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Abstract
The Schrödinger equation in phase space is used to calculate the Wigner function for oscillator systems. The first is two
oscillators including dissipative effects. In this case, the non-classicality of the states is studied by the non-classicality
indicator of the Wigner function, which is calculated as a function of the dissipation parameter. The second oscillator system
is non-linear pendulum. Analytical results are derived and the Wigner function is analyzed.
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1 Introduction

Oscillator systems in quantum mechanics have raised
interest since long time ago [1, 2], due to the possibility
to study some important physical properties as dissipation
and non-classicallity effects [3–9]. Such studies, in most
of the cases, shed light into the very structure of matter,
considering, in particular, experimental apparatus with
atoms where the neighborhood effect is the cause of
dissipation or non-linearity [10, 11].

Both experiments with fermions and those designed
to detect Bose-Einstein condensates include some degree
of dissipation. For instance laser cooling, magnetic and
magnetic-optic traps [12, 13]. The fermion counterpart
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has been accomplished by considering a degenerate Fermi
gas as well as condensates of rare isotopes [13–17]. In
addition, there is a great deal of interest in the entangled
of multipartite (fermion or bose) states for quantum
communication [18, 19]. A simple but intricate example of
such a fermion system, at the level of electronic structure, is
the Helium atom considered as a few-fermion system taken
in an external field, which can in turn be considered as a
dissipative effect [20, 21].

From a theoretical point of view, the Schrödinger
equation has no known exact solution for such a system.
The main results are based on approximative methods or
variational formalisms. For instance, due to the resemblance
between the Gaussian wave function of the spherically
symmetric harmonic oscillator and the 1s state of the
hydrogen atom, some models are used to study solutions
of the Schrödinger equation for Helium atom. It consists
in changing the Coulomb interactions by a harmonic-
like oscillator potential. In particular, the electron-nuclei
interactions can be replaced by a harmonic oscillator-
like potential while the electron-electron interaction is
Coulombic. Even considering such a drastic aproximation,
the energy values are near to the experimental data [22, 23].
Motived by these results with this harmonic-like interacting
systems, here we study the non-classicality of such states,
analyzing the phase -space Wigner function [24–29].

The analysis in phase space is important in order to track
the statistical nature of quantum states [30]. In this case,
the Wigner formalism is physically appealing, in particular
in experiments for the reconstruction of quantum states, in
quantum tomography, and for the direct measurement of the
Wigner function [31–38].
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When non-linearity is present, however, the derivation
of the Wigner function through the density matrix is an
intricate procedure. This is a result associated directly to
the fact that the Wigner function is a real quantity; and as
such, preventing the improvement of gauge symmetry: a
necessary condition for introducing generalised interaction.
This aspect has implications as a lack of a direct way to
study superposition effects. This type of problem has led
to the search for the analysis of the Wigner formalism
following different perspectives [39–52], and advancements
have been reached, including the study of representations
of symmetry for quantum equations directly in phase
space [53]. After some preliminary attempts [54, 55],
exploring a representation of the Schrödinger equation
in phase space [56–60], a consistent formalism has been
introduced [61], by using the notion of quasi-amplitude of
probability, which is associated with the Wigner function
by the Moyal (or star) product [63, 64]. This notion of
symplectic structure and Weyl product has been explored to
study unitary representations of Galilei group, leading to a
symplectic representation of the Schrödinger equation [61].
This approach provides an interesting procedure to derive
the Wigner function, by using consistently the gauge
invariance and superposition effects [62]. This symplectic
representation has been applied in kinetic theory and
extended to the relativistic contexts, giving rise to the
Klein-Gordon and the Dirac equations in phase space [65–
69]. Here, we use this symplectic quantum mechanics to
analyze the behavior of the Wigner function for oscillators,
considering dissipation and non-linearity. In this case,
we study the non-classicality (negativity) indicator of the
Wigner function [70] as a function of the dissipation
parameter.

The paper is organized in the following way. In Section 2,
we present an outline of the symplectic representation of
the Schrödinger equation in phase space and the connection
between phase space quasi-amplitudes and the Wigner
function. In Section 3, we solve the Schrödinger equation
in phase space for the Helium atom in the two-oscillator
approximation. In Section 4, a quantum damped oscillator
is studied. Finally, some closing comments are given in
Section 5.

2 Outline on Symplectic Schrödinger
Equation

In this section, we present a brief outline of the construction
of the Schrödinger equation in phase space, emphasizing
the association of phase space amplitude of probability with
the Wigner function. We consider initially a one-particle
system described by the Hamiltonian H = p̂2/2m, where
m and p̂ are the mass and the momentum, respectively,

of the particle. The Wigner formalism for such a system
is constructed from the Liouville-von Neumann equation
[24–27]

i�∂tρ(t) = [H, ρ],
where ρ(t) is the density matrix. The Wigner function,
fW(q, p), is defined by

fW(q, p) = (2π�)−1
∫

dz exp

(

ipz

�

)

〈

q − z

2
|ρ|q + z

2

〉

,

(1)

where |q + z/2 > is a translated ket in coordinate repre-
sentation which is solution of the traditional Schrödinger
equation. It satisfies the equation of motion

i�∂tfW (q, p, t) = {HW, fW }M, (2)

where HW is the Weyl transform of the Hamiltonian
operator. It is related to H by means the expression
HW(q, p) = ∫

dz〈q − z/2|H(q, p)|q + z/2〉. Here,
{a, b}M = a � b − b � a is the Moyal bracket, such that the
star operator [27] is given by

� ≡ e
i��

2

with � = ←−
∂ q

−→
∂ p − ←−

∂ p
−→
∂ q . The functions a(q, p) are

defined in a manifold �, using the basis (q, p) with the
physical content of the phase space. In this formalism,
an operator, say A, defined in the Hilbert space H, is
represented by the function

A(q, p) =
∫

dz exp

(

ipz

�

)

〈

q − z

2
|A|q + z

2

〉

,

such that the product of two operators, AB, reads

(AB)(q, p) = A(q, p)e
i��

2 B(q, p) = A(q, p) � B(q, p).

The average of the operator A in a state ψ ∈ H is given by

〈A〉 = 〈ψ |A|ψ〉 =
∫

dqdpA(q, p)fW (q, p) = T rρA.

Now, we proceed in order to introduce the symplectic
representation of quantum mechanics in phase space. First,
we introduce a Hilbert space associated to the phase space
�, by considering the set of function φ(q, p) in �, such that
∫

dpdqψ∗(q, p)ψ(q, p) < ∞

is a bilinear real form. This Hilbert space is denoted by
H(�). Unitary mappings, U(α), in H(�) are naturally
introduced by using the star product, i.e.,

U(α) = exp(α̂A),
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where

̂A = A(q, p)� = A(q, p) exp

[

i�

2

(←−
∂

∂q

−→
∂

∂p
−

←−
∂

∂p

−→
∂

∂q

)]

= A

(

q + i�

2
∂p, p − i�

2
∂p

)

. (3)

Let us consider some examples. For the basic functions q

and p (3-dimensional Euclidian vectors), we have

q̂i = qi� = qi + i�

2
∂pi

, (4)

p̂i = pi� = pi − i�

2
∂qi

, (5)

where i = 1, 2, 3. These operators satisfy the Heisenberg
relations

[

q̂j , p̂l

] = i�δjl . Then we introduce a Galilei
boost by defining the boost generator ̂ki = mqi � −tpi� =
mq̂i − t p̂i , retirar i = 1, 2, 3, such that

exp
(−iv ·̂k/�

)

q̂j exp
(

iv ·̂k/�
) = q̂j + vj t,

exp
(−iv ·̂k/�

)

p̂j exp
(

iv ·̂k/�
) = p̂j + mvj .

These results, with the commutation relations, show that q̂

and p̂ are physically the position and momentum operators,
respectively.

We introduce the operators Q and P , such that [Q, P ] =
0, Q|q, p〉 = q|q, p〉 and P |q, p〉 = p|q, p〉, with

〈q, p|q ′, p′〉 = δ(q − q ′)δ(p − p′),

and
∫

dqdp|q, p〉〈q, p| = 1. From a physical point of view,
we observe the transformation rules:

exp

(

−iv
̂k

�

)

2Q exp

(

iv
̂k

�

)

= 2Q + vt1,

and

exp

(

−iv
̂k

�

)

2P exp

(

iv
̂k

�

)

= 2P + mv1.

Then Q and P are transformed, under the Galilei boost,
as position and momentum, respectively. Therefore, the
manifold defined by the set of eigenvalues (q, p) has the
content of a phase space. However, the operators Q and P

are not observables, since they commute with each other.
Considering a homogeneous systems satisfying the

Galilei symmetry, the commutations relation between ̂k and
̂H is [̂kj , ̂H ] = i ̂Pj . Explicitly, we have
[

mqj + i�
∂

∂pj

, H(q, p)�

]

= ipj + �

2

∂

∂qj

.

A solution, providing a general form to ̂H = H(q, p)�, is

̂H = p2�

2m
+ V (q) �

= p2

2m
− �

2

8m

∂2

∂q2
− i�p

2m

∂

∂q
+ V (q�). (6)

This is the Hamiltonian of a one-body system in an external
field.

Consider the time evolution of a state ψ(q, p; t), that
is given by ψ(q, p; t) = U(t, t0)ψ(q, p; t0), where
U(t, t0) = exp(−i�(t − t0) ̂H). This result leads to a
Schrödinger-like equation written in phase space, i.e., [61]

i�∂tψ(q, p, t) = ̂Hψ(q, p, t) (7)

Now, physical meaning of the state ψ(q, p, t) has to be
identified. This is done by associating ψ(q, p, t) with the
Wigner function. From (7), one can prove that g(q, p) =
ψ(q, p, t)�ψ†(q, p, t) satisfies (2) [61, 62, 65]. In addition,
using the associative property of the Moyal product and the
relation
∫

dqdpψ(q, p, t)�ψ†(q, p, t) =
∫

dqdpψ(q, p, t)ψ†(q, p, t),

we have

〈A〉 = 〈ψ |A|ψ〉
=

∫

dqdpψ(q, p, t)̂A(q, p)ψ†(q, p, t)

=
∫

dqdpfW(q, p, t)A(q, p, t),

where ̂A(q, p) = A(q, p)� is an observable. Thus, the
Wigner function can be calculated by using

fW(q, p) = ψ(q, p) � ψ†(q, p). (8)

It is to be noted also that the eigenvalue equation,

H(q, p) � ψ = Eψ, (9)

results in H(q, p) � fW = EfW . Therefore, ψ(q, p)

and fW(q, p) satisfy the same differential equation. These
results show that (7) is a fundamental starting point for
the description of quantum physics in phase space, fully
compatible with the Wigner formalism.

3 Coupled Oscilators in Phase Space

In this section, we consider two coupled harmonic
oscillators defined by the Hamiltonian

H = p2
1

2m
+ p2

2

2m
+ 1

2
mω2(x2

1 + x2
2) − ξ

4
(x1 − x2)

2. (10)

This system describes, for instance, a Helium-like system
such that the electron-nuclei interaction is replaced by
Hooke-like forces [22, 23, 71, 72]. This is a crude
approximation, although providing good enough spectrum
of energy. Then, we use the Schrödinger equation in phase



718 Braz J Phys (2019) 49:715–725

space to obtain the Wigner function for such a system. Using
the variables,

u = x1 + x2√
2

,

v = x1 − x2√
2

,

pu = p1 + p2√
2

,

pv = p1 − p2√
2

,

Equation (10) is written as

H = p2
u

2m
+ mω2u2 + p2

v

2m
+ (1 − ξ)

2
mω2v2. (11)

It is convenient to write H = Hu + Hv , where

Hu = p2
u

2m
+ mω2u2,

and

Hv = p2
v

2m
+ (1 − ξ)

2
mω2v2.

The time-independent Schrödinger equation in phase
space is written as

H � ψ(u, v, pu, pv) = Eψ(u, v, pu, pv). (12)

In order to solve this equation, we take

ψ(u, v, pu, pv) = ϕ(u, pu)χ(v, pv),

and

E = Eu + Ev .

It is important to consider the relations,

u� = u + i�

2

∂

∂pu

,

pu� = pu − i�

2

∂

∂u
,

v� = v + i�

2

∂

∂pv

,

pv� = pv − i�

2

∂

∂v
,

which are obtained from the star product in (3). In this
sense, the resulting equations are solved by starting from the
equation for the coordinates u and pu, i.e.,
(

p2
u�

2m
+ mω2u2�

)

ϕn = Euϕn. (13)

Writing

Hu� = mω2

2

(

u � + i

mω
pu�

) (

u � − i

mω
pu�

)

−�ω, (14)

we then introduce the operators

au� =
√

mω

2�

(

u � + i

mω
pu�

)

, (15)

a†
u� =

√

mω

2�

(

u � − i

mω
pu�

)

, (16)

satisfying the relations,

[au�, a
†
u�] = 1,

au � ϕn ∝ ϕn−1,

a†
u � ϕn ∝ ϕn+1,

where n = 0, 1, 2, . . ., and au � ϕ0 = 0.
The Hamiltonian given in (14) is then written as

Hu� = �ω

(

a†
u � au � +1

2

)

. (17)

In this way, we have
√

mω

2�

(

u � + i

mω
pu�

)

ϕ0 = 0. (18)

Substituting u� = u + i�
2

∂
∂pu

and pu� = pu − i�
2

∂
∂u

in (18)
we obtain
√

mω

2�

[

u + i�

2

∂

∂pu

+ i

mω

(

pu − i�

2

∂

∂u

)]

ϕ0 = 0. (19)

Separating the real and imaginary part of (19), and
considering ϕ0(u, pu) = ϕa

0 (u)ϕb
0 (pu), we can show that

real part satisfies the differential equation

uϕ0 + �

2mω

∂ϕa
0

∂u
= 0, (20)

with a solution given by

ϕa
0 (u) = exp

(

−mω

�
u2

)

. (21)

For the imaginary part, we have

�

2

∂ϕ0

∂pu

+ pu

mω
ϕb

0 = 0, (22)

with the solution

ϕb
0 (pu) = exp

(

− 1

�mω
p2

u

)

. (23)

Then, we get

ϕ0(u, pu) ∼ exp

(

−mω

�
u2 − 1

�mω
p2

u

)

. (24)

Similarly, the solution of the equation for χ is obtained,
i.e.,
(

p2
v�

2m
+ (1 − ξ)

2
mω2v2�

)

χn = Evχn. (25)
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This leads to

Hv� = (1 − ξmω2)

2

(

v � + i

mω(1 − ξ)1/2
pv�

)

×
(

v � − i

mω(1 − ξ)1/2
pv�

)

− �ω

2
(1 − ξ)1/2.

(26)

Then, we define

av� =
√

mω(1 − ξ)

2�

(

v � + i

mω(1 − ξ)1/2
pv�

)

, (27)

and

a†
v� =

√

mω(1 − ξ)

2�

(

v � − i

mω(1 − ξ)1/2
pv�

)

. (28)

These operators satisfy the relations,

[av�, a
†
v�] = 1,

av � χn ∝ χn−1,

a†
v � χn ∝ χn+1,

where n = 0, 1, 2, . . ..
The operator given in (26) has the form

Hv� = �ω

(

a†
v � av � − (1 − ξ)1/2

2

)

. (29)

We can show that av � χ0 = 0, such that
√

mω(1 − ξ)

2�

(

v � + i

mω(1 − ξ)1/2
pv�

)

χ0 = 0. (30)

Substituting v� = v + i�
2

∂
∂pv

and pv� = pv − i�
2

∂
∂v

in
(30), we obtain

√

mω(1 − ξ)

2�
[

v+ i�

2

∂

∂pv

+ i

mω(1−ξ)1/2

(

pv− i�

2

∂

∂v

)]

χ0 =0. (31)

Separating the real and imaginary part of (31), and
considering χ0(u, pu) = χa

0 (v)ϕb
0 (pv), we can show that

real part satisfies the differential equation

vχa
0 + �

2mω(1 − ξ)1/2

∂χa
0

∂v
= 0, (32)

with a solution given by

χa
0 (v) = exp

(

−mω(1 − ξ)1/2

�
v2

)

. (33)

For the imaginary part, we have

�

2

∂χ0

∂pv

+ pv

mω(1 − ξ)1/2
χb

0 = 0, (34)

with the solution

χb
0 (pv) = exp

(

− 1

�mω(1 − ξ)1/2
p2

v

)

. (35)

Then, we get

χ0(v, pv)∼exp

(

−mω(1−ξ)1/2

�
u2− 1

�mω(1−ξ)1/2
p2

u

)

.

(36)

Therefore, the zero order solution of the Schrödinger
equation is

ψ0(u, v, pu, pv) = 2

π�
exp

(

−mω

�
[u2 + (1 − ξ)1/2v2]

)

× exp

(

− 1

mω�
[p2

u + (1−ξ)−1/2p2
v]

)

,

where we have used the normalization condition
∫

dudvdpudpvψ
†
n(u, v, pu, pv) � ψn(u, v, pu, pv) = 1.

To obtain higher order wave functions, we use the
relation

ψn(u, v, pu, pv) = (a†
u � a†

v�)
nψ0(u, v, pu, pv). (37)

The Wigner function is found from

f
(n)
W (u, v, pu, pv) = ψn(u, v, pu, pv) � ψ†

n(u, v, pu, pv).

In particular for n = 0, we obtain

f
(0)
W (q1, q2, p1, p2) =

(

2

π�

)

exp

(

−mω

�

(x1 + x2)
2

2

)

× exp

(

−mω

�
(1 − ξ)1/2 (x1 − x2)

2

2

)

× exp

(

− 1

mω�

(p1 + p2)
2

2

)

× exp

(

− 1

mω�
(1 − ξ)−1/2 (p1 − p2)

2

2

)

.

Hence, the energy of the fundamental state is given by
E0 = �ω(1 − ξ

4 ).
These results are interesting in a double sense. First,

we have calculated analytically the Wigner function
for Helium-like atom. Second, the Wigner function has
many applications, among them one stands out: quantum
computing. So, such a procedure to study the Wigner
function for Helium-like atom opens up new possibilities for
analyzing entanglement. In this context, in experiments, the
dissipation due to the effect of external fields, is a crucial
factor. In the next section, in order to consider the Helium
atom in a non-conservative external field, we add to the
Hooke-like force, a linear dissipation.

4 Damped QuantumOscillator in Phase
Space

In order to analyze dissipation effect of neighborhood,
here, we solve the Schrödinger equation in phase space for
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Hooke-like system with a damped interaction. This stands
for the Helium atom in a dissipative field. We consider
a one-dimensional system, where the Hamiltonian with a
dissipative term is (see a different treatment for such a
model in Refs [10, 11])

̂H = 1

2

(

̂P 2 + ̂Q2
)

− λ

2

(

̂Q̂P + ̂P ̂Q
)

, (38)

where λ < 1.
Using the operators given in (4) and (5) with � = 1,

̂Q = q + i

2
∂p, (39)

and

̂P = p − i

2
∂q, (40)

Equation (38) becomes

̂H = 1

2

(

p2 + q2 − ip∂q + iq∂p − 1

4
∂2
q − 1

4
∂2
p

)

−λ

2

(

2qp − iq∂q + ip∂p + 1

2
∂q∂p

)

.

Applying this Hamiltonian in the eigenvalue equation
̂Hψ(q, p) = Eψ(q, p), we obtain

(p2 + q2)ψ(q, p) − 1

4
∂2
qψ(q, p) − 1

4
∂2
pψ(q, p)

−λ

2
∂q∂pψ(q, p) − 2λqpψ(q, p) − 2Eψ(q, p) = 0.

Introducing the new variable

z = 1

2
(p2 + q2) − λqp, (41)

we obtain

1

2
(λ2 −1)z∂2

z ψ(z)+ 1

2
(λ2 −1)∂zψ(z)+2(z−E)ψ(z) = 0.

(42)

Taking a = 1
2 (1 − λ2) and using the ansatz

ψ(z) = e
− z√

a/2 ω(z), (43)

we have, after the changing of variables y = 2
√

2
a
z, the

following expression

y∂2
yω(y) + (1 − y)∂yω(y) −

[

1

2
− E/2√

a/2

]

ω(y) = 0. (44)

The solution of (44) is given by the Kummer function (a
confluent hypergeometric function, i.e.),

ω(z) = F

(

1

2
− E/2√

a/2
; 1; 2

√

2

a
z

)

. (45)

In this way, we have the solution

ψ(z) = e
z 1√

a/2 F

(

1

2
− E/2√

a/2
; 1; 2

√

2

a
z

)

, (46)

where z is given in (41). The confluent hypergeometric
function condition is such that

1

2
− E/2√

a/2
= −n,

where n ∈ Z. This relation gives

En = (1 − λ2)1/2
[

n + 1

2

]

. (47)

Note that if λ = 0, we obtain the result En = (n + 1/2).
The Wigner function can be calculated by

fW(q, p, t) = ψ � ψ∗. (48)

In this case, we calculate the Wigner functions given in
(48) using a MAPLE routine. The behavior of the stationary
Wigner function for λ = 0.1 is shown in Figs. 1, 2, 3, and 4
and for λ = 0.9 are shown in Fig. 5, 6, 7, and 8.

A measure of non-classicality of quantum states is
defined on the volume of the negative part of Wigner
function, which may be interpreted as a signature of
quantum interference. In this sense, the non-classicality
(negativity) indicator is given by [70]

η(ψ) =
∫ ∫

[|fW(q, p)| − fW(q, p)]dqdq

=
∫ ∫

|fW(q, p)|dqdq − 1. (49)

This indicator represents the doubled volume of the
integrated part of the Wigner function. In sequence, we
calculated numerically this indicator for damped oscillator.
The results of this calculation are shown in Tables 1 and 2
below. We note that parameter η(ψ) depends of the damped
constant λ.

In Fig. 9, the dependence of non-classicality indicator
η(ψ) as a function of the order n of the Wigner function for
damped oscillator for case λ = 0.9 is plotted.

Fig. 1 Wigner function, n = 0, λ = 0.1
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Fig. 2 Wigner function, n = 1, λ = 0.1

5 Non-linear Pendulum in Phase Space

The Hamiltonian for a non-linear pendulum is given by

̂H =
̂L2

8ml2
+ mgl(1 − cos (2̂θ), (50)

leading to the steady Schroedinger equation

̂Hψ(L, θ) = Eψ(Lθ). (51)

Using the operators

̂θ = θ + i�

2

∂

∂L
, (52)

Fig. 3 Wigner function, n = 5, λ = 0.1

Fig. 4 Wigner function, n = 10, λ = 0.1

and

̂L = L − i�

2

∂

∂θ
, (53)

that satisfy

[̂θ, ̂L] = i�,

Equation (51) is written as

1

8ml2

(

L2 − i�
∂

∂θ
− �

2

4

∂2

∂θ2

)

ψ

+mgl

(

1 − cos

(

2θ + i�
∂

∂L

))

ψ = Eψ . (54)

Fig. 5 Wigner function, n = 0, λ = 0.9
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Fig. 6 Wigner function, n = 1, λ = 0.9

Using the relation cos(a + b) = cos a cos b − sin a sin b, we
obtain

(

L2 − i�
∂

∂θ
− �

2

4

∂2

∂θ2

)

ψ + 8m2gl3
(

1 − cos 2θ cos

(

i�
∂

∂θ

)

+ sin 2θ sin

(

i�
∂

∂θ

))

ψ = 8m2gl3ψ . (55)

Fig. 7 Wigner function, n = 5, λ = 0.9

Fig. 8 Wigner function, n = 10, λ = 0.9

Using the expansion of cos
(

i� ∂
∂θ

)

and sin
(

i� ∂
∂θ

)

up to the
second order in �, (55) reads

−4�2m2gl3 cos 2θ
∂2ψ

∂L2
− �

2

4

∂2ψ

∂θ2
+8im2g�l3 sin 2θ

∂ψ

∂L

−i�L
∂ψ

∂θ
+(L2 + 8m2gl3−8m2gl3 cos 2θ−8ml2E)ψ = 0.

(56)

Taking λ = L
�

, �
2

m2gl3
= a2 and E

mgl
= ε, (56) assumes the

form

−4 cos 2θ
∂2ψ

∂λ2
− a2

4

∂2ψ

∂θ2
+ 8i sin 2θ

∂ψ

∂λ
− iλa2 ∂ψ

∂θ

+(λ2a2 + 8 − 8 cos 2θ − 8ε)ψ = 0. (57)

Table 1 The non-classicality indicator as a function of the order of the
Wigner function, the parameter n, for λ = 0.9

n η(ψ), λ = 0.9

0 0

1 0.4261226344263795

2 0.7289892587057898

3 0.9766730799293403

4 1.1913424288065964

5 1.3834384856692004

6 1.5588521972493026

7 1.7212933835545317

8 1.873265816082318

9 2.016572434609475
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Table 2 The non-classicality indicator as a function of the order of the
Wigner function, the parameter n, for λ = 0.1

n η(ψ), λ = 0.1

0 0

1 0.5367235498765983

2 0.8298745655538895

3 0.9957478374530056

4 1.21045749693345208

5 1.45987546307934771

6 1.62345098621689579

7 1.77980374568037570

8 1.95688276504037623

9 2.13987564392078583

We analyze (57) to particular values of λ. To λ constant (57)
becomes

−a2

4

∂2ψ

∂θ2
−iλa2 ∂ψ

∂θ
+(λ2a2+8−8 cos 2θ−8ε)ψ = 0. (58)

This equation has a solution in the following general form,

ψ(θ) = C1 cos(2θ)C(a, b, θ) + C2 cos(2θ)S(a, b, x), (59)

where C1, C2, a, b are constant parameters, and C(a, b, θ),
and S(a, b, θ) are Mathieu functions. The behavior of

Fig. 9 The non-classicality indicator versus quantum number for
damped oscillator n ≤ 25

Fig. 10 ψ(θ) for ε = 1

solutions given in (59) for constant values of the angular
momentum λ = 1 and different energies ε are presented in
Figures below.

From Figs. 10, 11, and 12, the behavior of non-linear
pendulum in phase space for constant angular momentum is
periodic and positive. We notice also that with the increase
of energy, the oscillation frequency becomes smaller.

Fig. 11 ψ(θ) for ε = 5
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Fig. 12 ψ(θ) for ε = 10

6 Concluding Remarks

In this work, the Wigner function for the Helium-like atom
is calculated in the approximation of two-harmonic oscil-
lators, considering also dissipation. Regarding the value of
energy, this approximation has provided satisfactory results
with the experiments [22, 23, 71]. Here, we have con-
sidered the statistical nature of such quantum states, by
analyzing the non-classicality through the Wigner function.
We have proceeded by formulating the problem with the
Schrödinger equation in phase space, such that the state,
called a quasi-amplitude of probability, is associated with
the Wigner function by the Moyal product. In this context,
we study a damped as well as a non-linear oscillator in phase
space. Using Wigner functions, a non-classicality indicator
is calculated as a function of the dissipation parameter. In
addition the quasi-amplitude for the non-linear oscillator is
positive defined [73, 74].

Data Availability No experimental data were used in this
article.

Funding Information This work was partially supported by CNPq of
Brazil.
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