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Abstract
The nonlinear propagation of dust acoustic waves with dust charge fluctuation in presence of superthermal (kappa) electrons
and ions has been investigated. Reductive perturbation technique along with space-time stretched coordinates is used
to transform the basic nonlinear partial differential equations to a modified Korteweg-de-Vries equation. The modified
Korteweg-de-Vries equation governs the dynamics of the small amplitude solitary waves in a superthermal dusty plasma.
It is observed that the presence of kappa distributed electrons and ions significantly change the amplitude of solitons in
an inhomogeneous environment. The present investigations may be useful to understand the nonlinear propagation of dust
acoustic solitary waves in laboratory and space plasma.

Keywords Dust acoustic solitary waves · Superthermal plasma · Dust charge fluctuation · Reductive perturbation technique

1 Introduction

A number of research works [1–6] have been done in
literature on linear and nonlinear dust acoustic (DA) waves
since its first prediction by Rao et al. [7] in unmagnetized
plasma. The restoring force for the propagation of DA
mode comes from the pressure of inertialess electrons/ions,
and inertia is provided by the charged dust. Therefore, the
phase speed of these waves is much lower than the ion and
electron thermal speeds [8, 9]. In nonlinear regime, these
waves can give rise to the formation of both compressive
and rarefactive solitons. Ergun et al. [10] argued that such
type of nonlinear structures play a key role in supporting
parallel electric fields in the downward current region of
the auroral zone. The Viking spacecraft and Freja satellite
data indicated the presence of electrostatic solitary waves in
the magnetic ionosphere. Each solitary wave has a definite
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velocity depending on the magnitude of the amplitude. The
presence of stationary dust component gives rise to a new
type of wave mode, known as the dust ion acoustic (DIA)
mode. The phase velocity of this mode lies in between the
ion and electron thermal velocities [11]. Dust ion acoustic
solitary and shock waves also received a great deal of
attention in plasma community. The static dust grains give
rise to DIA waves whereas the DA waves arise as a result
of mobile dust [12]. The DIA wave is the modified form of
ion acoustic (IA) in the presence of static dust [13, 14]. The
dust particles have different grain sizes; however, as a first
approximation, the radius is assumed to be constant [15].
The interaction of electrons and ions with the dust particles
makes them charged (positive or negative) by the method of
either photoemission or by secondary electron emission. In
many theoretical investigations, the dust charge is assumed
to be constant for simplicity; however, in different realistic
situations, the dust charge varies. The charge variation
depends of parameters such as the electrostatic plasma
potential and the number densities of electrons and ions,
and in response affects the collective behavior of the plasma
[6]. Thus, the effect of dust charge variation is important in
understanding the nonlinear wave propagation.

Inhomogeneity is observed in most of the astrophysical
as well as in laboratory plasmas having considerable effects
on plasma dynamics. The inhomogeneity may arise in
density, temperature, or in magnetic field [16, 17]. In dusty
plasma, this inhomogeneity actively changes the DA wave
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amplitude [18]. Zakir et al. [19] studied the DA drift waves
and nonlinear structures in an inhomogeneous dusty plasma
with dust charge fluctuation. Recently, Googi and Deka
[20] found that inhomogeneity parameters have meaningful
influence on the propagation of DA solitary waves.

Generally, the linear and nonlinear dynamics of DA
waves have been studied using Boltzmann distributed
plasma species. But observations in space plasma environ-
ment confirmed the presence of electrons and ions which are
not in thermal equilibrium. These energetic particles have
revealed the fact that they are extremely nonthermal. This
causes a deviation from Boltzmann distribution, the exis-
tence of such particles has been observed at high altitudes,
in the solar wind and in several space plasmas [21]. An
achievement in this case is the introduction and develop-
ment of non-Maxwellian distribution form [22], generally
modeled as the κ-distribution function. The kappa distribu-
tion is suitable for superthermal systems, e.g., high-energy
particles found in solar atmosphere and Saturn’s magneto-
sphere, etc. These observations have also been confirmed in
the Vela satellite mission. This function was first used by
Vasyliunas [23] which incorporates the superthermal parti-
cles, while Maxwellian in the limit κ → ∞ is considered as
a special case of the κ-distribution. The factor κ denotes the
degree of superthermality having its lower and upper limits
such that 2 < κ < 6. In recent years, this distribution has
been extensively applied by a number of authors to various
types of space and laboratory plasmas in linear as well as
in nonlinear limits [24–26]. Han et al. [27] have studied the
superthermality effect on electron acoustic solitary/shock
waves in dissipative medium and they showed that the char-
acteristics of these waves considerably modify with these
effects. Knowing the importance of kappa distribution, we
have been motivated to study this effect on nonlinear DA
waves in an inhomogeneous dusty plasma through charging
process.

In this paper, we derive the Korteweg-de-Vries (KdV)-
like equation by using the reductive perturbation technique
in the presence of kappa distributed ions and electrons with
dust charge fluctuation effect. We discuss that the charging
processes are affected by the kappa distribution of electrons
and ions. As a result, the amplitude of the DA solitary wave
varies by these supertherrmal effects in an inhomogeneous
dusty plasma. The manuscript is organized as follows:
in Section 1, we introduce the dust acoustic nonlinear
solitary waves, its applications, and the superthermal kappa
distribution. Section 2 presents the basic model equations
for these nonlinear waves, with the effect of negative
dust charge fluctuations. Section 3 gives the derivation of
the modified KdV equations. A solution to the modified
KdV equation and discussion of the numerical results are
presented in Section 4. Finally, concluding remarks are
written in Section 5.

2Model Equations

Consider a collisionless, unmagnetized, inhomogeneous
dusty plasma having density gradients along the negative
x-direction. To study the dust acoustic solitary waves, the
negatively charged dust grains are considered dynamic
while electrons and ions are assumed inertialess to follow
the superthermal (kappa) distribution. It is also assumed that
the dust grains have charge fluctuations. The conventional
isotropic, three-dimensional form of the kappa distribution
function can be written as

Fκ(v) = Aκ

(
1 + v2j

κθ2j

)−(κ+1)

, (1)

in which κ is the spectral index.

Aκ = nj0

(πκθ2j )3/2

�(κ + 1)

�(κ − 1/2)
. (2)

The term θj in (1) represents the most probable (effective
thermal) speed particles and is defined as

θj =
[
(κ − 3/2)

κ

kBTj

mj

]1/2
,

where Tj is the associated Maxwellian temperature of
plasma species. Here, nj0 stands for the plasma number
density and � is the usual gamma function, v2 = v2x + v2y +
v2z denotes the three-dimensional square norm of velocity.
Following the approach used by Shukla and Mamun [28],
Rubab and Murtaza [29], Mishra et al. [30], Jana [31], and
Taibany [32], the induced charge fluctuation relation forZd1

can be written as

∂tZd1 = Ie1 + Ii1 = Is1, (3)

where Ii1 is the perturbed electron and ion currents. Is1 is
the current which flows on the dust surface given by

Ij =
∑
j

∫
ej vjσ

d
j F (κ)d3vj , (4)

σd
j is the charging cross section of dust grain surface defined

by

σd
j = πa2d

(
1 − 2qjφd

mjv
2
j

)
,

here, φd is the dust surface potential relative to the plasma
potential. For the dynamics of the DA solitary waves, we
use the following set of normalized equations:

∂nd

∂t
+ ∂

∂x
(ndud) = 0, (5)

∂ud

∂t
+ ud

∂ud

∂x
+ e

∂φ

∂x
= 0, (6)
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ne =
[
1 − eφ

(κe − 3/2)Te

]−κe+1/2

, (7)

ni =
[
1 + eφ

(κi − 3/2)Ti

]−κi+1/2

, (8)

∂2φ

∂x2
− (μne − Zdnd − δni) = 0. (9)

In the above set of equations, nd denotes the dust grain
density normalized by the unperturbed dust number density
nd0, vd is the dust fluid velocity, which is normalized by the
dust acoustic speed Cd = (ZdTi/md)1/2 and md represents
the mass of the dust particles. The electrostatic potential
is being normalized by e/Te. At equilibrium, we can write
the charge neutrality condition as μ = ni0/Zd0nd0 =
1 + δ = 1 + ne0/Zd0nd0. Zd0 is the charged dust state,
i.e., number of electrons(ions) residing on the dust grain
surface. The kappa distributed electron and ion currents in
the unperturbed environment are obtained by using (1) in
(4), as

I κ
e0 = −2

√
πea2dθene0

1

κ3/2

�(κ + 1)

�(κ − 1/2)

× κ

(κ − 1)

[
1 + 2eφd0

κmeθ2e

]−(κ+1)

, (10)

I κ
i0 = 2

√
πea2dθini0

1

κ3/2

�(κ + 1)

�(κ − 1/2)

× κ

(κ − 1)

[
1 − 2e(κ − 1)φd0

κmiθ
2
i

]−(κ+1)

. (11)

Here, in these equations, a is the radius of the spherical dust
grain. If 2eφd0/κmeθ

2
e,i < 1, the above two expressions can

be simplified as

I κ
e0 = −2

√
πea2dθene0

1

κ3/2

�(κ + 1)

�(κ − 1/2)

κ

(κ − 1)

(
1 + ακ

e

eφd0

Te

)
,

(12)

and

I κ
i0=2

√
πea2dθini0

1

κ3/2

�(κ + 1)

�(κ−1/2)

κ

(κ−1)

(
1−ακ

i

eφd0

Te

)
,

(13)

where ακ
e = (κ − 1)/(κ − 3/2) and ακ

i = τακ
e with τ =

Te/Ti . Using first-order perturbation analysis φd = Qd/ad,

the electron/ion currents, in a more compact form, can be
expressed as

I κ
e1 = −|I κ

e0|
[

ne1

ne0
+ ακ

e eφd(
Te + ακ

e eφd0
)
]

, (14)

and

I κ
i1 = −|I κ

i0|
[

ακ
i eφd1(

Te − ακ
i eφd

) − ni1

ni0

]
, (15)

where n
i1 and ne1 represent the perturbed densities of

electrons and ions, respectively.

3 ThemKdV Equation

For the dynamical evaluation of the small amplitude
electrostatic dust acoustic perturbation, we use the reductive
perturbation technique (RPT). The RPT is mostly applied
to small amplitude nonlinear waves. This method rescales
both space and time in the governing equations of the
system in order to introduce space and time variables,
which are appropriate for the description of long wavelength
phenomena. In order to obtain the KdV equation for
the present model, we follow the procedure used by
Washimi and Taniuti (1973) [33] and choose the stretched
coordinates as

ξ = ε
1
2

(
x

λ0
− t

)
, τ = ε

3
2 x, (16)

where ε is a small (positive) parameter, which measures
the weakness of the amplitude, and λ0 is the phase velocity
mode of the wave. One can then expand the variables nd ,
ud , φ, and Zd about the unperturbed states in power series
of ε as

nd = n
(0)
d + εn

(1)
d + ε2n

(2)
d + . . .,

ud = εu
(1)
d + ε2u

(2)
d + . . .,

φ = εφ(1) + ε2φ(2) + . . .,

Zd = Z
(0)
d + εZ

(1)
d + ε2Z

(2)
d + . . ..

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(17)

These expansions develop a number of equations in various
powers of ε. In homogenous plasma, λ0 is considered as a
function of the slow variable τ , due to which inhomogeneity
arises. Using (7) and (8) together with (16) and (17), the
models (5), (6), and (9) become

−∂nd

∂ξ
+ 1

λ0

∂

∂ξ
(ndud) + ε

∂

∂τ
(ndud) = 0, (18)

−∂ud

∂ξ
+ ud

λ0

∂ud

∂ξ
+ εud

∂ud

∂τ
+ Zd

λ0

∂φ

∂ξ
+ εZd

∂φ

∂τ
= 0, (19)

ε

λ20

∂2φ

∂ξ2
+ 2ε2

λ0

∂2φ

∂ξ∂τ
+ ε3

∂2φ

∂τ 2
− ε2

λ20

∂λ0

∂τ

∂φ

∂ξ

−μακ
e eφ + Zdnd + δακ

i e−φ = 0. (20)
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Together with the help of boundary conditions such that
n

(1)
d , u

(1)
d , λ0 → 0 as ξ → ∞, the lowest power of ε

produces

u
(1)
d = Z

(0)
d

λ0
φ(1), (21)

n
(1)
d = ακ

e (σi + 1)

Z
(0)
d

φ(1), (22)

and

λ0 = Zd

√
S,

S = n
(0)
d(

ακ
e μσin

(0)
e + ακ

i δn
(0)
i

) . (23)

To next higher order in ε, we obtain a set of equations viz.

−∂n
(2)
d

∂ξ
+ n

(0)
d

λ0

∂n
(2)
d

∂ ξ
+ 1

λ0

∂
(
n

(1)
d u

(1)
d

)
∂ ξ

+
∂

(
n

(1)
d u

(1)
d

)
∂τ

=0

(24)

−∂u
(2)
d

∂t
+ Z

(0)
d

λ0

∂φ(2)

∂ ξ
+ u

(1)
d

λ0

∂u
(1)
d

∂ ξ
+ Z

(0)
d

∂φ(1)

∂τ
= 0 (25)

1

λ20

∂2φ(1)

∂ ξ2
− αk

e (σi + 1)φ(2) + Z
(0)
d n

(2)
d = 0. (26)

Differentiating (26) with respect to ξ , we can write

1

λ20

∂3φ(1)

∂ ξ3
− αk

e (σi + 1)
∂φ(2)

∂ ξ
+ Z

(0)
d

∂n
(2)
d

∂ ξ
= 0.

Combining (24), (25), and (27), and ignoring the second-
order perturbed quantities, one can readily obtain the
nonlinear partial differential equation as

∂φ(1)

∂τ
+ Aφ(1) ∂φ(1)

∂ξ
+ B

∂3φ(1)

∂ξ3
+ C

∂n
(1)
d

∂τ
φ(1) = 0. (27)

This is a type of KdV equation with the coefficients

A = 3

2λ20S
1/2

,

B = Z
(0)
d S3/2

2n(0)
d λ40

,

and

C = Z
(0)
d

2(ne0 − ni0)
.

Equation (27) is a modified Korteweg-de-Vries equation
having the effect of superthermal plasma particles. The non-
linear coefficients A and B depend on the inhomogeneity
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Fig. 1 (Color online) Dependence of phase velocity λ0 on dust density n
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d and σi for n
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Fig. 4 (color online) Variation
of soliton amplitude ψm against
n

(0)
d for different values of n

(0)
i

(= 0.05, 0.10, 0.15) with
σi = 0.06, κ = 2, n(0)

e = 1 and
Z
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and dust charge fluctuation. In the following section, we
present the solution and numerical discussion of the modi-
fied KdV equation.

4 Solution of mKdV-Like Equation
and Discussion

Using the transformation φ(1) = ψexp(−Cn
(0)
d ) in (27), one

can get the following well-known KdV equation:

∂ψ

∂τ
+ A∗ ∂ψ

∂ξ
+ B

∂3φ(1)

∂ξ3
= 0, (28)

with A∗ = Aexp(−Cn
(0)
d ) . To solve (28), we assume the

new variable η which depends on ξ and τ such that η =
ξ − λt , here, λ is the frame velocity. Finally, we obtain a
solution of the form

ψ = φ(1)
m sech2

[
η

�s

]
.

The above equation reveals small amplitude waves either in
φ > 0 for A > 0 or for φ < 0 if A < 0. The amplitude φ

(1)
m

and the width �s are given by 3λ/A and �s = √
4B/λ.

In this study, we have discussed the nonlinear dust
acoustic waves in an inhomogeneous dusty plasma having

Fig. 5 (Color online) Variation
of soliton amplitude ψm against
n

(0)
d for different values of σi

(= 0.01, 0.05, 0.10) with
n

(0)
i = 0.10, κ = 2, n

(0)
e = 1,

and Z
(0)
d = 0.9

i
 = 0.01

i
 = 0.05

i
 = 0.10

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

2.5

3.0

nd 0

m



Braz J Phys (2019) 49:79–88 85

Fig. 6 (Color online) Variation
of soliton amplitude ψm against
n

(0)
d for different values of κ

(= 2, 3, 4) with
n

(0)
i = 0.3, σi = 0.6, n(0)

e = 1,

and Z
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d = 0.9
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the dust charge fluctuation effect. A modified version of
KdV equation by using the reductive perturbation technique
together with stretched variables for space and time is
obtained for kappa distributed ions and electrons. The
numerical results for the modified KdV equation show that
only refractive solitons can form. From Figs. 1, 2, and 3, we
show the dependency of the phase velocity on n

(0)
d , n(0)

i , and
σi . Figure 1 indicates the variation of phase velocity λ0 on
n

(0)
d and σi . It is clear that with increase in n

(0)
d , the phase

velocity increases. For the same case, a gradual decrease
is observed for higher value of σi . Figure 2 reflects the
dependency of phase velocity on electron density but in this

case, the variation is less compared to the effect of the dust
density.

Figure 3 shows that the phase velocity increases
smoothly with n

(0)
d and Z

(0)
d in superthermal environment.

The variation in amplitude ψm against n
(0)
d for different

values of n
(0)
i , n

(0)
e , σi , and spectral index κ are shown

in Figs. 4, 5, 6, and 7. It is clear from Fig. 4 that the
soliton amplitude decreases by increasing n

(0)
i . This change

in amplitude of the soliton is maximum for larger values of
n

(0)
i , where the dispersion of the soliton occurs. Figure 5

describes the effect of temperature ratio σi on the soliton
amplitude. We observe in our investigations that the change

Fig. 7 (Color online) Variation
of soliton amplitude ψm against
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e (= 1, 1.2, 1.3) with

n
(0)
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Fig. 8 (Color online) Variation
of soliton width �s against n(0)

d

for different values of n
(0)
i

(= 0.10, 0.15, 0.20) with
n

(0)
e = 1, κ = 2 and σi = 0.01,

and Z
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d = 1

ni
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o = 0.15
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in amplitude is the same as in Fig. 4 but this time the
shift is less compared to the dependency on n

(0)
i . In Figs. 6

and 7, the change in soliton amplitude is shown with respect
to spectral index κ and n

(0)
e . Here, the soliton amplitude

gets larger by increasing the superthermal spectral index
value κand the electron density n

(0)
e . This may be due to

the presence of large population of superthermal particles.
Similar effect is observed for inhomogeneity in electron
density. Further, the variation in soliton width �s against
n

(0)
d for different values of n

(0)
i , σi , and spectral index κ

are shown in Figs. 8, 9, and 10. In Figs. 8 and 9, we see
that the soliton width decreases by increasing the values
of ions density n

(0)
i and temperature ratio σi . This change

is reversed in the case of the spectral index κ . Our results
show that the change in the soliton width is drastic for
low dust density, while it becomes less for large dust
density. As the expressions for the coefficients A and B
given after (27) have the dust charging effect, so, we can
say that the charging effect is also strongly credited for
the modification of solitary wave profile in superthermal
environment. Furthermore, it is observed that the influence
of superthermality on the soliton width and amplitude
can play a vital role in forming and destabilizing the
DASWs in different space environments, namely, Earth’s
magnetosphere, interstellar and circumstellar clouds, etc.
[28, 34].

Fig. 9 (Color online) Variation
of soliton width �s against n
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for different values of σi
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Fig. 10 (Color online) Variation
of soliton width �s against n

(0)
d

for different values of κ

(= 2, 3, and 4) with
n
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5 Conclusion

In the present study, we addressed the propagation of non-
linear dust acoustic waves in unmagnetized inhomogeneous
dusty plasma with kappa distributed ions, electrons, and
negatively charged dust fluctuation. The standard reductive
perturbation method is employed to derive the mKdV equa-
tion from the basic governing equations which are used
to investigate the propagation of solitary wave structures.
In this case, the mKdV equation contains an additional
term showing the effect of non-Maxwellian plasma parti-
cle distribution. We also concluded that the presence of
this additional term changes the soliton profile, and these
changes are numerically investigated using different param-
eters such as density, temperature ratio, and superthermality
factor. Our investigations show that plasma inhomogene-
ity adversely modifies the solitary wave structures which
may be interesting in understanding the nonlinear soli-
tary structures. The present investigation can be helpful in
understanding the salient features of small amplitude elec-
trostatic wave structures [35–41] in space, e.g., in certain
heliospheric environments and laboratory plasma systems.
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