
Brazilian Journal of Physics (2018) 48:227–241
https://doi.org/10.1007/s13538-018-0567-7

GENERAL AND APPLIED PHYSICS

Bioconvection in Second Grade Nanofluid Flow Containing
Nanoparticles and Gyrotactic Microorganisms

Noor Saeed Khan1

Received: 29 October 2017 / Published online: 13 April 2018
© Sociedade Brasileira de Fı́sica 2018

Abstract
The bioconvection in steady second grade nanofluid thin film flow containing nanoparticles and gyrotactic microorganisms
is considered using passively controlled nanofluid model boundary conditions. A real-life system evolves under the flow
and various taxis. The study is initially proposed in the context of gyrotactic system, which is used as a key element for the
description of complex bioconvection patterns and dynamics in such systems. The governing partial differential equations
are transformed into a system of ordinary ones through the similarity variables and solved analytically via homotopy analysis
method (HAM). The solution is expressed through graphs and illustrated which show the influences of all the parameters.

Keywords Gravity-driven · Thin film · Second grade nanofluid · Bioconvection · Passively controlled nanofluid model ·
Gyrotactic microorganisms · Convective boundary conditions · Homotopy analysis method

1 Introduction

Bioconvection has many applications in biological systems
and biotechnology. It is defined as the pattern formation
in suspensions of microorganisms, such as bacteria and
algae, due to up-swimming of the microorganisms. These
microorganisms include gravitaxis, gyroitaxis, or oxytaxis
organisms. Convective heat transfer in the presence of
nanofluids and gyrotactic microorganisms is the major area
of research. According to this viewpoint regarding con-
vection, Turkyilmazoglu [1] analyzed the magnetohydro-
dynamic mixed convection flow and heat of a micropolar
fluid past a heated or cooled stretching permeable surface
in the presence of heat generation and absorption effects.
He found that a magneto-convection parameter controls the
magnetic and convection effects. Different features of the
bioconvection have been analyzed by many researchers.
Mabood et al. [2] presented the analytical modeling of free
convection of non-Newtonian nanofluids flow in porous
media with gyrotactic microorganisms using OHAM. Das
et al. [3] discussed the laminar MHD natural convection of
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nanofluid bioconvection in presence of gyrotactic microor-
ganisms and chemical reaction in porous medium. Ahmed
and Mahdy [4] analyzed the laminar MHD natural convec-
tion of nanofluid containing nanoparticles and gyrotactic
microorganisms over a vertical wavy surface saturated non-
Darcian porous medium. Sk et al. [5] explored the multiple
slip effects on bioconvection of nanofluid flow containing
microorganisms and nanoparticles. Xu and Pop [6] dis-
cussed the mixed convection flow of a nanofluid over a
stretching surface with uniform free stream in the presence
of both nanoparticles and gyrotactic microorganisms. Very
recently Khan et al. [7] reported the comparison of non-
Newtonian Casson and Williamson nanofluids flow con-
taining nanoparticles and gyrotactic microorganisms using
actively controlled nanofluid model boundary conditions.
Their results show that the bioconvective system under
consideration is dependent on gyrotactic microorganisms
concentration, and both the nanofluids have almost the same
behaviors for the effects of all the pertinent parameters
except the effect of Schmidt number on the microorganism
density function where the effect is opposite. Raees et al.
[8] presented the study of gravity-driven nano-biconvection
Newtonian thin liquid film containing nanoparticles and
gyrotactic microorganisms using both actively and passively
controlled nanofluid model boundary conditions. In terms of
nanofluids, bioconvection is highly valuable. Nanotecnol-
ogy has been widely used in many industrial applications.
Nanofluids were introduced by Choi [9] and are defined
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as colloidal solutions of nanosized solid particles in base
liquids. The particles are different from conventional parti-
cles (millimeter or microscale) in that they keep suspended
in the base fluid and no sedimentation occurs. Nanofluids
show anomalously high thermal conductivity and significant
change in properties, such as viscosity and specific heat in
comparison to the base fluid, features which have attracted
many researchers to stimulate nanofluid flows with an
emphasis on their performance in engineering applications.
Buongiorno and Hu [10] reported the nanofluid heat transfer
enhancement for nuclear reactor application. Huminic and
Huminic [11] showed the applications of nanofluids in heat
exchangers.

The study of non-Newtonian fluids has attracted the
attention of engineers and scientists in recent times due
to its important applications in many engineering process.
The analysis of such flows is very important in both theory
and practice. From a theoretical point of view, flows of
this type are fundamental in fluid mechanics and convective
heat transfer. From a practical point of view, these flows
have applications in convection cooling processes where
a coolant is impinged on a continuously moving plate.
Heat and mass transfer of non-Newtonian fluids are also
very important in many engineering applications, such as
oil recovery, food processing, paper making, and slurry
transporting. Similarly, dusty fluid flow has applications
in petroleum and chemical engineering, metallurgy, dust
entertainment in a cloud during a nuclear explosion,
nuclear reactor cooling, powder technology, and paint
spraying. Owing to such significance, Turkyilmazoglu [12]
investigated the fluid flow dispensed with dust particles and
heat transfer over stretching and shrinking bodies from a
mathematical point of view rather than a numerical analysis
published in the open literature. He proved that the two-
phase flow and heat can be represented through a simple
but ingeniously smart formula from which knowledge can
be gained for the momentum and thermal layer behaviors
in both phases, and hence exact information on the shear
stress and Nusselt number of practical interest can be
achieved. Nowadays, researchers have keen interest in
investigating non-Newtonian fluid flows. Khan et al. [13]
investigated thermophoresis and thermal radiation with heat
and mass transfer in a magnetohydrodynamic thin film
second grade fluid of variable properties past a stretching
sheet. By using HAM for the solution, they showed
the significant role of the fluid variable properties like
thermal conductivity and viscosity under the variation of
thin film. Abel et al. [14] examined the influences of
viscous dissipation and non-uniform heat source/sink on
the boundary layer flow and heat transfer characteristics
of a non-Newtonian second grade fluid through a porous
medium. Khan et al. [15] analyzed the steady boundary
layer flow and heat transfer of a non-Newtonian second

grade fluid through a porous medium past a stretching
sheet showing that velocity and temperature decrease by
increasing the magnitude of different parameters. Ahmad
et al. [16] carried out the mathematical analysis of heat
transfer effects on the axisymmetric flow of a second grade
fluid over a radially stretching sheet employing homotopy
analysis method for the solution. Khan et al. [17] discussed
the magnetohydrodynamic nanoliquid thin film sprayed on
a stretching cylinder with heat transfer using HAM, showing
that pressure and spray rate enhance with increasing the
film size. Sahoo [18] analyzed the numerical solution of the
laminar flow and heat transfer of an incompressible third
grade electrically conducting fluid impinging normal to a
plane in the presence of a uniform magnetic field. Khan
et al. [19] presented Brownian motion and thermophoresis
effects on MHD mixed convective thin film second grade
nanofluid flow with Hall effect and heat transfer past a
stretching sheet by proving that the two dimensional flow
converts into three dimensions due to the strong applied
magnetic field.

Homotopy analysis method (HAM) [20] is followed in
the present study to solve the transformed equations. In this
method, homotopy with an embedding parameter is con-
structed. So, the nonlinear problem is converted into an
infinite number of linear problems without using pertur-
bation methods. Turkyilmazoglu [21] used the homotopy
technique for the solution of an Airy equation with suitable
boundary conditions to show the decaying/growing Airy
solutions where the homotopy is handled in such a way that
an appropriate auxiliary linear operator with constant coef-
ficients is employed, generating pure analytic and uniform
valid solutions. Optimum values for the convergence control
parameter of the resulted homotopy series can be calculated
from the square residual error idea, and the error can be ana-
lytically evaluated via absolute error formula. The proposed
homotopy analysis method gives exact formulae for the dis-
placement function that presents a close agreement with
the problems solved numerically. Employing this approach,
Turkyilmazoglu [22] considered the nonlinear problem of
Duffing equation by a homotopy analysis method treatment,
not using any small parameter like the perturbation meth-
ods, generating explicit analytic formulae for the quantities
of physical interest for any given parameters. Moreover,
the approximate analytic solutions achieved via HAM have
been proven to be uniformly convergent for the chosen
damping and stiffness parameters and are not only restricted
to these parameters.
The current study specifies physical parameters in
(10–14) prevailing the flow resulting from the non-
dimensionalization of (2–7). If (10–15) are to be solved
through numerical methods, then all values of these param-
eters must be pre-entered. The range of physical parameters
must be specified because the generated solution may be
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meaningless, since the desired accuracy of the solution may
not be hit or the worst, is the unconsciously use of divergent
solutions. To solve this issue, Turkyilmazoglu [23] proposed
a technique to combine the Adomian decomposition method
(ADM) with the squared residual error to investigate the
correct range of physical parameters that exist in different
flow models. He concluded that with the proposed mathe-
matical approach, the correct range of physical parameters
satisfying a certain degree of accuracy can be extracted and
upon the selection of physical parameters from this range;
the ADM series solutions are safely convergent, thereby
no further need to justify the results with other numerical
methods.

The Taylor series method is one of the classical methods
and is equally important to find the approximate solutions.
It has a close relationship with other computing methods
like the homotopy perturbation method (HPM), because
under certain constraints, by particular choice of auxiliary
linear operator and initial approximation, the homotopy
perturbation method simply collapses onto the Taylor series
expansion. Turkyilmazoglu [24] proved that under certain
special conditions, the traditional homotopy perturbation
method becomes the well-known Taylor series expansion.

The purpose of the present study is to discuss the bio-
convection in gravity-driven non-Newtonian second grade
nanoliquid thin film flow containing both nanoparticles and
gyrotactic microorganisms along a convectively heated ver-
tical solid surface. Employing appropriate transformations
the basic governing equations of the problem are obtained
in dimensionless form, which have been solved using a
powerful analytic tool HAM. The influences of all the per-
tinent parameters on velocity, temperature, concentration,
and microorganism concentration fields have been shown
graphically and illustrated.

2Methods

2.1 Basic Equations

A motion of a two-dimensional, time-independent, laminar,
and an incompressible second grade thin nanoliquid film
falling downwards due to gravity along a vertical solid
surface is considered as shown in Fig. 1. The uniform
incoming second grade thin film nanofluid flow on the left
side of the plate has constant temperature Tf and on the
right side of the plate has another constant temperature T∞
at x = 0.

Convection through the plate plays an important role in
cooling or heating the thin film. To avoid the bioconvection
instability, it is assumed that the nanofluid is dilute. Also,
the assumption is taken for the stability of the nanoparticles
suspended in the base fluid so that the nanoparticles

Fig. 1 Geometry of the physical model and coordinates system

do not agglomerate in the fluid. The passive control of
nanoparticles volume fraction at the boundary (on the solid
wall) is taken. It is assumed that the microorganisms have
constant distributions on the wall. It is most important to
note that the base fluid is water so that the microorganisms
can survive. The assumption is also maintained that the
existence of nanoparticles have few effects on the motion of
the microorganisms.

Under the use of abovementioned assumptions, the
equations for the conservations of total mass, momentum,
thermal energy, nanoparticles, and microorganisms are
written in the following as in [7, 8]
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U is the free-stream velocity, a is constant, and when
the flow is due to gravity, then a = g, u, and v being
the velocity components in the x- and y-directions. α1 is

the normal stress moduli,
∼

v =
(
bWc

�C

)
∂C
∂y

is the average

swimming velocity vector of the oxytactic microorganisms
in which b is the chemotaxis constant and Wc is the
maximum cell swimming speed. The subscripts p, f, and f∞
denote respectively the solid particles: the nanofluid and the
base fluid at far field. �ρ = ρcell − ρf∞ is the density
difference between a cell and base fluid density at far field,
μf is the dynamic viscosity, γav is the average volume of
microorganisms and ρf is the density of the nanoliquid. β is
the coefficient of volumetric volume expansion of a second
grade nanofluid, g is the acceleration due to gravity, C is
the nanopartical volume fraction, N is the number density
of motile microorganisms, C∞ is the ambient nanofluid
volume fraction, λ = k

ρf
is the thermal diffusivity of the

nanofluid in which k is the thermal conductivity, τ = (ρc)p
(ρc)f

is the ratio of nanoparticle heat capacity and the base fluid
heat capacity, DB is the Brownian diffusion coefficient,
Dn is the diffusivity of microorganisms, T∞ is the ambient
temperature,DT is the thermophoretic diffusion coefficient,
and T is the temperature inside the boundary layer.

The boundary conditions for the passively controlled
nanofluid model (second grade) are

u = 0, v = 0, −k
∂T

∂y
= hf (Tf − T ),

DB

dC

dy
+ DT

T∞
dT

dy
= 0, N = Nw at y = 0, (7)

u → U(x),
∂u

∂x
→ 0, T → T∞, C → C∞,

N → N∞ as y → ∞, (8)

where hf (x) denotes the heat transfer coefficient due to Tf ,
Nw is the wall concentration of microorganisms, and N∞
is the ambient concentration of microorganisms. Note that,
in order to satisfy the boundary conditions at infinity, it is
necessary to set N∞ = 0.

Introducing the transformations for non-dimensional
variables f, θ , φ, �, and similarity variable ζ as

ψ(x, y) =
(
4Uνf x

3

) 1
2

f (ζ ), θ(ζ ) = T − T∞
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,
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[

3U

4νf x

] 1
2

y,

(9)

where ψ is the stream function such that u = ∂ψ
∂y

and v =
− ∂ψ

∂x
, x and y are the Cartesian coordinates along surface

and normal to it. νf = μf

ρf
is the kinematic viscosity of the

second grade nanoliquid film. Equation (9) automatically

satisfies mass conservation (1). With the help of (9), (2–5,
7–8) yield the following six equations (10–15)

f ′′′ + 2

3
(1 − f ′2) + ff ′′ + γ1(2f

′f ′′′ − f ′′2 − ff iv)

+Grθ − Nrφ + Rb� = 0, (10)

θ ′′ + Prfθ ′ + Nt(θ ′)2 + Nbθ ′φ′ = 0, (11)

φ′′ + Lefφ′ + Nt

Nb
θ ′′ = 0, (12)

�′′ + Scf�′ − Pe(φ′�′ + φ′′�) = 0, (13)

f = f ′ = 0, θ ′ = −γ2(1 − θ), Nbφ
′ + Ntθ

′ = 0,

� = 1 at ζ = 0, (14)

f ′ = 1, f ′′ = 0, θ = φ = � = 0 at ζ = ∞, (15)

where prime (′) represents the derivative with respect to ζ ,
γ1 = 4α1

3aμf
is the dimensionless second grade nanofluid

parameter, Gr = 2(1−C∞)ρf∞gβ(Tf −T∞)

3aρf
is the buoyancy
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bioconvection Rayleigh number, Pr = νf

λ
is the Prandtl

number, Nt = τDT (Tf −T∞)

λT∞ is the thermophoresis parameter,

Nb = τDBC∞
λ

is the Brownian motion parameter, Le = νf

DB

is the Lewis number, Sc = νf

Dn
is the Schmidt number, Pe =

bWc

Dn
is the bioconvection Peclet number, γ2 = 1

k(
4μf
3 )

1
2
is

the reduced heat transfer parameter. For γ1 = 0, the present
study corresponds to viscous fluid case.

3 Solution of the Problem by Homotopy
Analysis Method

Choosing the appropriate initial approximations to satisfy
the boundary conditions and auxiliary linear operators for
velocity, temperature, concentration, and motile microor-
ganism concentration in the following form

f0(ζ ) = ζ − [
exp(−ζ ) − exp(−2ζ )

]
,

θ0(ζ ) = exp(−ζ ) − exp(−2ζ )

2 + γ2
,

φ0(ζ ) = − Ntγ2
Nb(2 + γ2)

exp(−ζ ),

�0(ζ ) = exp(−ζ ), (16)

Lf = f ′′′ − f ′, Lθ = θ ′′ − θ, Lφ = φ′′ − φ, L� = �′′ − �

(17)
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The following properties are satisfied with the above linear
operators

Lf

[
C1 + C2 exp(ζ ) + C3 exp(−ζ )

] = 0,

Lθ

[
C4 exp(ζ ) + C5 exp(−ζ )

] = 0,

Lφ

[
C6 exp(ζ ) + C7 exp(−ζ )

] = 0,

L�

[
C8 exp(ζ ) + C9 exp(−ζ )

] = 0, (18)

where Ci(i = 1 − 9) are the arbitrary constants.

3.1 Zeroth-Order Deformation Problems

Introducing the nonlinear operator ℵ as

ℵf [f (ζ, p), θ(ζ, p), φ(ζ, p), �(ζ, p)] = ∂3f (ζ, p)
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Nb

∂2θ(ζ, p)

∂ζ 2
, (21)
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where p is an embedding parameter such that p ∈ [0, 1].
The zeroth-order deformation equations are constructed as

(1 − p)lLf [f (ζ, p) − f0(ζ )]
= p�ℵf [f (ζ, p), θ(ζ, p), φ(ζ, p), �(ζ, p)], (23)

(1 − p)Lθ [θ(ζ, p) − θ0(ζ )] = p�ℵθ [f (ζ, p), θ(ζ, p), φ(ζ, p)], (24)

(1−p)Lφ[φ(ζ, p)−φ0(ζ )] = p�ℵφ[f (ζ, p), θ(ζ, p), φ(ζ, p)], (25)

(1−p)L�[�(ζ, p)−�0(ζ )] = p�ℵ�[f (ζ, p), φ(ζ, p), �(ζ, p)], (26)

where � represents the auxiliary non-zero parameter.
Equation (23) has the boundary conditions

f (0, p) = 0, f ′(0, p) = 0, f ′′(∞, p) = 0, f ′(∞, p) = 1.

(27)

Equation (24) has the boundary conditions

θ ′(0, p) = −γ2(1 − θ(0, p)), θ(∞, p) = 0. (28)

Equation (25) has the boundary conditions

Nbφ
′(0, p) + Ntθ

′(0, p) = 0, φ(∞, p) = 0. (29)

Similarly, (26) has the boundary conditions

�(0, p) = 1, �(∞, p) = 0. (30)

Considering the role of pwhen it assumes the values 0 and 1,

p = 0 ⇒ f (ζ, 0) = f0(ζ ) and p = 1 ⇒ f (ζ, 1) = f (ζ ), (31)

p = 0 ⇒ θ(ζ, 0) = θ0(ζ ) and p = 1 ⇒ θ(ζ, 1) = θ(ζ ), (32)

p = 0 ⇒ φ(ζ, 0) = φ0(ζ ) and p = 1 ⇒ φ(ζ, 1) = φ(ζ ), (33)

Similarly,
p = 0 ⇒ �(ζ, 0) = �0(ζ ) and p = 1 ⇒ �(ζ, 1) = �(ζ). (34)

f (ζ, p) becomes f0(ζ ) to f (ζ ) when p assumes the values
from 0 to 1. θ(ζ, p) becomes θ0(ζ ) to θ(ζ ) when p has the
values from 0 to 1. Similarly, φ(ζ, p) becomes φ0(ζ ) to
φ(ζ ) when p assumes the values from 0 to 1. Exactly in the
same manner for p = 0, �(ζ, 0) = �0(ζ ) and for p = 1,
�(ζ, 1) = �(ζ). Using the Taylor series expansion and
(23–26), these become

f (ζ, p) = f0(ζ ) +
∞∑

m=1

fm(ζ )pm,

fm(ζ ) = 1

m!
∂mf (ζ, p)

∂pm
|p=0, (35)

θ(ζ, p) = θ0(ζ ) +
∞∑

m=1

θm(ζ )pm,

θm(ζ ) = 1

m!
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∂pm
|p=0, (36)

φ(ζ, p) = φ0(ζ ) +
∞∑

m=1

φm(ζ )pm,

φm(ζ ) = 1

m!
∂mφ(ζ, p)

∂pm
|p=0, (37)

�(ζ, p) = �0(ζ ) +
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�m(ζ )pm,

�m(ζ ) = 1

m!
∂m�(ζ, p)

∂pm
|p=0 . (38)
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The convergence of the series is sharply relying on �.
Suppose � is taken in such a manner that the series in
(35–38) converge at p = 1, then (35–38) result in

f (ζ ) = f0(ζ ) +
∞∑

m=1

fm(ζ ), (39)

θ(ζ ) = θ0(ζ ) +
∞∑

m=1

θm(ζ ), (40)

φ(ζ ) = φ0(ζ ) +
∞∑

m=1

φm(ζ ), (41)

�(ζ) = �0(ζ ) +
∞∑

m=1

�m(ζ ). (42)

3.2 M-th Order Deformation Problems

By taking m times derivative with respect to p of (23) and
(27), then dividing by m! and substituting p = 0, yield the
following simplifications

Lf [fm(ζ ) − χmfm−1(ζ )] = �R
f
m(ζ ), (43)

fm(0) = f ′
m(0) = f ′

m(∞) = f ′′
m(∞) = 0, (44)

R
f
m(ζ ) = f ′′′

m−1 + 2

3

m−1∑
k=o

[
1 − f ′

m−1−kf
′
k

] +
m−1∑
k=o

[
fm−1−kf

′′
k

]

+ γ1

m−1∑
k=0

[
2f ′

m−1−kf
′′′
k − f ′′

m−1−kf
′′
k − fm−1−kf

iv
k

]

+Grθm−1 − Nrφm−1 + Rb�m−1. (45)

Fig. 2 � curve of f (ζ )

Fig. 3 � curve of θ(ζ )

By taking m times derivative with respect to p of (24) and
(28), then dividing by m! and substituting p = 0, yield the
following simplifications

Lθ [θm(ζ ) − χmθm−1(ζ )] = �Rθ
m(ζ ), (46)

θ ′
m(0) = θm(∞) = 0, (47)

Rθ
m(ζ ) = θ ′′

m−1 + Pr
m−1∑
k=o

fm−1−kθ
′
k + Nt

m−1∑
k=o

θ ′
m−1−kθ

′
k

+ Nb
m−1∑
k=o

θ ′
m−1−kφ

′
k . (48)

By taking m times derivative with respect to p of (25) and
(29), then dividing by m! and substituting p = 0, result in
the below simplifications

Lφ[φm(ζ ) − χmφm−1(ζ )] = �Rφ
m(ζ ), (49)

Fig. 4 � curve of φ(ζ )
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Fig. 5 � curve of �(ζ)

Nbφ
′
m(0) + Ntθ

′
m(0) = φm(∞) = 0, (50)

Rφ
m(ζ ) = φ′′

m−1 + Le
m−1∑
k=o

fm−1−kφ
′
k + Nt

Nb
θ ′′
m−1. (51)

Similarly, by taking m times derivative with respect to p of
(26) and (30), then diving by m! and substituting p = 0,
develop the below simplifications

L�[�m(ζ ) − χm�m−1(ζ )] = �R�
m(ζ ), (52)

�m(0) = �′
m(∞) = 0, (53)

Fig. 6 Behavior of velocity field for � = −1.10, γ2 = 0.60, Gr =
0.50, Nr = 0.60, Rb = 0.70, Nb = 0.80, Nt = 0.90, Le = 0.60,
Sc = 0.70, Pe = 1.00, Pr = 10.00 and different values of γ1

Fig. 7 Behavior of velocity field for � = −5.00, γ1 = 0.50, Gr =
0.50, Nr = 0.60, Rb = 0.70, Nb = 0.80, Nt = 0.90, Le = 0.60,
Sc = 0.70, Pe = 1.00, Pr = 10.00 and different values of γ2

R�
m(ζ ) = �′′

m−1 + Sc
m−1∑
k=o

fm−1−k�
′
k

− Pe
m−1∑
k=o

[
φ′

m−1−k�
′
k + φ′′

m−1−k�k

]
, (54)

χm =
{
0, m � 1
1, m > 1.

(55)

If f ∗
m(ζ ), θ∗

m(ζ ), φ∗
m(ζ ), and �∗

m(ζ ) are the particular
solutions, then the general solutions of (43), (46), (49), and
(52) are

fm(ζ ) = f ∗
m(ζ ) + C1 + C2 exp(ζ ) + C3 exp(−ζ ), (56)

Fig. 8 Behavior of velocity field for � = − 1.10, γ1 = 0.50, γ2 =
0.60, Nr = 0.60, Rb = 0.70, Nb = 0.80, Nt = 0.90, Le = 0.60,
Sc = 0.70, Pe = 1.00, Pr = 10.00 and different values of Gr
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Fig. 9 Behavior of velocity field for � = − 3.00, γ1 = 0.50, γ2 =
0.60, Gr = 0.50, Rb = 0.70, Nb = 0.80, Nt = 0.90, Le = 0.60,
Sc = 0.70, Pe = 1.00, Pr = 10.00 and different values of Nr

θm(ζ ) = θ∗
m(ζ ) + C4 exp(ζ ) + C5 exp(−ζ ), (57)

φm(ζ ) = φ∗
m(ζ ) + C6 exp(ζ ) + C7 exp(−ζ ), (58)

�m(ζ ) = �∗
m(ζ ) + C8 exp(ζ ) + C9 exp(−ζ ). (59)

4 Results and Discussion

The nonlinear differential (10–13) accompanying boundary
conditions in (14–15) have been solved with the help of
symbolic computation software MATHEMATICA employ-
ing HAM program. It is necessary for the analysis to
discuss the effect of all the emerging parameters on the

Fig. 10 Behavior of velocity field for � = − 3.00, γ1 = 0.50,
γ2 = 0.60, Gr = 0.50, Nr = 0.60, Nb = 0.80, Nt = 0.90, Le = 0.60,
Sc = 0.70, Pe = 1.00, Pr = 10.00 and different values of Rb

Fig. 11 Behavior of velocity field for � = − 5.00, γ1 = 0.50,
γ2 = 0.60, Gr = 0.50, Rb = 0.70, Nb = 0.80, Nr = 0.60, Le = 0.60,
Sc = 0.70, Pe = 1.00, Pr = 10.00 and different values of Nt

non-dimensional velocity profile, non-dimensional temper-
ature profile, non-dimensional concentration profile and
non-dimensional motile gyrotactic microorganisms profile
f (ζ ), θ(ζ ), φ(ζ ), and �(ζ) respectively. The effects of
embedded parameters on the velocity f (ζ ), temperature
θ(ζ ), concentration φ(ζ ), and motile gyrotactic microor-
ganisms �(ζ) fields have been depicted in Figs. 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26 and 27, 28, 29, 30, 31, 32, 33 respectively. The schematic
diagram of the problem is demonstrated in Fig. 1. Liao [20]
introduced � curves for the convergence of the series solu-
tions of the problems. Therefore, the admissible �-curves
for f (ζ ), θ(ζ ), φ(ζ ) and �(ζ) are drawn in the ranges
− 1.3 ≤ � ≤ 0.2, − 1.4 ≤ � ≤ 0.5, − 1.3 ≤ � ≤ 0.0
and − 1.9 ≤ � ≤ 0.0 in Figs. 2, 3, 4, and 5 respectively.

Fig. 12 Behavior of velocity field for � = − 5.00, γ1 = 0.50,
γ2 = 0.60, Gr = 0.50, Rb = 0.70, Nb = 0.80, Nt = 0.90, Nr = 0.60,
Sc = 0.70, Pe = 1.00, Pr = 10.00 and different values of Le
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Fig. 13 Behavior of velocity field for � = − 3.00, γ1 = 0.50,
γ2 = 0.60, Gr = 0.50, Rb = 0.70, Nb = 0.80, Nt = 0.90, Le = 0.60,
Nr = 0.60, Pe = 1.00, Pr = 10.00 and different values of Sc

4.1 Velocity Profile

The non-Newtonian nanofluids are thick to flow and their
speed is low compared to that of Newtonian nanofluids.
Figure 6 presents the elevation of velocity f (ζ ) profile as a
function of second grade nanofluid parameter γ1. It predicts
the linear dependency between f (ζ ) and γ1. The reason is
that the velocity of the second grade nanofluid enhances
due to gravity. The same behavior is seen in Fig. 7, where
the non-dimensional velocity f (ζ ) increases for the larger
values of reduced heat transfer parameter γ2. In line with
the experimental observations, Fig. 7 predicts that the higher
the reduced heat transfer parameter γ2 is, the higher the
velocity will be. It is due to the orientation of the fluid
farther apart from the vertical surface. Considering Fig. 8

Fig. 14 Behavior of velocity field for � = − 3.00, γ1 = 0.50,
γ2 = 0.60, Gr = 0.50, Rb = 0.70, Nb = 0.80, Nt = 0.90, Le = 0.60,
Sc = 0.70, Pe = 1.00, Nr = 0.60 and different values of Pr

Fig. 15 Behavior of temperature field for � = − 0.90, γ2 = 0.60,
Gr = 0.50, Nr = 0.60, Rb = 0.70, Nb = 0.80, Nt = 0.90, Le = 0.60,
Sc = 0.70, Pe = 1.00, Pr = 10.00 and different values of γ1

which shows that the uniform flow can be fully captured
against the buoyancy parameter Gr. To our knowledge, this
constitutes the direction of flow due to gravitational force.
Figure 9 reveals dynamical regimes: a fast flow regime.
This diagram presents that the velocity f (ζ ) increases
with the rise of buoyancy ratio parameter Nr. Figure 10
measures pattern formation in suspension of gyrotactic
microorganisms in terms of velocity as a function of the
bioconvection Rayleigh number Rb. Note that velocity
f (ζ ) decreases with increasing the bioconvection Rayleigh
number Rb. Figure 11 reports that the non-dimensional
velocity f (ζ ) is an increasing function of thermophoresis
parameter Nt as the momentum boundary layer thickness
amplifies. It is observed that Fig. 12 is composed of
Lewis number Le and velocity f (ζ ). Quite remarkably,

Fig. 16 Behavior of temperature field for � = −0.90, γ1 = 0.50,
Gr = 0.50, Nr = 0.60, Rb = 0.70, Nb = 0.80, Nt = 0.90, Le = 0.60,
Sc = 0.70, Pe = 1.00, Pr = 10.00 and different values of γ2
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Fig. 17 Behavior of temperature field for � = − 1.10, γ1 = 0.50,
γ2 = 0.60, Nr = 0.60, Rb = 0.70, Nb = 0.80, Nt = 0.90, Le = 0.60,
Sc = 0.70, Pe = 1.00, Pr = 10.00 and different values of Gr

the density of the interacting objects (nanoparticles and
microorganisms) increase the velocity f (ζ ) when the Lewis
number Le increases. Figure 13 shows that with the rise of
Schmidt number Sc the velocity f (ζ ) increases. It is due to
the fact that the Schmidt number Sc involves the effective
physical property like viscosity. Figure 14 reveals that the
velocity f (ζ ) enhances with the amplification of Prandtl
number Pr. The reason is that the suspension becomes
dense due to nanoparticles and gyrotactic microorganisms
consequently, high values of Pr associate with the elevation
of f (ζ ).

Fig. 18 Behavior of temperature field for � = − 0.90, γ1 = 0.50,
γ2 = 0.60, Nr = 0.60, Rb = 0.70, Nb = 0.80, Gr = 0.50, Le = 0.60,
Sc = 0.70, Pe = 1.00, Pr = 10.00 and different values of Nt

Fig. 19 Behavior of temperature field for � = − 0.90, γ1 = 0.50,
γ2 = 0.60, Nr = 0.60, Rb = 0.70, Nb = 0.80, Nt = 0.90, Gr = 0.50,
Sc = 0.70, Pe = 1.00, Pr = 10.00 and different values of Le

4.2 Temperature Profile

Temperature is affected by the nanofluid behaviors.
Figure 15 exhibits the activity of second grade nanofluid
parameter γ1. It shows that the temperature θ(ζ ) increases
with the non-Newtonian effect of the nanofluid. Figure 16
shows that the temperature θ(ζ ) upsurges with the rising
behavior of reduced heat transfer parameter γ2. In fact,
the reduced heat transfer parameter γ2 represents the
thermal slip parameter; hence, the temperature increases
spontaneously in the presence of convective conditions.
Figure 17 demonstrates that the quantity of non-dimensional
temperature θ(ζ ) enriches with the amplification in
magnitude of buoyancy parameter Gr. Figure 18 reveals that
the development in thermophoresis parameter Nt leads to

Fig. 20 Behavior of temperature field for � = − 0.70, γ1 = 0.50,
γ2 = 0.60, Nr = 0.60, Rb = 0.70, Nb = 0.80, Nt = 0.90, Le = 0.60,
Sc = 0.70, Pe = 1.00, Gr = 0.50 and different values of Pr
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Fig. 21 Behavior of concentration field for � = − 3.00, γ2 = 0.60,
Gr = 0.50, Nr = 0.60, Rb = 0.70, Nb = 0.80, Nt = 0.90, Le = 0.60,
Sc = 0.70, Pe = 1.00, Pr = 10.00 and different values of γ1

an enhancement in the temperature. Physically, intriguing
property of nanofluids like Brownian motion focuses on
random motion of the particles which opens up the way
for the elevation of non-dimensional temperature θ(ζ ).
Figure 19 portrays the effect of Lewis number Le on the
present system under consideration. This illustrates that
temperature bears much significance rise with the greater
values of Lewis number Le. The cooling of surrounding and
system involve the influence of Prandtl number Pr. For such
situation, Fig. 20 is helpful to show that the temperature
θ(ζ ) diminishes with the increasing values of Pr.

Fig. 22 Behavior of concentration field for � = − 3.00, γ1 = 0.50,
Gr = 0.50, Nr = 0.60, Rb = 0.70, Nb = 0.80, Nt = 0.90, Le = 0.60,
Sc = 0.70, Pe = 1.00, Pr = 10.00 and different values of γ2

Fig. 23 Behavior of concentration field for � = − 3.00, γ1 = 0.50,
γ2 = 0.60, Nr = 0.60, Rb = 0.70, Nt = 0.90, Le = 0.60, Sc = 0.70,
Pe = 1.00, Pr = 10.00 and different values of Nb

4.3 Concentration Profile

In the present study of bioconvection, nanoparticle concen-
tration has important results. The role of passively con-
trolled nanofluid model boundary conditions Nbφ

′(0) +
Ntθ

′(0) = 0 in (14) is worth seeing. It is also evident from
the initial guess φ0(ζ ) = − Ntγ2

Nb(2+γ2)
exp(−ζ ) in (16). Due

to the influence of these conditions, all the concentration
graphs are negative. Figure 21 highlights the essential con-
sequences of the non-Newtonian second grade nanofluid
parameter γ1. It is identified that the concentration φ(ζ )

profile decreases with the addition of non-Newtonian sec-
ond grade nanofluid. It may be due to the remarkable
effect of viscoelasticity of non-Newtonian second grade
nanofluid. Figure 22 sheds light on the structuring capa-
bilities of reduced heat parameter γ2. It is observed that

Fig. 24 Behavior of concentration field for � = − 0.90, γ1 = 0.50,
γ2 = 0.60, Nr = 0.60, Rb = 0.70, Nb = 0.80, Nt = 0.90, Le = 0.60,
Sc = 0.70, Pe = 1.00, Pr = 10.00 and different values of Nt
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Fig. 25 Behavior of concentration field for � = − 0.90, γ1 = 0.50,
γ2 = 0.60, Nr = 0.60, Rb = 0.70, Nb = 0.80, Nt = 0.90, Sc = 0.70,
Pe = 1.00, Pr = 10.00 and different values of Le

the concentration φ(ζ ) profile decreases. Figure 23 presents
the possible outcomes of concentration φ(ζ ) and Brown-
ian motion parameter Nb. It shows that the non-dimensional
nanoparticle concentration φ(ζ ) profile increases, since the
system involves additional internal constraints due to many
gyrotactic microswimmers. The effect of thermophoresis
parameter Nt on the concentration φ(ζ ) profile is eluci-
dated in Fig. 24. Due to the interaction of concentration
with the temperature, a whole set of microorganisms and
nanoparticles posses the additional ability to improve the
saturation for some increasing values of Nt but then φ(ζ )

decreases as Nt increases. Figure 25 shows that the concen-
tration field φ(ζ ) shows an increasing function of the Lewis
number Le. The flowing suspension remains fully homoge-
neous on the surface. Figure 26 is plotted to depict the effect

Fig. 26 Behavior of concentration field for � = − 0.90, γ1 = 0.50,
γ2 = 0.60, Nr = 0.60, Rb = 0.70, Nb = 0.80, Nt = 0.90, Le = 0.60,
Sc = 0.70, Pe = 1.00 and different values of Pr

Fig. 27 Behavior of microorganisms concentration field for � =
− 3.00, γ2 = 0.60, Gr = 0.50, Nr = 0.60, Rb = 0.70, Nb = 0.80,
Nt = 0.90, Le = 0.60, Sc = 0.70, Pe = 1.00, Pr = 10.00 and different
values of γ1

of the Prandtl number Pr on the nanoparticle concentra-
tion φ(ζ ). It is noted that the non-dimensional concentration
φ(ζ ) decreases for the greater values of Prandtl number Pr.

4.4 Microorganism Concentration

The present biological system has high sensitivity for the
microorganism concentration in terms of various parame-
ters. It is worth seeing from Fig. 27 that the microorganism
concentration �(ζ) leads to remarkably development with
the interaction of second grade nanofluid. The reason is
that with the emergence of clusters of the nanoparticles and
second grade fluid bear much significance, e. g., from a

Fig. 28 Behavior of microorganisms concentration field for � =
− 3.00, γ1 = 0.50, Gr = 0.50, Nr = 0.60, Rb = 0.70, Nb = 0.80,
Nt = 0.90, Le = 0.60, Sc = 0.70, Pe = 1.00, Pr = 10.00 and different
values of γ2
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Fig. 29 Behavior of microorganisms concentration field for � =
− 3.00, γ1 = 0.50, γ2 = 0.60, Gr = 0.50, Nr = 0.60, Rb = 0.70,
Nt = 0.90, Le = 0.60, Sc = 0.70, Pe = 1.00, Pr = 10.00 and different
values of Nb

fundamental statistical physics point of view, many relevant
practical situations actually involve additional constraints
like gravity, pressure etc. Hence, by increasing second grade
nanofluid parameter γ1, the microorganism concentration
�(ζ) elevates. The possibility of gyrotactic microorgan-
isms existence in terms of thermal slip is demonstrated by
Fig. 28. When the reduced heat parameter γ2 magnifies,
the microorganism concentration �(ζ) profile also magni-
fies. Figure 29 reports that the microorganism concentra-
tion �(ζ) reduces when the Brownian motion parameter
Nb rises. Since Brownian motion associates with random
motion of particles in fluid so there exists collisions which

Fig. 30 Behavior of microorganisms concentration field for � =
− 3.00, γ1 = 0.50, γ2 = 0.60, Gr = 0.50, Nr = 0.60, Rb = 0.70,
Nb = 0.80, Le = 0.60, Sc = 0.70, Pe = 1.00, Pr = 10.00 and
different values of Nt

Fig. 31 Behavior of microorganisms concentration field for � =
− 3.00, γ1 = 0.50, γ2 = 0.60, Gr = 0.50, Nr = 0.60, Rb = 0.70,
Nt = 0.90, Nb = 0.80, Sc = 0.70, Pe = 1.00, Pr = 10.00 and
different values of Le

offer resistance to the motion of gyrotactic microorgan-
isms. Figure 30 provides the sketch for thermophoresis
parameter Nt and the microorganism concentration �(ζ).
Thermophoresis depends on temperature mainly so with the
enhancement of thermophoresis the gyrotactic microorgan-
isms synthesize; consequently, the microorganism concen-
tration �(ζ) enhances. Figure 31 shows the behavior of
the microorganism concentration field �(ζ) with the rising
values of Lewis number Le. From this plot, it is realized
that when the Lewis number Le amplifies then microorgan-
ism concentration �(ζ) profile increases. The reason is that
Lewis number Le defines the ratio of viscosity of nanofluid

Fig. 32 Behavior of microorganisms concentration field for � =
− 3.00, γ1 = 0.50, γ2 = 0.60, Gr = 0.50, Nr = 0.60, Nb = 0.80,
Nt = 0.90, Le = 0.60, Pe = 1.00, Pr = 10.00 and different values of
Sc
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Fig. 33 Behavior of microorganisms concentration field for � =
− 3.00, γ1 = 0.50, γ2 = 0.60, Gr = 0.50, Nr = 0.60, Rb = 0.70,
Nt = 0.90, Sc = 0.70, Nb = 0.80, Pr = 10.00 and different values of
Pe

to the Brownian diffusion coefficient. So, for the less val-
ues of Le, microorganism concentration �(ζ) increases.
Figure 32 focuses the high values of Schmidt number Sc
to estimate the microorganism concentration �(ζ). When
the magnitude of Schmidt number Sc amplifies the microor-
ganism concentration �(ζ) decreases. Schmidt number Sc
is inversely related to the diffusivity of microorganisms so
at the greater values of Schmidt number Sc, the microor-
ganism concentration �(ζ) profile depreciates. Figure 33
shows the effect of bioconvection Peclet number Pe on
the microorganism concentration �(ζ), which explains the
major purpose of the present study about the gyrotactic
microorganism concentration. It is seen that the microorgan-
ism concentration �(ζ) grows high with the rising values of
Peclet number Pe. Equation (13), �′′ + Scf�′ − Pe(φ′�′ +
φ′′�) = 0 demonstrates that there is a strong coupling
of nanoparticle field φ to the microorganism field �, sug-
gesting the lower sensitivity of temperature and velocity
fields to bioconvection Peclet number Pe compared with the
nanoparticle field.

5 Conclusions

This article investigates the analytical solution of bio-
convection in gravity-driven non-Newtonian second grade
nanoliquid thin film flow containing both nanoparticles and
gyrotactic microorganisms along a convectively heated ver-
tical solid surface. The thin film considered in this work
contains the mixture of copper nanoparticles and motile
gyrotactic microorganisms. The solution of the problem
has been obtained by using the analytical technique HAM
(homotopy analysis method) for the velocity, temperature,

concentration, and microorganism concentration fields. The
solution has been shown through the diagrams in which
the influences of all the parameters on velocity, tempera-
ture, concentration, and microorganism concentration fields
have been described. The main findings of the study are
summarized as following.

(i) The velocity f (ζ ) depreciates for the bioconvection
Rayleigh number Rb, while it elevates for the second
grade nanofluid parameter γ1, reduced heat transfer
parameter γ2, buoyancy parameter Gr, buoyancy ratio
parameter Nr, thermophoresis parameter Nt, Lewis
number Le, Schmidt number Sc, and Prandtl number
Pr.

(ii) The temperature θ(ζ ) diminishes for the reduced heat
transfer parameter γ2 and Prandtl number Pr while it
elevates for the second grade nanofluid parameter γ1,
buoyancy parameter Gr, thermophoresis parameter Nt
and Lewis number Le.

(iii) The concentration φ(ζ ) diminishes for the second
grade nanofluid parameter γ1, reduced heat transfer
parameter γ2, thermophoresis parameter Nt and Prandtl
number Pr, while it elevates for the Brownian motion
parameter Nb and Lewis number Le.

(iv) The microorganism concentration �(ζ) diminishes
for the Brownian motion parameter Nb and Schmidt
number Sc, while it elevates for the second grade
nanofluid parameter γ1, reduced heat parameter γ2,
thermophoresis parameter Nt, Lewis number Le and
bioconvection Peclet number Pe.
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