentration (α) and velocity (v) of IA traveling
wave. Using symbolic computation, superperiodic wave solutions are obtained for ultra-relativistic environment as well
as non-relativistic environment. It is discerned that positron concentration (α) affects the bifurcation of IA superperiodic
waves. The results of this work may be applied to understand superperiodic wave features in cold neutron star.
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1 Introduction

During the last three decades, investigation of linear and
nonlinear excitations of ion-acoustic (IA) wave features is
one of the crucial and familiar aspects of theoretical as well
as experimental electron-positron-ion plasma environments
because of its enormous occurrence in different astrophysical
situations, for example, pulsar magnetospheres [1], active
galactic nuclei [2], cold neutron stars, and white dwarfs [3].
Following to their extensive applications in micro-electronic
components and nano-electronic devices, quantum plasmas
become one of the captivating areas of theoretical and labo-
ratory plasma studies [4–6]. Furthermore, quantum plasmas
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also exist in astrophysical situations [7], high-intensity
laser experiments [4], and ultra cold plasmas [8]. Bonitz et
al. [9] reported strapping correlations in quantum Coulomb
systems (dense plasmas and semiconductors). In this envi-
ronment, electrons and positrons begin to be degenerated
owing to impact of Pauli-exclusive principle and statistical
assumption. One can explore the physical concern deman-
ded in plasmas using quantum hydrodynamic fluid equa-
tions [9, 10]. For example, Silva et al. [10] reported quantum
effects on nonlinear features of white-dwarfs. On the other
hand, plasma components may become ultra-relativistic
when the rest energy of plasma components become
comparable with the Fermi energy and induce to the crum-
ple of star under its colossus gravitational force [11, 12].
Furthermore, the massive ions, related to degenerate plasma
pressure, play a crucial character on the features and dynam-
ics of IA wave phenomena. Recently, Esfandyari-Kalejahi
et al. [13] reported IA solitons with arbitrary amplitude in
dense plasmas. The authors mentioned that plasma compo-
nents perceived collisionless for the Fermi-blocking opera-
tion based on Pauli-exclusion principle, obey statics of zero-
temperature Fermi gas, where ions act as classical fluid compo-
nents. Hafez et al. [14] reported small-amplitude IASWs in a
dense plasma. Very recently, Hafez [15] studied interactions
of IA two solitons and three solitons in dense plasmas.

Recently, a new class of nonlinear waves in plasmas,
called supernonlinear waves [16], was reported in the
literature for the first time. The authors [16] proposed
topological classification of such supernonlinear waves and
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suitable notations for their study. Dubinov and Kolotkov
[17] also coined the name “supersolitons” in plasma
considering a model of five species. Later on, Dubinov
and Kolotkov affirmed that at least 4 components were
needed to admit supersolitons in plasmas. Maharaj et al.
[18] obtained the existence domains of supersolitons in a
dusty plasma. Verheest et al. [19–22] showed that various
three-species plasmas could generate supersolitons. It was
observed that supersolitons [23] may exist in space plasma
environments (Auroral zone).

Recently, appertaining the bifurcation analysis of dynam-
ical systems, some works [24–34] were published on inves-
tigation of distinct qualitative attributes of different nonlin-
ear wave features in various plasma systems. Das et al. [35,
36] investigated nonlinear wave features in dusty plasmas
with collisional effects through perturbed dynamical sys-
tems. Very recently, different numerical methods [37, 38]
were applied to obtain traveling wave solutions of nonlin-
ear evolution equations. Saha and Tamang [39] reported
effect of nonextensive electrons on supernonlinear waves
in auroral plasma. However, there is no study on bifurca-
tion analysis of superperiodic waves in a dense plasma.
In this present study, we report bifurcation analysis of IA
superperiodic waves in dense plasmas employing bifurca-
tion analysis of dynamical systems [40–43]. In this case,
positron concentration (α) acts as the controlling parame-
ter in the qualitative changes of IA superperiodic waves in
dense plasmas.

The remaining part of the paper is composed as follows:
we consider basic quantum hydrodynamics fluid equations
in Section 2. In Section 3, we form a planar dynamical
system for our plasma model. We procure all probable phase
plots and bifurcation analysis of IA superperiodic waves in
Section 4. Section 5 is taken for conclusion.

2 Basic Equations

A dense unmagnetized plasma is considered that is composed
of mobile positive ions, positrons, and electrons. In this case,
electrons and positrons are described by zero-temperature
Fermi-gas statistics, where ions are treated as classical
fluid. To investigate the semi-classical elucidation of nonli-
near dynamics for IA waves, we consider normalized quan-
tum hydrodynamic fluid equations [13–15] as:

∂ni

∂t
+ ∂

∂x
(niui) = 0, (1)

∂ui

∂t
+ ui

∂ui

∂x
= −∂φ

∂x
, (2)

∂2φ

∂x2
= (1 + φ)

3
2 − α(1 − σF φ)

3
2 − βni, (3)

where ni denotes number density of ions, ui denotes
velocity of ions, x is space variable, φ denotes electrostatic
potential, and t is time. The variables are normalized
as: ni → nini0, ui → vFeui , φ → (2kBTFe/e)φ,
x → (vFe/ωpi)x, t → (1/ωpi)t , where vFe =√
2kBTFe/mi , ωpi = √

e2ne0/ε0mi , α = np0/ne0,
σF = TFe/TFp, ni0 is unperturbed number density of
ions, ne0(np0) is the unperturbed number density of Fermi-
electrons (positrons), TFe(TFp) indicates temperature of
Fermi-electrons (positrons), KB indicates the Boltzmann
constant, and mi indicates mass of ions. At equilibrium
condition, the charge neutrality condition is acquired as
β = ni0/ne0 = 1 − α. It is crucial to note that σF =
TFe/TFp is interpreted [13] as σF = α−2/3 for non-
relativistic case, and σF = α−1/3 in case of ultra-relativistic
Fermi-gas, which may be prevailed by simplifying the
following Chandrasekhar mathematical expression [11] for
electron degeneracy pressure P = (πme

4c5s /3h
3)[r(2r2 −

3)
√
1 + r2+3sinh−1(r)], with r = (pFe/mecs), h denotes

the Planck constant, cs indicates light’s speed, and me

denotes mass of electrons.

3 Planar Dynamical System

To obtain planar dynamical system (DS) from the plasma
system, we contemplate a transformation

ξ = x − vt, (4)

here, v indicates velocity of IA traveling wave.With the help
of (4) and applying boundary conditions u = 0, n = 1, and
φ = 0 as ξ → ±∞ in (1) and (2), one can obtain

ni = v
√

v2 − 2φ
, (5)

and from (3), we get

d2φ

dξ2
= aφ + bφ2 + cφ3 + dφ4, (6)

where a = 3
2 (1 + σF α) − β

v2
, b = 3

8 (1 − σ 2
F α) − 3β

2v4
,

c = − 1
16 (1 + σ 3

F α) − 5β
2v6

and d = 3
128 (1 − σ 4

F α) − 35β
8v8

.
Equation (6) can be expressed in the form of following

DS
{

dφ
dξ

= z,
dz
dξ

= aφ + bφ2 + cφ3 + dφ4.
(7)

Here, equations in (7) represent a DS consisting of four
physical parameters α, β, σF, and v. We consider non-
relativistic and ultra-relativistic situations for investigating
the DS (7). For non-relativistic case σF = α−2/3 and for
ultra-relativistic case σF = α−1/3. Again, β = 1− α. Thus,
the DS (7) depends directly on two physical parameters,
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Fig. 1 Phase plot of dynamical
system (7) for α = 0.82 and
v = 2.2 in non-relativistic case

which are positron concentration (α) and velocity of IA
traveling wave (v). In this study, the parameter (α) may be
varied keeping a fixed value of v.

4 Bifurcation of Superperiodic Waves

Employing the bifurcation analysis of DS [40]–[43] to
the system (7), we investigate bifurcation of superperiodic
waves through symbolic computation. The phase plots of
a DS may vary consequentially based on the number of
critical points and actual number of enveloped separatrix
layers [16]. Any trajectory in phase plot of a DS provides
one traveling wave solution for the considered plasma. For
classification of trajectories in the phase plot, we denote:
SPTm,n (PTm,n) for superperiodic trajectory (periodic
trajectory) [16], SHTm,n (HTm,n) for superhomoclinic
trajectory (homoclinic trajectory), where m indicates the
number of critical points covered by the trajectory and
n indicates the number of separatrix layers covered by
the trajectory. Therefore, to investigate bifurcation of
superperiodic waves (periodic waves) of the system (6), we
may require to obtain all probable superperiodic trajectories

(periodic trajectories) of the system (7) based on parameters
α and v in the system (7). The system (7) has four critical
points at E1(φ1, 0), E2(φ2, 0), E3(φ3, 0), and E4(φ4, 0),

where φ1 = 0, φ2,3,4 = −p
3 + 2

√
− g

3 cos(
ψ
3 + 2kπ

3 ), k =

0, 1, 2, with cosψ =

⎧
⎪⎪⎨

⎪⎪⎩

−
√

h2/4
−g3/27

, if h > 0;
√

h2/4
−g3/27

, if h < 0
and h2

4 +

g3

27 < 0, p = c
d
, q = b

d
, r = a

d
, g = 1

3 (3q − p2)

and h = 1
27 (2p

3 − 9pq + 27r). Let A(φi, zi) indicates
Jacobian matrix of system of (7) at a critical point (φi, zi).
Also, we consider J = det(A(φi, zi)), then (φi, zi) becomes
a saddle critical point if J < 0, and a center critical point-
for J > 0.

In Fig. 1, we display a phase plot of the nonlinear system
(7) for α = 0.82 and v = 2.2 in non-relativistic case. In
this situation, the system (7) has four critical points E1,
E2, E3, and E4 and two varieties of qualitatively different
trajectories, such as homoclinic trajectories (HT1,0) and
periodic trajectories (PT1,0). It is essential to note that
for the homoclinic trajectories (HT1,0) represented by red
curves, one can get solitary wave solutions, and for periodic

Fig. 2 Periodic waves of the
system (6) corresponding to
periodic trajectories. a Around
the critical point E3. b Around
the critical point E2 present in
Fig. 1

(a) (b)
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Fig. 3 Phase plot of dynamical
system (7) for α = 0.83 and
v = 2.2 in non-relativistic case

trajectories (PT1,0) shown by blue curves, one can get perio-
dic wave solutions [24]–[25] which are shown in Fig. 2.

In Fig. 3, we illustrate a phase plot of the nonlinear sys-
tem (7) for α = 0.83 and v = 2.2 in non-relativistic case. In-
this case, there exist four critical points E1, E2, E3, and E4

and three varieties of qualitatively distinct trajectories, such
as two homoclinic trajectories (HT1,0), two distinct families
of periodic trajectories (PT1,0), superhomoclinic trajectory
(SHT3,1) and superperiodic trajectories (SPT3,1). Because
of the pair of homoclinic trajectories (HT1,0) shown by red
curves, one can get solitary waves (compressive and rar-
efactive), and for periodic trajectories (PT1,0) represented
by blue curves, one can get two distinct families of peri-
odic waves [24]-[25] of similar type, one of which is shown
in Fig. 4a. Furthermore, we have supersolitary wave corre-
sponding to the superhomoclinic trajectory (SHT3,1) repre-
sented by magenta curve and superperiodic wave which is
shown in Fig. 4b, for the superperiodic trajectory (SPT3,1)
represented by black curve in Fig. 3.

In Fig. 5, we delineate a phase plot of the nonlinear
system (7) for α = 0.4 and v = 2.2 in ultra-relativistic
case. In this case, we have four critical points E1, E2, E3,
and E4 and two distinct varieties of qualitatively different

trajectories, such as homoclinic trajectories (HT1,0) and
periodic trajectories (PT1,0). It is fascinating to note that
for the homoclinic trajectories (HT1,0) represented by
red curves, one can get solitary waves, and for periodic
trajectories (PT1,0) shown by blue curves, one can get
periodic waves [24]–[25] which are presented in Fig. 6.

In Fig. 7, we manifest a phase plot of the nonlinear
system (7) for α = 0.5 and v = 2.2 in ultra-relativistic case.
In this case, we have four critical points E1, E2, E3, and
E4 and three varieties of qualitatively distinct trajectories,
such as two homoclinic trajectories (HT1,0), a pair of
families of periodic trajectories (PT1,0), superhomoclinic
trajectory (SHT3,1), and superperiodic trajectories (SPT3,1).
For the pair of homoclinic trajectories (HT1,0) shown by
red curves, one can have solitary waves (compressive and
rarefactive), and for periodic trajectories (PT1,0) shown by
blue curves, one can have a pair of families of nonlinear
periodic waves [24]-[25] of similar type, one of which is
shown in Fig. 8a. Furthermore, we have supersolitary wave
for the superhomoclinic trajectory (SHT3,1) represented by
the magenta curve, and superperiodic wave which is shown
in Fig. 8b, for the superperiodic trajectory (SPT3,1) shown
by the black curve in Fig. 7.

Fig. 4 a Periodic and b
Superperiodic waves of the
system (6) keeping same
parametric values as in Fig. 3

(a) (b)
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Fig. 5 Phase plot of dynamical
system (7) for α = 0.4 and
v = 2.2 in ultra-relativistic case

Fig. 6 Periodic waves of the
system (6) corresponding to
periodic trajectories. a Around
the critical point E3. b Around
the critical point E2 present in
Fig. 5

(a) (b)

Fig. 7 Phase plot of dynamical
system (7) for α = 0.5 and
v = 2.2 in ultra-relativistic case
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Fig. 8 a Periodic and b
superperiodic waves of the
system (6) keeping the same
parametric values as Fig. 7

(a) (b)

5 Conclusions

Bifurcations of IA superperiodic waves have been reported
in dense plasmas composed of electrons, positive ions, and
positrons with electrons and positrons, where electrons and
positrons obey zero-temperature Fermi-gas statistics, and
where ions act as a classical fluid. The bifurcation analysis
of DS has been applied successfully to present all prob-
able phase plots incorporating superhomoclinic trajectory,
and superperiodic trajectory depending on positron concen-
tration (α). Using symbolic computation, IA superperiodic
wave solutions have been found for ultra-relativistic envi-
ronment as well as non-relativistic environment. It has been
observed that positron concentration (α) plays a key role in
the bifurcation analysis of IA superperiodic wave solutions.
The results of this work may be applied to investigate the
salient features of IA superperiodic waves in cold neutron
stars [11, 12].
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