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Abstract One-dimensional (1D) systems are useful labo-
ratories aiming further improvement of electronic structure
calculations. In order to simulate electron-electron interac-
tions, two types of expressions are commonly considered:
soft-Coulomb and exponential. For both cases, in the con-
text of density-functional theory (DFT), 1D systems can
be employed to gain insight into the ingredients accurate
exchange-correlation (XC) density functionals must incor-
porate. A question of major interest is the treatment of
strongly interacting situations, one of the main modern
challenges for DFT. In this manuscript, we propose a gener-
alization of preexisting XC potentials which can be applied
to investigate the transition from weak to strong interac-
tions. Specifically, we employ the intriguing behavior of
electrons confined in one dimension: the spin-charge sep-
aration, for which spin and charge are decoupled to form
two independent quasiparticles, spinons, and chargons. By
means of Friedel oscillations, our results indicate it is pos-
sible to reproduce the weak-strong interaction transition by
using a simple strategy we name, from previous works, spin-
charge separation correction (SCSC). In addition, SCSC
also yields good results in reproducing the constancy of the
highest occupied Kohn-Sham eigenvalues upon fractional
electron charges.
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1 Introduction

The Kohn-Sham (KS) formalism of density-functional the-
ory (DFT) [1, 2] considers noninteracting particles subject
to an effective potential which is able to include all electron-
electron interaction effects. Nevertheless, even though the
KS equations are formally exact, there is a tremendous dif-
ficulty in finding an effective potential which accurately
describes strongly interacting electrons, and this feature is
commonly considered as one of the main modern challenges
for DFT [3].

One-dimensional (1D) systems have emerged as very
instructive laboratories to the development of DFT. First, by
considering the simplicity of computational implementation
(in comparison with 3D systems). Second, in spite of the
simplicity, they allow the verification of exact constraints to
be satisfied by exchange-correlation (XC) density function-
als, in order to gain insight into the ingredients they must
incorporate. In addition, it is important to note that elec-
tronic confinement in one dimension can be even considered
in experimental realizations, for example, in applications to
SrCuO2 [4] and Sr2CuO3 [5].

In the context of 1D systems, recent manuscripts [6–8]
have employed two types of electron-electron interaction
models: soft-Coulomb and exponential, respectively defined
as:

vsoft−C
int (xi, xj ) = 1√

(xi − xj )2 + α2
, (1)

and

v
exp
int (xi, xj ) = A exp(−κ |xi − xj |), (2)

where α, A, and κ are controlled parameters for electrons
placed at positions xi and xj . In the context of DFT, these

http://crossmark.crossref.org/dialog/?doi=10.1007/s13538-017-0508-x&domain=pdf
http://orcid.org/0000-0002-6303-182X
mailto:daniel.vieira@udesc.br


394 Braz J Phys (2017) 47:393–399

recent instructive manuscripts have considered XC func-
tionals which are valid only for one specific choice of α,
A, and κ . However, as it has already been mentioned [6],
their variation could be used to investigate the transition
from weakly to strongly interacting systems. We specifi-
cally intend to give a contribution into this sense, that is,
constructing XC potentials with an open choice for α, A,
and κ . In the sequence, we shall apply our potentials in
situations for which strong interactions are known to be
relevant.

2 Spin-charge Separation Correction

One-dimensional systems assume non-Fermi-liquid behav-
ior, belonging to a special class of Tomonaga-Luttinger
liquids (TLL) [9, 10]. In the context of TLL, the 1D con-
finement yields strongly interacting electrons which can
break their spin and charge into two separated quasiparti-
cles, the first built from uncharged spin−1/2 (spinons) and
the second from charged spinless electrons (chargons) [11,
12]. This mechanism, entirely predicted by the theoretical
TLL approach and usually called spin-charge separation,
has recent evidences of experimental observation [4, 5, 13].

Initially proposed in the context of discrete Hubbard
chains [14, 15], we here shall apply a spin-charge separa-
tion correction (SCSC) in the limit of continuum and to the
exchange local-density approximation (xLDA) associated
with both, the soft-Coulomb and exponential 1D interac-
tion models. For uniform systems, it can be shown that the
(spin-unpolarized) exchange energy per length is given by:

• Soft-Coulomb [7]:

eUnif:soft−C.
x (n) = −n2

2
f

(π n

2

)
, (3)

with

f (z) =
∫ ∞

0

sin2 y

y2
√

y2 + α2 z2
dy. (4)

• Exponential [8, 16]:

e
Unif:expon.
x (n) = Aκ

2 π2

[
ln(1 + y2) − 2 y arctan y

]
,

(5)

with y = n π/κ .

In both cases, n labels the uniform electronic density per
length. The local-density approximation (LDA) exchange
energy is then written as:

ELDA
x =

∫
eUnif

x (n)

∣∣∣
n→n(x)

dx. (6)

In a noninteracting KS system, charge and spin are intrin-
sically coupled, leading conventional approaches like LDA

to fail when trying to describe strongly interacting systems.
Following the original idea of the SCSC approach [14, 15],
in order to reproduce the spin-charge separation, we con-
sider that the occupied states of a noninteracting KS system
(containing N = N↑ + N↓ electrons) are built by retaining
spin and charge together, however, at expense of the pres-
ence of holons (the chargon antiparticles), whose densities
are given by ρ+(x), defined as

ρ+(x) =
N↑∑
i=1

|ψi,↑(x)|2 +
N∑

i=N↑+1

|ψi,↓(x)|2, (7)

with ψi,σ (x) labeling the KS eigenvectors (see Fig. 3 of Ref.
[14] and Fig. 1 of Ref. [15]). Then, we shall consider the
following KS potential:

v
SCSC/xLDA
KS [n](x) = vext(x) + vH[n](x) + vLDA

x [n](x)

−vH[ρ+](x) − vLDA
x [ρ+](x)

≡ vext(x) + vH[n](x) + v
SCSC/xLDA
xc [n](x), (8)

where vext, vH, and vxc label, respectively, the external,
Hartree and XC potentials. Specifically,

vH[n](x) = δ EH[n]
δ n(x)

, (9)

with

EH[n] = 1

2

∫ ∫
vint(x

′, x′′) n(x′) n(x′′) dx′ dx′′, (10)

and

vLDA
x [n](x) = δ eUnif

x

δ n

∣∣∣∣
n→n(x)

. (11)

Here, n(x) is the ordinary electronic density (of spins +
charges together) as a function of position x:

n(x) =
∑

σ=↑,↓

Nσ∑
i=1

|ψi,σ (x)|2. (12)

The SCSC/xLDA XC potential of (8) is not a functional
derivative of a known XC energy functional, that is, it is
an ad hoc correction to the KS potential. Nevertheless, even
though model potentials may suffer from conceptual draw-
backs when calculating the associated energy functionals,
the use of potentials as seeds are regarded as a promising
route to new developments in DFT [17–21]. In addition,
note that the SCSC/xLDA XC potential proposed here
allows any choices for the soft-Coulomb and exponential
parameters α, A, and κ , at almost no increment in computa-
tional effort and without the necessity of constructing new
correlation density functionals.
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3 Application and Results

3.1 Density Oscillations

Friedel oscillations (FO) are oscillations of the electron
density which appear in confined systems and around inho-
mogeneities [22]. They have emerged as a useful laboratory
in the study of many-body systems [23, 24], since, par-
ticularly in one dimension, FO can be used as a tool to
identify the transition from the weakly to the strongly inter-
acting regime: the increase of interaction is accompanied by
an increase in the frequency of FO, whose value is known
to pass from 2kF (weak) to 4kF (strong interaction). The
resulting 4kF Friedel oscillations are usually referred to
as Wigner crystal oscillations [25–28], in reference to the
Wigner crystallization. Therefore, using the soft-Coulomb
and exponential interaction models, we intend to investigate
whether the SCSC/xLDA XC potential, by controlling the
α, A, and κ parameters, is able to recover the 2kF → 4kF

transition. It should be stressed that density functionals are
usually not able to yield such a transition. Only few suc-
cessful examples have been described in recent manuscripts
[29–31], which, however, do not employ soft-Coulomb or
exponential interaction models, as well as, the spin-charge
separation formalism. It is important to mention that the
successful results presented by G. Xianlong in 2012 [31]
have been obtained by means of considering an infinitesimal
spin-symmetry-breaking when N↑ = N↓, leading to a local-
spin-density approximation (LSDA). Here, following the
original SCSC idea [14], we shall consider an unpolarized
formalism, with N↑ = N↓ in all cases, and without any type
of spin-symmetry-breaking during the entire self-consistent
calculations.

Specifically, we shall consider N interacting electrons in
one dimension, with Hamiltonian written as:

Ĥ =
N∑

i=1

[
−1

2

d2

dx2
i

+ vext(xi)

]
+ 1

2

N∑
i,j=1
(i �=j)

vint(xi, xj ), (13)

and with a parabolic external potential given by:

vext(x) = 1

2
ω2 x2. (14)

Two limits are exactly known: (a) noninteracting (NI), with
α → ∞, A → 0 and trivial analytical solution; (b) strongly
interacting (SI), for which α → 0 and A → ∞ (with
κ → 0). The second case can be also treated analytically
by means of the so-called boson-fermion mapping; it is
known that strongly interacting electrons behave like nonin-
teracting spinless charges, with orbital occupation equal to
one even when N↑ = N↓ = N/2 electrons [32–34]. For

example, in a case with N noninteracting electrons, the total
wave function is given by a N × N Slater determinant:


(x1, x2, ..., xN) = 1√
N !

∣∣∣∣∣∣∣

φα(x1) · · · φβ(x1)
...

. . .
...

φα(xN) · · · φβ(xN)

∣∣∣∣∣∣∣
, (15)

where φυ(x) are the solution of the single-particle
Schrödinger equation:
[
−1

2

d2

dx2
+ vext(x)

]
φυ(x) = ευ φυ(x), (16)

with

φυ(x)
1√

2υυ!
(ω

π

) 1
4
e

−ωx2
2 Hυ

(√
ω x

)
, (17)

and Hυ are the Hermite polynomials. Considering the
ground-state, the density distributions of each limit (with
N↑ = N↓) are then given by:

nNI(x) = 2
N/2−1∑
υ=0

|φυ(x)|2, (18)

nSI(x) =
N−1∑
υ=0

|φυ(x)|2. (19)

In this context, two examples of curves are shown in Fig. 1,
for which we have chosen a system with N↑ = N↓ = 2 and
ω2 = 0.02. In this case, we have:

nNI(x) = 2
(ω

π

) 1
2
e−ωx2

[
1 + 2ωx2

]
, (20)

Fig. 1 (Color online) 1D systems. Exact density profiles for N = 4
electrons (with N↑ = N↓) confined in a harmonic potential given by
(14) and with ω2 = 0.02. The curve with two peaks corresponds to
the noninteracting limit expressed in (20), for which the soft-Coulomb
and exponential parameters of (1) and (2) are given by α → ∞ and
A → 0. The curve with four peaks, given by (21), refers to the strongly
interacting limit, with α → 0 and A → ∞ (with κ → 0)
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Fig. 2 (Color online) 1D
systems. Density profiles
obtained by means of the xLDA
and SCSC/xLDA approaches, as
defined in (8), considering
N = 4 electrons (with
N↑ = N↓) confined in harmonic
potentials. a, b Different values
of the soft-Coulomb parameter
α, with ω2 = 0.02. c, d
Different values of ω, with
α = 0.5. The sof-Coulomb
interaction is defined in (1), with
ω given in accordance with (14)

Fig. 3 (Color online) The same
as Fig. 2, but for the exponential
interaction potential. For each
panel, two of the three
parameters (A, κ , and ω) are
maintained fixed. The
exponential interaction is
defined in (2)
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and

nSI(x)= 3

2

(ω

π

) 1
2

e−ωx2
[

1+2ωx2− 4

3
ω2x4+ 8

9
ω3x6

]
.

(21)

Note a change in the frequency of Friedel oscillations, with
two peaks (2kF ) in the noninteracting limit and four peaks
(4kF ) in the strongly interacting situation. The last case is a
signature of strong interaction, with four peaks identifying
electrons as far apart as possible.

Next, we shall proceed KS-DFT calculations employing
the KS potential of (8). In Fig. 2a and b, we display curves
of density for the xLDA and SCSC/xLDA approaches, with
different values of the soft-Coulomb parameter α and ω2 =
0.02. The dashed-doted lines correspond to the curves pre-
sented in Fig. 1. Note that only for the SCSC the reduction
of α is accompanied by a change in the frequency of the
Friedel oscillations, from two to four peaks, indicating a cor-
rect weakly-strongly interacting transition. In Fig. 2c and
d, we consider different values of ω for a single α = 0.5,
where the dashed-doted lines indicate the strongly inter-
acting limit for ω2 = 0.002. It is known that a reduction
of average density in a confined region is accompanied by
an increment of correlation. Particularly, from Fig. 2d, we
observe that only SCSC/xLDA is able to recover such an

increment, with the transition 2kF → 4kF clearly present. It
is interesting to mention a known drawback of LDA: Elec-
trons tend to be excessively delocalized, what is usually
called delocalization error [3, 35, 36].

As second group in our analysis, we shall consider the
exponential interaction and its two open parameters, A and
κ . In each panel of Fig. 3, two of the three parameters (A,
κ , and ω) are maintained fixed. The same as the previous
figure, only the SCSC/xLDA XC potential is able to recover
the 2kF → 4kF transition as A is increased, as well as,
κ and ω are decreased, in accordance with the expected
results. As additional observation, different from Fig. 2a and
b, in Fig. 3a–d the accurate reproductions of the analyti-
cal weakly interacting curves are not present. Actually, we
could obtain such a reproduction by changing the parame-
ters A and κ . However, this is not our aim here, but verify
the 2kF → 4kF transition.

3.2 Highest Occupied Kohn-Sham Eigenvalues

An alternative to infer the accuracy of the approximations
adopted here is to analyze the constancy of the highest
occupied (HO) KS eigenvalues (εHO) upon fractional elec-
tron numbers. Even though they do not exist, systems with
fractionary electrons are widely employed as a tool to exam-
ine exact constraints density functionals must satisfy. In a

Fig. 4 (Color online) Highest occupied KS eigenvalues (εHO) upon a fractionary number of electrons N (with N↑ = N↓), considering the
soft-Coulomb interaction potential. All presented values have been subtracted by a constant factor, such that εHO = 0 for N = 3
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system with M = N + w (0 ≤ w ≤ 1) electrons, the total
ground-state energy is given by [15, 37]:

E(N + w) = (1 − w)E(N) + wE(N + 1), (22)

with density written as:

n(x) =
∑

σ=↑,↓

Nσ∑
i=1

fi,σ

∣∣ψi,σ (x)
∣∣2

, (23)

and 0 ≤ fi,σ ≤ 1. Assuming that only the HO KS orbital
can be fractionally occupied, Janak [38] has proved that:

δE

δM
= εHO = constant. (24)

In order to test the exact constraint of (24), we shall con-
sidere systems containing 3 ≤ N ≤ 4 electrons (with
N↑ = N↓ in all cases). Thus, (7) can be rewritten as:

ρ+(x) =
2∑

i=1

|ψi,↑(x)|2 +
4∑

i=3

fHO |ψi,↑(x)|2, (25)

since ψi,↑(x) ≡ ψi,↓(x) in our cases, with 0.5 ≤ fHO ≤ 1
(see Fig. 1 of Ref. [15]). In addition, we shall consider the
same harmonic external potential given by (14). In Fig. 4,
we present the comparison for the approximations xLDA
and SCSC/xLDA, obtained by means of the soft-Coulomb
interaction. Observe a clearer constancy provided by the
SCSC in comparison with the xLDA, upon the variation of
either parameters, α or ω. In Fig. 5, considering the expo-
nential interaction, the conclusions are equivalent, that is,
the SCSC/xLDA approaches tested here yield much more
accurate KS potentials.

Upon variation of parameters α, A, and κ , from Figs. 4
and 5, we observe the expected behavior, that is, the incre-
ment of interaction induces εHO to be less and less constant.
This is also commonly associated with the previously men-
tioned delocalization error of density-functionals. Upon
variation of ω, the more opened the harmonic external
potential is, the more constant εHO appears to be. A possible
explanation is the way LDA is designed, using homoge-
neous systems to describe inhomogeneous ones. Thus, the
decrease of ω induces a more homogenous situation.

Fig. 5 (Color online) The same
as Fig. 4, but for the exponential
interaction potential
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4 Summary

We have dealt with two interaction models—soft-Coulomb
and exponential—in one-dimensional systems. The XC
local-density approximations available in the literature for
both cases are limited to specific choices of parameters (α,
A, and κ), preventing the possibility of investigating the
crossover between the weak and strong correlation regimes.
We here have proposed a generalization, by means of a
spin-charge separation formalism applied to DFT (the SCSC
correction). This new XC potentials, for both soft-Coulomb
and exponential, are able to recover the 2kF → 4kF transi-
tion in the Friedel oscillations, as signatures of the transition
from weak to strong interactions. It should be mentioned
density functionals are usually not able to yield such a tran-
sition, with few exceptions presented in recent manuscripts
[29–31]. SCSC also yields good results in reproducing the
constancy of the highest occupied Kohn-Sham eigenvalues
upon fractional electron charges, which is one of the exact
constraints to be satisfied by density functionals—at any
interaction magnitudes.

The SCSC has been initially proposed in the context of
discrete Hubbard chains. We here have extended the idea
to the continuum, with a totally different Hamiltonian, and
the conclusion about its capacity of recovering the weak-
strong interaction transition remained unchanged. For this
reason, we believe the SCSC formalism, which is a very
simple approach—at almost no increment in computational
effort—may be successfully applied to other classes of
systems and density functionals, such as the generalized-
gradient approximations (GGAs).

In spite of recovering the correct 2kF → 4kF transition,
the SCSC/xLDA potentials presented here do not necessar-
ily reproduce the exact curves in the strongly interacting limit.
As improvement, beyond xLDA, the SCSC formalism can be
applied to LDA functionals which also incorporate correlation
explicitly as a function of parameters α, A, and κ .
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