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Abstract
In this work, self-assembly of periodic zigzag arrangement of monodisperse droplets through a flat microfluidic channel
is numerically investigated. Our numerical technique is based on the boundary element method (BEM). It is found that
droplets having zigzag arrangement tend to travel to channel centerline. We exhibit that non-deformable droplets do not
drift normal to the channel centerline. While, as the capillary number increases, deformable droplets tend to approach
more to the center of channel and their vertical velocity component increases. Our numerical results illustrate that droplets
are dragged by a constant horizontal velocity component which is governed by the continuous phase flow rate. However,
this situation is completely different for the vertical velocity component of droplets. We report how the vertical velocity
component of droplet towards the channel centerline depends on control parameters such as droplet size, droplet distance,
initial configuration, relative orientation of droplets, and capillary number. This dependency plays an important role in
estimating necessary time to reach self-assembly.
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1 Introduction

Microfluidics is a field which deals with controlling and
manipulating fluids in devices where significant lengths are
less than a millimeter in size. Fluids behave differently
on a micro scale as compared to the macro scale. Interest
in microfluidics has been steadily increasing with the
availability of many new fabrication techniques which
make it possible to invent small devices with great
precision and lead to the technological advancements in
biotechnology through detection and manipulation on a
micron scale. Many disciplines, such as physics, chemistry,
and multiple engineering fields have recognized the
potential of microfluidics and applied it in their research
studies. Nguyen andWereley [1–5]. Emulsion is a system of
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two immiscible liquids in which droplet phase is dispersed
into continuous phase. Studying the motion of small drops
in a viscous fluid is one of the classical problems in fluid
mechanics [6–8] and recently attracted many researchers’
attention to develop their understanding of the underlying
physics behind the droplet motion.

By using the surfactant, the monodisperse emulsions can
make themselves more stable in the microfluidic channel.
The surfactant solution prevents coalescence of neighboring
droplets via repulsive interaction between adsorbed layers
on the two colliding drops [9–12]. By using various
techniques, droplet motion in the microchannel has been
experimentally and numerically investigated [13–16]. The
path of produced droplet is a function of channel geometry,
droplet size, position of other produced droplets, and
physicochemical parameters [17–20].

A wide range of experimental techniques has been
used to produce one or two-row zigzag pattern of
droplets in the microchannels [21–24]. The transition
between single-row and two-row packings [25–27], and
also collective modes of monodisperse droplets have
been studied [28, 29]. The theoretical and experimental
studies of droplet migration towards the centerline of flow
indicate a shear-induced dispersion due to droplet-droplet
interaction [30, 31]. The droplet-droplet interaction has an
important role in establishing a steady-state distribution
[32–34]. The experimental observations indicate that
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initial lateral perturbation results an instability in trailing
drops [28]. However, rigid spheres and deformable drops
display different collective dynamics. Deformable drops are
stabilized into drop arrays due to their tendency towards
aligning in the flow direction [33] while a linear array of
rigid spheres exhibit particles pairing instability in the flow
direction. The dipolar hydrodynamic interactions impose
macroscopic phenomena which are affected by particle
size and deformability. The shear flow exerted by channel
wall drives droplets to migrate towards the centerline of
channel.

In this work, we present a numerical study on the
self-assembly of two-row arrangement of two-dimensional
monodisperse droplets (disk-like droplets) flowing through
a flat straight microfluidic channel. Here, we assume that
channel width-to-depth ratio is large compared to one.
Therefore, instead of solving three-dimensional problem,
we solve a depth-averaged problem. Hence, we consider
two-dimensional flow of both liquids which can be
governed by Darcy equation. According to the considered
periodic pattern, we divide channel length into periodic
boxes. The two-dimensional Darcy flow will be numerically
solved in one periodic box. The solution of depth-
averaged Darcy equation is numerically obtained via a
self-consistent integral equation using the boundary element
method (BEM). Therefore, we calculate the pressure and
velocity at droplet-continuous interface. In this study, we
investigate the transition between two-row and two-row
arrangements of disk-like droplets flowing through the
microchannel. As a much more important application, we
discuss how relationships between droplets velocity and
control parameters such as droplet size, flow rate, viscosity,
and capillary number towards reaching the self-assembly.
These relationships play an important role to obtain
necessary time to reach the self-assembly of the system.
Finally, we investigate the effect of droplet deformability
on the drift velocity of droplets normal to the channel
centerline.

This paper is structured as follows: In the following
Section 2, we will formulate Darcy equation and boundary
conditions for the velocity field of quasi-two-dimensional
droplets in a flat microfluidic channel. The numerical
procedure to solve the integral equation of pressure field
and, thus, the droplets motion are also contained in
Section 2. The results of our numerical solutions, including
the velocity dependency of droplets to control parameters
are reported in Section 3. In Section 3, we will investigate
the effect of droplet size, droplet-droplet distance, viscosity
ratio, and capillary number on the droplet migration towards
the channel center. Finally, we summarize our findings and
conclude in Section 4.

2 Governing Equations

In this work, we numerically study the dynamics of
monodisperse emulsion droplets flowing in the flat
microfluidic channel. We consider a periodic array of
droplets which flow with offset to the top and bottom of
flat microfluidic channel centerline. The droplet phase and
continuous phase are labeled by d and c, respectively. The
channel length is along the x-axis and width of the channel
is along the y-axis. The channel height, H , is assumed to be
much smaller than the channel width,W , and droplet radius,
Rd . Therefore, droplets are confined between the top and
bottom walls of the microchannel. Hence, droplets flow-
ing through the microchannel possess disk-shape (pancake
shape) which is called disk-like droplets.

Due to the small length scale, flow rate usually ranges
between a few nl/min to μl/min and the Reynolds number
is small. In this limit, fluidic resistance in the microfluidic
channel is high. Experimental observations indicate that at
thin channels, the velocity profile in the direction of channel
thickness, z-axis, is assumed to be parabolic. However, far
from the walls, it is almost constant along the y-axis. It is
easy to verify that by increasing the aspect ratio of channel
width to channel height, the velocity field computed from
the 3D Stokes equation in the x-y plane and far from the
walls tends to constant value in the y-direction. Therefore,
instead of solving the 3D Stokes equation, we solve a
depth-averaged problem which is labeled two-dimensional
problem. This flow can be well approximated by a two-
dimensional description. Such two-dimensional flow in a
Hele-Shaw cell obeys Darcy’s law; this laminar flow is
mathematically equivalent to flow in a porous medium [35,
36].

In the Hele-Shaw limit, the flow velocity obeys
locally a Poiseuille profile (ux, uy, uz) = 3/2(1 −
4z2/H2) (ūx, ūy, 0). Deviations from the Poiseuille profile
become apparent once the distance to the side walls
becomes the order of cell height, H, or smaller. In this work,
the depth averaged velocity u = (ūx, ūy) for both droplet
and continuous phase are applied. Under this assumption,
when gravitational force is negligible, the velocity field
inside and outside of droplet are governed by continuity
equation

∇.ui = 0 on �i with i ∈ {c, d} , (1)

and the Darcy equation [35]

ui = −αi∇Pi on �i with i ∈ {c, d} , (2)

where ∇ = (∂x, ∂y) is the two-dimensional Nabla operator,

P(x, y) is the pressure, and u is the velocity. αi = H 2

12μi
is

the liquid mobility and μ is the viscosity.
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Evolution of the droplet interface is governed by mass
conservation. If there is no mass transfer through the
interface, kinematic boundary condition at the droplet-
continuous phase interface imposes the continuity of the
normal velocity component. This boundary condition reads

n · uc = n · ud �= 0 on �cd , (3)

where unit normal vector, n, points from the interior of
the droplet phase into the continuous phase and �cd is the
two-dimensional droplet contour.

An other droplet interface condition is discontinuity of
normal stress due to surface tension, γ , and curvature.
The two principal curvatures are an in-plane curvature K‖
and a meniscus curvature in the thin direction, K⊥. In flat
channels, i.e., where the ratio of channel width to channel
height is large compared to one, droplet adopts the disk-
like shape. In this case, the radius of curvature of the free
in-plane droplet contour, i.e., the parts of the contour that
are not in contact with either the channel wall or another
droplet, will be much larger than the height of the channel.
The mean curvature, Km, of the liquid-liquid interface reads
[37]

Km = K⊥ + νK‖ (4)

where the out-of-plane curvature of the liquid-liquid
interface, K⊥, can be approximated by 2/H and the in-
plane curvature of the droplet contour K‖ = 1/Rd . The
numerical prefactor, ν is not identical to one. In accordance
with real droplet microfluidic system, one assumes a non-
wetting dispersed phase, the value of π/4 for perfectly
non-wetting conditions was derived by Park and Homsy
[37]. The prefactor of π/4 can be understood from the
limiting process mapping a three-dimensional droplet to
the purely two-dimensional model. Throughout this work,
we have assumed perfectly non-wetting condition for the
dispersed phase on the channel walls, which is the usual
case in droplet-based microfluidic, where surfactant is used
to prevent the merging of droplets. Therefore, a relation
between the mean local curvature, Km, and interfacial
tension, γ , of the liquid-liquid interface to the difference
between the pressure inside the droplet phase, Pd, and the
pressure in the continuous phase, Pc, at each point of the
droplet contour is given by a two-dimensional analogue of
the Laplace’s law [37]:

Pc − Pd = π

4
γ Km . (5)

On the channel walls, because of the impermeability of the
channel side walls �w, we have

nw · ∇Pc = 0 on �w , (6)

where the normal vector nw on �w points from the inside of
the wall into the continuous phase.

Employing the continuity equation, the pressure in the
dispersed and the continuous phase satisfy the Laplace
equation

∇2Pi = 0 on �i with i ∈ {c, d} , (7)

To evolve the droplet interface under flowing in time, we
calculate the normal component, n · u, of the local depth
averaged velocity at the droplet contour. Solutions to (7) for
appropriate boundary conditions (3), (5), (6) together with
the Darcy (2) describe the velocity field of the liquid in
the dispersed and continuous phase. In this way, we need
to obtain the relevant boundary data of the velocity field.
A self-consistent integral equation which links the pressure
field Pc of the continuous phase on the boundary �d ∩ �w

to its normal derivative n · ∇Pc should be solved. Following
the formulation of Pozrikidis [38], the pressure field of the
continuous phase has to obey an integral equation of the
explicit form [40]

Pc(r0) =
∫

�w

Pcnw · ∇G(r, r0)d	 −
∫

�w

G(r, r0)nw · ∇Pcd	

−
∫

�cd

{π

4
αr γ Km n · ∇G(r, r0)−(1−αr) Pcn · ∇G(r, r0)

}
d	, (8)

where r = (x, y) is field point, r0 = (x0, y0) is singular
point on the boundary �cd ∩ �w of the continuous phase,
and αr = αd/αc is the mobility ratio of droplet phase
to continuous phase. In the case of non-periodic flow, the
integration contour in above equation, �w, is the channel
boundaries; for flow in free space, G(r, r0) represents the
harmonic potential at the point r due to a point sink of
unit strength located at the point r0, given by G(r, r0) =
− 1

2π ln |r − r0|. In the case of singly periodic flow, �w is
enclosed by one period of the flow; for flow in free space,
G(r, r0) represents the flow due to a one-dimensional array
of point sinks of unit strength, one of which is located at
the point r0. The periodic Green’s function in free space
represents the flow due to an infinite periodic array of point
forces separated by the distance L along the x axis, is given
by [38]

G(r, r0) = − 1

4π
ln[2{cosh[k(y −y0)]− cos[k(x −x0)]}] ,

(9)

where k = 2π/LPB is the wave number, and LPB is the
periodic length.

Figure 1 illustrates the initial configuration of two-
row zigzag arrangement of droplets flowing through the
microchannel. As can be seen in Fig. 1, the microchannel
walls are located at y = −W/2 and W/2, where W

is the channel width. According to the periodic structure
of droplets in the channel, we divide channel space into
periodic boxes [27, 39]. We solve the Darcy (2) in one
periodic box. In this way, we consider two droplets in one
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Fig. 1 Top view of two-row zigzag arrangement of pancake-like
droplets flowing through the flat microfluidic channel. The continuous
phase drags the droplets towards the right. To have the symmetrically
pattern, we choose origin of the coordinate at the center of the channel.
LPB is the length of periodic unit box. It is clear that LPB depends on
the droplet size, and droplet configuration

periodic simulation box. Depending on droplet size, each
droplet in periodic box has two or four closest neighbors.
LPB is the box length of the 2D periodic box (see Fig. 1).
The size and shape of periodic box are updated as the
droplets flow through the channel. Hence, the length of
periodic box, LPB , depends on time, droplet size, relative
orientation of droplets, θ , and interface-interface droplets
separation distance, D.

We decompose the pressure into two terms: P
(b)
c the

pressure along the channel in the absence of droplets, and
the disturbance part of pressure due to the presence of
droplets at one periodic box, P (d)

c .

Pc = P (b)
c + P (d)

c . (10)

According to Darcy equation, in the absence of droplet,
there is a linear relation between the pressure of bare
continuous phase and channel length:

P (b)
c = −αcu0x + constant , (11)

where u0 is the constant velocity of continuous phase in the
absence of droplets.

To solve the self-consistent integral equation, we define
non-dimensionalized physical quantities. To this end, we
have chosen suitable length scale L0, time scale T0, and
pressure scale p0, and have expressed physical quantities
in terms of these three basic units. As our unit length,
we have chosen length scale L0 ≡ W , time scale T0 ≡
μcW/γ , pressure scale p0 ≡ γ /W , and Capillary number
Ca = μc u0/γ . When expressing all relevant physical
quantities in these units, the viscosity of the continuous
phase μc, and the channel width W all equal unity. Hence,
the dimensionless droplet area, a, is defined as the droplet
area divided by the squared channel width, a = πR2

d/W 2.
Here, and in the remainder of this article, we will denote all
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Fig. 2 Boundary element mesh for the droplets and continuous phase.
Arrows illustrate the boundary integral paths. The self-integral is
solved in a periodic box. The length of periodic box is LPB . �cd and
�w are the two-dimensional droplet and channel contours, respectively

non-dimensional rescaled lengths and physical quantities by
lower case symbols.

2.1 Boundary Discretization

Boundary discretization is the first step towards solving
the self-consistent integral equation. There are a variety of
boundary elements in two dimensions. Since the boundary
element method is only implemented for boundaries, it is
unnecessary to mesh the whole domain. In this way, the
discretization of droplet-continuous phase interface into a
collection of N elements has been performed by cubic-
spline method. The advantage of this method is that the
slope and curvature at the end point of elements are
smooth. Because the droplet is closed surface, we have
applied periodicity conditions for the first and second
derivative at the first and last nodes. In contrast to the
droplet contours, the channel walls are not interpolated
by cubic splines and given by straight segments. Figure 2
illustrates that how the continuous and droplet domains are
coupled. The boundary integration is performed counter-
clockwise around a domain. Arrows present the boundary
integral paths. The mesh independence has been verified by
calculating the droplet area as function of time. According
to continuity equation, it is clear that the droplet area must
be constant over the time. It was found that 200 points
for droplets contour and 150 straight elements for fixed
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Fig. 3 Snapshots of a train of
droplets in the flat microfluidic
channel at different times. As
time goes, droplets drift normal
to channel walls in the
considered zigzag arrangement.
Numerical parameters are as
follows: a droplet size
a = 0.103, D = 0.901, θ = 30◦,
and Ca = 0.23; b a = 0.103,
D = 0.136, θ = 55◦, and
Ca = 0.23

Flow

T=0 T=9 T=25

b)

a)
T=0                      T=8 T=16

Time

boundaries are satisfactory and any increase beyond this
mesh size would lead to insignificant changes in the results.

The boundary integral (8) is discretized with a collection
method and integrated by Gauss − Legendre quadrature
with 12 nodes. Therefore, we calculate the pressure and
velocity at the collection points. After that, we update the
position of the points by using an explicit Euler method.
Using the explicit Euler, the interface droplet is advanced
in discrete time step. Since the points change their relative
positions on �cd with time, it is necessary to remesh the
splines at each time step. When the relative position of
two adjacent nodes on the interface is twice as big or
twice as small as the initial size, the points are remeshed
equidistantly using a cubic interpolation [40].

3 Results

In this work, we investigate fundamental mechanism of
droplets motion, velocity dependence, and explore their
limitations in practical applications. In this way, we consider
initial configuration of two-row zigzag arrangement of
pancake-like droplets flowing through the microfluidic
channel (see Fig. 1). As shown in Fig. 1, the interface-
interface separation distance is called, D, and relative
orientation of droplets is labeled by θ which is an angle
between D and x-axis. Through our numerical setup, θ = 0
corresponds to the case that all droplets flow on one line
which lies in the centerline of channel, while θ = 90
illustrates that droplet are exactly located on top of each
other. The channel width characterized by the uniformwidth
W. In dimensionless scale, the length scale L0 = W = 1

and the channel length is fixed by 100 times the channel
width and the aspect ratio of channel width to channel height
is 8, W/H = 8. The continuous fluid is injected from the
left side.

We consider the initial configuration of zigzag arrange-
ment of droplets in the flat channel. By flowing the droplets
through the channel, the motion of droplets perturbs the
flow of the continuous phase. This perturbation affects the
motion of other droplets in the microfluidic channel. There-
fore, the droplets tend to flow to the centerline of the channel
(see Supplementary Information, Movie). This property is
a direct result of the velocity profile of continuous phase
in the presence of droplets (pressure gradient along the y-
axis). Figure 3 illustrates the snapshots of a train of two-row
zigzag arrangement of droplets in the flat microfluidic chan-
nel. Our numerical results indicate that, when the interface-
interface separation distance is too large with respect to
the droplet diameter, the droplets reach the channel cen-
terline and they finally travel on the centerline of channel.
Figure 3a presents a continuous transition between two-row
zigzag structure to one-row structure. As one can see in
Fig. 3a, by passing time, the droplets drift normal to the
channel walls and the finally flow on the channel centerline.
An other regime has been observed in our numerical simu-
lation is that by passing the time, droplets migrate to cen-
terline of channel, but they cannot reach the centerline and
final arrangement is two zigzag configuration (see Fig. 3b).
Our numerical observations indicate that the final arrange-
ment depends on the droplet size, a, interface-interface
droplet distance, D, and relative orientation of droplets, θ .

Figure 4 illustrates the x- and y-position of droplets
flowing through a straight channel as a function of time



Braz J Phys (2019) 49:140–150 145

Fig. 4 a Numerical graph of
x-position of droplets trajectory
as a function of dimensionless
time for different values of θ . b
y-normalized position of
droplets trajectory versus
dimensionless time. According
to periodic symmetry of droplets
arrangement, the channel
domain is divided to periodic
boxes which contain two
droplets in each box. A detailed
description is given in the main
text. The horizontal and vertical
velocities of droplets are
calculated using the
position-time curve. Numerical
parameters are as follows:
D = 0.136, and a = 0.103
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for given value of droplet size. We evaluate x- and
y- components of average drift velocity (uD

x , uD
y ) by

using position-time plots. The average droplet velocity
is calculated from the initial position to relaxed point
where y-position is fixed (see Fig. 4). Figure 4a shows
the x-component graph of droplet displacement versus
time for different values of θ . It can be seen that the
graph consists of straight lines. Our numerical results
indicate that x-component of droplets velocity, uD

x , is
fixed by the flow rate of the continuous phase and it
is independent of droplet size and droplet arrangement,
θ . Figure 4b illustrates the y-positions of two droplets
traveling through a straight channel as a function of

dimensionless time for different values of θ . Figure 4b
demonstrates that the droplets tend to move to the
center of channel. However, the averaged vertical velocity
component of droplets, uD

y , strongly depends on the control
parameters such as droplet size, droplet distance, initial
configuration, relative orientation of droplets, and capillary
number.

The solid curves in Fig. 4b illustrate that the droplets
migrate towards channel centerline and finally they reach it.
By increasing the θ , they cannot flow on the centerline on
channel. It means that for given value of droplet size, a, and
droplet distance, D, there is a critical value of θc, at which
two-row to one-row transition does not occur. Figure 5
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Fig. 5 Critical relative
orientation of droplets, θc as
function of interface-interface
separation distance, D, for
different values of droplet size
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presents the behavior of θc as a function of droplet distance
for three values of droplet size.

Our numerical findings indicate that the droplet migra-
tion mechanism towards the channel center is strongly
dependent on initial configuration of droplets, droplet size,
viscosity ratio, and capillary number. In this work, we
investigate and discuss the influence relative orientation of
droplets, droplet size, viscosity ratio, and capillary number
on the drift velocity component of droplet normal to the
channel centerline.

3.1 Validation: Comparison with Experiments

To validate the consistency of the numerical model, we
compare our numerical data and shape with available
experimental data and images. At first, we use the
experimental image of Mehrotra et al. [41] to demonstrate
the validity of our numerical snapshots. Figure 6 illustrates
the microscopic images of droplets trajectory in the straight
microchannel. As one can see, droplets tend to travel to
the center of the channel. The image on the left was taken
at cross junction point A and the image on the right was
taken at detection point C (1 cm from the cross junction)
[41]. Now, we compare the trajectory reported by Karin and
Mason experimental observations [42] with the simulated
ones which were obtained using the same conditions of flow
rate and droplet size. Simulation and experiment results

Fig. 6 Experimental images of droplets trajectory in microfluidic
channel reported in Ref. [41]

seem to be in good quantitative agreement, as shown in
Fig. 7.

3.2 Effect of Relative Orientation of Droplets

First, we investigate the effect of relative orientation of
droplets on the vertical component of droplet velocity.
Figure 8 illustrates the vertical component of the droplet
velocity as a function of the relative orientation of droplets,
θ , for given droplet size (see Fig.1). Numerical results show
that uD

y first increases monotonically from zero (for the case
that droplets are flowing on center line of channel) to its
maximum value at θm. About θm, the change in velocity
is not affected so much. Above θm, falling in uD

y becomes
steep. Moreover, it is clear to see that, at given value of
θ , closer droplets have steeper slope in uD

y . Therefore, the
vertical velocity of droplets depends on the initial relative
orientation of droplets, θ , and droplet-droplet distance, D

(see Fig. 8 for more details). The maximum value also
strongly depends on the droplet distance and droplet size.

3.3 Effect of Droplet Size

Figure 9 presents the behavior of vertical velocity for
different droplet sizes at given value of droplet distance.
Numerical results indicate that the vertical component of
velocity strongly depends on the droplet size and θ . This
result comes from this physical fact that the droplet motion
in periodic box perturbs the flow of continuous phase. This
perturbation is a function of droplet size. When the droplet
distance being kept constant, by increasing the droplet size,
the vertical component of droplet velocity increases. The
motion of droplets result in symmetry breaking flow and
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Fig. 7 Migration of droplets
towards the centerline of
microchannel. y-normalized
position of droplet trajectory
versus dimensionless time.
Black solid squares are extracted
from the experimental data [42]
and black solid line corresponds
to our simulations
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induce dipolar flow fields, which bring 1
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hydrodynamic
interaction between the droplets [28, 29]. Therefore, long-
range hydrodynamic dipolar interaction attract droplets to
each other and align them along the centerline of channel.
This leads the zigzag pattern turns to the droplets flowing in
a straight centerline.

3.4 Effect of Viscosity Ratio

In order to quantify the dependence of the y-component
of droplet velocity on viscosity ratio, we fix droplet size
and droplet-droplet distance. The velocity of continuous

phase depends on the continuous phase viscosity. Therefore,
we keep the continuous phase viscosity and vary the
viscosity of droplet phase. Figure 10 illustrates the effect
of dispersed- to continuous-phase viscosity ratio on the
y-component of droplet velocity. According to Darcy
equation, the droplet velocity is proportional to the inverse
of viscosity. Therefore, as the viscosity ratio decreases, the
vertical velocity component of droplet increases. As one can
see in Fig. 10, at given value of capillary number, the y-
component of droplet velocity increases by decreasing the
viscosity ratio. For larger capillary number, increasing in
vertical velocity will be more steeper.

Fig. 8 vertical component of
droplet velocity as function of θ

for different interface-interface
separation distance of droplets,
D, and given value of droplet
size, a = 0.103
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Fig. 9 y-component of droplet
velocity, uD

y as a function of θ

for different droplet size , a, and
given value of droplet distance,
D = 0.091. The lines are drawn
only to guide eyes
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3.5 Effect of Capillary Number

In order to understand more the effect of droplet deforma-
bility on droplet migration, we fix droplet size and vary
the surface tension. To present our numerical result in
dimensionless unit, we have used the capillary number.
The droplet deformation increases with increasing the capil-
lary number at constant viscosity ratio. Figure 11 illustrates
the vertical velocity component of droplets as function
of capillary number. Our numerical results indicate that
the vertical velocity component increases as the capillary
number increases. Indeed, the droplet deformability has an
important role in the drift velocity. Both nondeformable

and deformable particles immersed in a continuous phase
produce a disturbance velocity. In solid particle case, the
disturbance velocity is symmetric and solid particles do
not drift normal to channel (see low values of capillary
number in Fig. 11). However, the disturbance velocity of
deformable droplets is asymmetric. This inhomogeneity of
droplet velocity in the normal direction creates an additional
non-zero mean value of normal velocity component. There-
fore, a deformable droplet in Darcy flow drifts towards the
centerline of channel where shear stress is minimized. Since
the shear stress is minimum at the center of the channel
and maximum at the channel walls, this pressure difference
across the channel width specifies the path of the droplets.

Fig. 10 Vertical component of
droplet velocity as a function of
viscosity ratio λ for three
different values of capillary
number. The lines are drawn
only to guide eyes. Numerical
data are droplet size , a = 0.103,
D = 0.125, and θ = 22◦
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Fig. 11 vertical component of
droplet velocity as a function of
capillary number Ca. The solid
line is drawn only to guide eyes.
Numerical data are droplet size,
a = 0.103, D = 0.125,
λ = 0.67, and θ = 22◦
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4 Conclusion

In this work, the velocity dependence of a periodic zigzag
arrangement of monodisperse disk-like droplets in a flat
microfluidic channel has been studied. Previous studies
have been based on phenomenological and experimental
models to investigate the packing configuration or collective
modes. By assuming quasi-two-dimensional flow, we
numerically solved the two-dimensional Darcy flow through
periodic array of disk-like droplets in a flat microfluidic
channel employing the boundary element method (BEM).
We have divided the channel space into periodic boxes to
tackle the simulation of periodic system. In what follows,
two droplets have been considered in one simulation box.

Our numerical results illustrate that the droplets tend to
travel to the center of the channel where minimum pressure
is created by the continuous phase while pressure would
be maximum at the edges. Horizontal velocity component
of droplets is recognized by the continuous phase velocity
which indicates droplets are dragged by the continuous
phase flow. On the other hand, vertical component of
droplet velocity strongly depends on the control parameters
like droplet size, droplet distance, initial configuration,
relative orientation of droplets, capillary number. We have
found that the vertical velocity profile of droplets increases
monotonically from zero where all droplets are flowing on
center line of channel, to its maximum value. After that,
the vertical velocity component decreases by increasing
the relative orientation of droplets. On the other hand,
perturbation created in the continuous flow is a result of
droplet moving through the channel. It has been found that
deformable and rigid droplets display different collective
dynamics. Rigid droplets do not drift normal to the channel

walls and therefore the vertical component of their velocity
is approximately zero. While, as the capillary number
increases, deformable drops tend to approach more to the
center of the channel at which the pressure is maximum. The
vertical velocity component of droplet strongly depends on
the droplet size. It increases by increasing the droplet size.
Viscosity ratio and capillary number are other parameters
influencing the control of the system. By knowing the
effects and behaviors of these parameters, they can be
controlled and manipulated over their application. Our
results play an important role in estimating the necessary
time to obtain the self-assembly.

The droplet migration could also be relevant for
other systems such as blood microcirculation. In blood
microcirculation, for instance it may play a key role in the
segregation of flowing blood phenomenon that could lead to
red blood cell aggregation [43].
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