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Abstract We study the quantization of two versions of
unimodular gravity, namely fully diffeomorphism-invariant
unimodular gravity and unimodular gravity with fixed met-
ric determinant, utilizing standard path integral approach.
We derive the BRST symmetry of effective actions corre-
sponding to several relevant gauge conditions. We observe
that for some gauge conditions, the restricted gauge struc-
ture may complicate the formulation and effective actions,
in particular, if the chosen gauge conditions involve the
canonical momentum conjugate to the induced metric on
the spatial hypersurface. The BRST symmetry is extended
further to the finite field-dependent BRST transformation,
in order to establish the mapping between different gauge
conditions in each of the two versions of unimodular gravity.
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1 Introduction

Motivated by different purposes and scenarios, a consid-
erable attention has been paid to alternative gravitational
theories in recent years. In particular, substantial efforts
have been invested in understanding the so-called cosmo-
logical constant problem [1–3], more precisely why the
vacuum energy does not produce a huge value for the
cosmological constant, many orders of magnitude above
the observed value. Within this context, a gravitational the-
ory, nearly as old as general relativity (GR) itself [4],
the so-called unimodular gravity (UG) [5], has once again
been analysed [6] as a potential way to approach the
problem.

Originally, the idea of unimodular gravity was conceived
when Einstein considered the unimodular condition [4],√−g = 1, as a convenient way to partially fix a coordi-
nate system in GR. The definition of unimodular gravity is
usually based on the invariance under a restricted group of
diffeomorphisms that leave the determinant of the metric
invariant, so that the determinant of the metric can be set
equal to a fixed scalar density ε0,

√−g = ε0. Alternatively,
one could consider restricted diffeomorphisms that preserve
the volume of spacetime [7]. The field equation for the met-
ric is either the traceless Einstein equation or, due to the
Bianchi identity, the Einstein equation with a cosmological
constant [8].

In comparison with GR, making the cosmological con-
stant an arbitrary constant of integration can be regarded as
the key feature of unimodular gravity. In order to achieve
it, however, there is no need to constrain the determi-
nant of the metric. One can, therefore, either extend the
above unimodular condition in order to enlarge its group of
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symmetry, e.g. by setting
√−g equal to the divergence of

a vector density field via parameterization of the spacetime
coordinates [9]. This kind of construction encompass the set
of theories known as fully diffeomorphism-invariant exten-
sions of unimodular gravity. The most prominent theories of
this kind are the Henneaux-Teitelboim theory [10] and the
fully diffeomorphism-invariant theory of unimodular grav-
ity [11]. The latter is no longer unimodular in the sense
that there is no condition on the determinant of the met-
ric. Nonetheless, it has been established how the theory is
canonically related to the conventional unimodular theory
of gravity [11].

Returning to the aforementioned cosmological con-
stant problem, a highly speculative but interesting (formal)
attempt to address this problem in unimodular gravity has
been made in [6, 12] and carefully revised in [11], but
with no decisive conclusion. Unimodular gravity has also
been used in investigating other fundamental problems in
gravitational theory. In particular, one may argue that since
the bulk part of the Hamiltonian of unimodular gravity is
nonvanishing, and the four-volume provides a cosmologi-
cal time, unimodular gravity could offer a new perspective
on the problem of time in quantum gravity and cosmol-
ogy [8, 13, 14]. However, later it was shown that the
problem of time persists in quantum unimodular gravity
[9].

In classical level, it is well known that unimodular grav-
ity produces the same physics as GR with a cosmological
constant [8]. However, a natural concern arises when such
equivalence is investigated in the quantum level, since a sys-
tematic and detailed study is necessary and any conclusion
beyond formal realm is always very subtle within grav-
ity. In addition, one may realize that quantization of each
version of unimodular gravity can be regarded as a poten-
tial quantization of GR. Therefore, in order to shed a new
light into several issues, analyses considering the canonical
structure and path integral quantization [11] and radiative
calculations [15] of unimodular gravity have been presented
recently. Although very interesting and important conclu-
sions were drawn from such studies, several formal aspects
still need to be answered via deeper analysis within this
scope. Hence, the implementation of BRST formulations
of the unimodular gravity theories plays an interesting and
important role in understanding the structure of these the-
ories. The BRST formulation is known to be a powerful
method for quantization of gauge theories, since it simpli-
fies the proofs of renormalizability, unitarity and anomaly
cancellation.

A suitable approach for such analysis consists in an
extension of BRST symmetry realized by allowing the
parameter to be finite and field-dependent, the so-called
finite field-dependent BRST (FFBRST) symmetry [16].
Ref. [16] deals with the issue of generalizing BRST symmetry

in Yang-Mills theories from the infinitesimal case to
the finite case, while attempting to include the case of
BRST-anti-BRST symmetry by using the same approach
as in the case of BRST symmetry, i.e. one that explic-
itly utilizes only a linear dependence on the corresponding
Grassmann-odd parameters. The FFBRST symmetry trans-
formations have found several applications in a wide area of
theoretical high energy physics.

Within the most relevant results obtained from an analy-
sis following FFBRST symmetry, we may cite, for instance,
a correct prescription for poles in the gauge field propa-
gators in noncovariant gauges has been derived with the
help of FFBRST transformation by connecting it to covari-
ant gauges [17]. The long outstanding problem of divergent
energy integrals in Coulomb gauge has also been reg-
ularized with the help of FFBRST transformation [18].
The generalization of both on-shell and off-shell BRST
as well as anti-BRST symmetries for Yang-Mills the-
ory are demonstrated explicitly where these are shown to
establish the mapping between various gauges of the the-
ory [19]. The celebrated Gribov issue [20–22] has also
been addressed by connecting the Yang-Mills theory (pos-
sessing Gribov copies) to the Gribov-Zwanziger theory
(free from Gribov copies within a Gribov horizon) within
the framework of FFBRST formulation (see Refs. therein
[23–28]). The FFBRST transformations have been applied
successfully in the study of many other gauge theories
[29–41].

An extension of FFBRST formulation has been estab-
lished for various theories at quantum level [42–52] utilizing
Batalin-Vilkovisky (BV) formalism [53]. Lavrov and Lecht-
enfeld [54] suggests an alternative, w.r.t. [16], approach to
generalize the BRST transformations in Yang-Mills theo-
ries, also by using a linear dependence on the correspond-
ing Grassmann-odd parameter, naturally without having
recourse to any quadratic dependence, since Ref. [54] does
not deal with the case of BRST-anti-BRST symmetry, and
so, any non-trivial quadratic dependence on the transfor-
mation parameters cannot occur. Moshin and Reshetnyak
in Ref. [55] have systematically incorporated the case of
BRST-anti-BRST symmetry in Yang-Mills theories within
the context of finite transformations that deals with the case
of a quadratic dependence on the corresponding parameters.
This follows from the calculation of the corresponding Jaco-
bian and from investigating the resulting quantum action.
The concept of finite BRST-anti-BRST symmetry is further
extended to the case of general gauge theories [56, 57] as
well as supersymmetric (SUSY) theories [58], whereas Ref.
[59, 60] generalizes the corresponding parameters to the
case of arbitrary Grassmann-odd field-dependent parame-
ters. We feel that the generalization of the BRST formalism
could be useful in understanding the quantization of uni-
modular gravity theories.
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The aim of the present paper is to investigate the features
of the two unimodular gravity theories in the BRST as well
as in generalized BRST framework. Specifically, we discuss
several potential gauge conditions for the two unimodu-
lar gravity theories, one theory with full diffeomorphism-
invariance and the other with fixed metric determinant. We
compute the induced ghost action for each set of gauge con-
ditions and write down the path integral for each effective
action. We demonstrate the nilpotent BRST symmetry of
the effective action and the corresponding transition ampli-
tude. Moreover, we extend the BRST symmetry by making
the transformation parameter finite and field dependent in
the case of unimodular gravity. The action is invariant under
such a non-linear transformation of the fields. However,
the functional measure is not covariant under the FFBRST
transformations. We compute the non-trivial Jacobian for
the functional measure under FFBRST transformation for
the two cases of unimodular gravity in general gauge con-
ditions. To illustrate this result we consider several gauge
conditions in both the fully diffeomorphism-invariant theory
and the theory with fixed metric determinant. Remark-
ably, we show that the FFBRST transformation with certain
parameters connects different gauges of the given theories.
In this way, we are able to approach the different sets of
gauge conditions. Suppose any calculation in one set of
gauge conditions is unambiguous, a similar procedure for a
different set of gauge conditions could possibly be arrived at
if one were to establish a connection between the different
sets of gauge conditions.

The paper is organized as follows. In Section 2, we dis-
cuss a unimodular gravity theory extension endowed of fully
diffeomorphism-invariant theory in various gauge condi-
tions. The respective BRST symmetry transformations are
derived and the gauge fixing and ghost action is determined
as well. A similar analysis for unimodular gravity theory
with a fixed metric determinant is presented subsequently
in Section 3. We analyse such theory in rather different
gauges than the full diffeomorphism-invariant case. Fur-
ther, in Section 4, we provide a review of the methodology
for the FFBRST symmetry analysis in the case of fully
diffeomorphism-invariant unimodular gravity. We compute
the explicit expression for Jacobian under FFBRST trans-
formation which depends on infinitesimal field-dependent
parameter explicitly. Under these circumstances, we show
that the Jacobian is responsible for the gauge connection
between different transition amplitudes. To be specific, we
connect harmonic gauge, synchronous gauge, axial gauge,
Lorentz gauge and planar gauge to each other for the fully
diffeomorphism-invariant case. Nonetheless, the unimod-
ular Faddeev-Popov gauge, averaged metric determinant
gauge and averaged metric trace gauge are connected to
each other in the fixed metric determinant case. In Section 5,
we summarize the results.

2 Unimodular Gravity with Full Diffeomorphism
Invariance

We start our analysis with a brief review of the fully
diffeomorphism-invariant unimodular gravity. But first, it
shows to be convenient to revise the Henneaux-Teitelboim
(HT) action [10]

SHT =
∫
M

d4x

(√−gR

κ
− λ(

√−g − ∂μτμ)

)

+
∮

∂M
d3x

(
2

κ

√|γ |K − λrμτμ

)
, (2.1)

where τμ is a vector density, the gravitational coupling con-
stant is denoted as κ = 16πG, γ is the determinant of the
induced metric on the boundary ∂M of spacetime, K is the
extrinsic scalar curvature of ∂M, and rμ is the outward-
pointing unit normal to the boundary ∂M. The (fully
diffeomorphism-invariant) unimodular condition has been
introduced into the action (2.1) as a constraint multiplied
by a Lagrange multiplier λ. The boundary term is included
as in GR, so that the variational principle for the action is
well defined without imposing boundary conditions on the
derivatives of the metric.

The field equations consist of the Einstein equation, the
equation for the cosmological constant variable,

∇μλ = 0, (2.2)

a (fully diffeomorphism-invariant) unimodular condition,

√−g = ∂μτμ. (2.3)

The HT action (2.1) can indeed be derived from the UG
action, (3.1), via parameterization of the spacetime coordi-
nates [9].

We consider now an alternative action that is also fully
diffeomorphism-invariant and retains the classical equiv-
alence with the other unimodular theories. The action is
written as

SDUG[gμν, λ, V μ] =
∫
M

d4x
√−g

(
R

κ
− λ − V μ∇μλ

)

+ 2

κ

∮
∂M

d3x
√|γ |K, (2.4)

where the variable V μ is a vector field. We shall refer
to this theory as the fully diffeomorphism-invariant uni-
modular gravity (DUG). The action (2.4) is arguably the
most transparent definition of such a theory. The action
(2.4) consists of the Einstein-Hilbert action with a variable
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cosmological constant λ, and a constraint term for λ. The
vector field V μ acts as a Lagrange multiplier that ensures
∇μλ is zero in every direction, and thus λ is a constant. Clas-
sical solutions to the field equations defined by the action
(2.4) are the same as for GR with a cosmological constant.

The Hamiltonian analysis follows straightforwardly for
the DUG action when written in the Arnowitt-Deser-Misner
(ADM) form [11]. After a systematic canonical procedure at
an arbitrary gauge-fixing χμ, the path integral for the given
theory is found to be [11]

ZDUG = N−1
∫ ∏

x

Dgμνg
00(−g)−

3
2 Nδ(χμ)

∣∣det
{
χμ,Hν

}∣∣ exp

(
i

�
SEH[gμν, �]

)
, (2.5)

where we denoted the super-Hamiltonian and super-
momentum constraints collectively as Hν = (HT ,Hi )

and SEH is the Einstein-Hilbert action with a cosmological
constant

SEH[gμν, �] = 1

κ

∫
M

d4x
√−g(R − 2�)

+ 2

κ

∮
∂M

d3x
√|γ |K. (2.6)

It should be noted that the value of � is not set by the
action. The cosmological constant � is an unspecified value
of the variable λ.

The present theory has the advantage of enabling the use
of the same (covariant) gauges for the diffeomorphism sym-
metry as in GR. In view of this, and bearing in mind the
BRST analysis, let us recall that the infinitesimal (diffeo-
morphism) gauge transformation of the metric is written as

δξgμν = ∂ρgμνξ
ρ + gμρ∂νξ

ρ + gρν∂μξρ. (2.7)

The inverse metric density is defined as

ĝμν = √−ggμν, (2.8)

and its transformation under (2.7) is obtained as

δξ ĝ
μν = ∂ρ(ĝμνξρ) − ĝμρ∂ρξν − ĝρν∂ρξμ. (2.9)

2.1 BRST Symmetry

The BRST transformation for the full set of fields, met-
ric field gμν , Faddeev-Popov ghost fields cμ, c̄ν , and
Nakanishi-Lautrup auxiliary field ημ, can be obtained from
the properties of infinitesimal diffeomorphisms as

δbgμν = (
∂ρgμνc

ρ + gμρ∂νc
ρ + gρν∂μcρ

)
θ, (2.10a)

δbc
μ = −cν∂νc

μθ, (2.10b)

δbc̄μ = ημθ, (2.10c)

δbημ = 0. (2.10d)

The inverse metric density (2.8) transforms under (2.10a) as

δbĝ
μν = (∂ρ(ĝμνcρ) − ĝμρ∂ρcν − ĝρν∂ρcμ

)
θ. (2.11)

The BRST transformation of the metric is obtained from
the infinitesimal diffeomorphism (2.7), with the replace-
ment ξρ → cρθ . The transformation of the ghost cμ was

obtained from the commutator of vector fields generating
the infinitesimal diffeomorphisms by replacing the vector
components with an anticommuting field: (c = cμ∂μ)

−1

2
[c, c]μ = −1

2
(cν∂νc

μ − ∂νc
μcν) = −cν∂νc

μ. (2.12)

The transformation of the anti-ghost c̄μ is proportional to
the auxiliary field ημ that acts as a Lagrange multiplier
of gauge conditions. The transformations (2.10a)–(2.10d)
commute with spacetime differentiation.

2.2 Gauge Fixing and Ghost Action

Next, we derive the BRST invariant gauge fixing and ghost
action SG

gf +gh for different sets of gauge conditions, deter-
mining thus the respective path integral expression. More-
over, as aforementioned, we shall restrict our discussion
to covariant and one non-covariant gauges for the DUG
theory, while for the UG theory, we will consider only
non-covariant gauges.

2.2.1 Harmonic Gauge

Let us start our analysis by choosing the transverse har-
monic gauge,

∂νĝ
μν = 0. (2.13)

The gauge and ghost action can be written in the form

SH
gf +gh =

∫
d4x

(−ημ∂νĝ
μν + ∂ν c̄μ

(
∂ρ(ĝμνcρ)

− ĝμρ∂ρcν − ĝρν∂ρcμ
))

(2.14)

In the action (2.14), the terms that involves the gauge con-
ditions (2.13) could be absorbed into the gauge-fixing terms
via a shift transformation of the auxiliary fields ημ. Still,
we choose to keep those terms in order to maintain mani-
fest BRST invariance. Thus, we find the path integral in the
harmonic gauge

ZH
DUG = N−1

∫ ∏
x

DgμνDημDc̄μDcνg00(−g)−
3
2

× exp

(
i

�

[
SEH [gμν, �] + SH

gf +gh

])
. (2.15)
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2.2.2 Lorentz Covariant α-gauge

A direct generalization of the above condition is the Lorentz
covariant α-gauge

∂νĝ
μν + αĝ

μν
R ην = 0, (2.16)

where ĝ
μν
R is a fixed reference background metric density.

The limit α → 0 reproduces the harmonic gauge. The gauge
and ghost action with an arbitrary constant parameter α is
written as

Sα
gf +gh=

∫
d4x
(
−α

2
ĝ

μν
R ημην −ημ∂νĝ

μν +∂νc̄μ

(
∂ρ(ĝ

μνcρ)

− ĝμρ∂ρcν − ĝρν∂ρcμ
))

, (2.17)

which is similar to the action obtained in GR [61]. Hence,
the BRST invariant path integral in the α-gauge reads

Zα
DUG = N−1

∫ ∏
x

DgμνDημD c̄μDcνg00(−g)−
3
2

× exp

(
i

�

[
SEH [gμν, �] + Sα

gf +gh

])
. (2.18)

2.2.3 Axial Gauge

A well-known condition by computation purposes is the
axial gauge. This condition is suitable, in particular, due to
the fact that the ghost fields are decoupled and can simply
be dropped. It reads

aνĝ
μν = 0, (2.19)

where aν is a fixed one-form. The gauge and ghost action
can be written in the following form

SA
gf +gh =

∫
d4x

(−a(μην)ĝ
μν − a(μc̄ν)

[
∂ρ(ĝμνcρ)

− ĝμρ∂ρcν − ĝρν∂ρcμ
])

, (2.20)

and finally, we find the path integral in the axial gauge as

ZA
DUG = N−1

∫ ∏
x

DgμνDημD c̄μDcνg00(−g)−
3
2

× exp

(
i

�

[
SEH [gμν, �] + SA

gf +gh

])
. (2.21)

2.2.4 Planar Gauge

Again, we can consider an extension, the planar gauge,
by introducing to the axial gauge an arbitrary constant
parameter α such as

aνĝ
μν + αĝ

μν
R ην = 0. (2.22)

The limit α → 0 reproduces the axial gauge. The BRST
invariant gauge and ghost action is written in the form

SP
gf +gh =

∫
d4x
(
−α

2
ĝ

μν
R ημην − a(μην)ĝ

μν − a(μc̄ν)

× [∂ρ(ĝμνcρ)−ĝμρ∂ρcν −ĝρν∂ρcμ
])

. (2.23)

We thus find the following expression for the path inte-
gral in the planar gauge

ZP
DUG = N−1

∫ ∏
x

DgμνDημD c̄μDcνg00(−g)−
3
2

× exp

(
i

�

[
SEH [gμν, �] + SP

gf +gh

])
. (2.24)

2.2.5 Synchronous Gauge

By means of complementarity, let us consider another well-
known condition, the synchronous gauge. It reads

χ0 = g00 + 1 = 0, χi = g0i = 0, (2.25)

where i = 1, 2, 3. We now obtain a non-covariant expres-
sion for the gauge and ghost action

SS
gf +gh =

∫
d4x

√−g
[
−η0(g00 + 1) − ηig0i − c̄0∇μcμ

− c̄μ
(
g0μ∇νc

ν +∂νg0μcν +g0ν∂μcν +gμν∂0c
ν
)]

, (2.26)

where

∇μcμ = ∂μcμ + 1

2
gμν∂ρgμνc

ρ. (2.27)

Finally, the path integral in this gauge is written as

ZS
DUG = N−1

∫ ∏
x

DgμνDημD c̄μDcνg00(−g)−
3
2

× exp

(
i

�

[
SEH [gμν, �] + SS

gf +gh

])
. (2.28)

With this last study, we conclude the first analysis by
discussing the BRST invariant approach for the DUG the-
ory. This allowed us to determine consistently the respective
gauge fixing and ghost action, and subsequently the transi-
tion amplitude, for a series of gauge conditions. We shall
now extend this study to the UG theory.

3 Unimodular Gravity with Fixed Metric
Determinant

Once the BRST analysis of the UG theory will resort to sub-
tle points of the Hamiltonian analysis [11], we shall make a
brief review of relevant aspects of the Hamiltonian analysis
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of UG. The standard approach to define UG is to introduce
the unimodular condition into Einstein-Hilbert action as a
constraint multiplied by a Lagrange multiplier λ,

SUG =
∫
M

d4x

(√−gR

κ
−λ(

√−g−ε0)

)

+ 2

κ

∮
∂M

d3x
√|γ |K. (3.1)

where ε0 is a fixed scalar density, such that ε0d
4x defines

a proper volume element. Then, we introduce the ADM
variables. The above action is written in ADM form as

SUG =
∫

dt

∫
�t

[
N

√
h

κ
(KijGijklKkl + (3)R)

− λ(N
√

h − ε0)

]
+ SB, (3.2)

where N is the lapse variable and Ni is the shift vector on
the spacelike hypersurface �t , the extrinsic curvature Kij is
written as

Kij = 1

2N

(
∂thij − DiNj − DjNi

)
, (3.3)

where D is the covariant derivative that is compatible with
the (induced) metric hij on �t , and hij is the inverse metric,
hijh

jk = δk
i , and the boundary contribution SB is given as

in GR.
The Hamiltonian analysis leads to the following path

integral in the χ̃μ gauge condition [11],

ZUG = N−1
∫ ∏

xμ

Dgμνg
00(−g)−

3
2 δ

(∫
�t

(√−g − ε0
)

∫
�t

√
h

)

×Nδ(χ̃μ)

∣∣∣det
{
χ̃μ, H̃ν

}∣∣∣ exp

(
i

�
SEH[gμν]

)
. (3.4)

It should be noted that the δ-function imposes the unimod-
ular condition to hold on each slice �t of spacetime in
average,

∫
�t

(
√−g − ε0) = 0.

In view of the BRST symmetry, let us recall some subtle
points involving the gauge generators of UG. In unimodu-
lar gravity with fixed metric determinant, the ADM gauge
transformation of a function ϕ of the canonical variables hij

and πij is given as

δξ̃ ϕ =
{
ϕ,

∫
�t

H̃μξ̃μ

}
, H̃μξ̃μ = H̄T ξ̄ + Hiξ

i , (3.5)

where the gauge parameter ξ̃μ consists of an average-free
scalar and a three-vector, ξ̃μ = (ξ̄ , ξ i),

∫
�t

√
hξ̄ = 0, and

the generators are the first class (average-free) Hamiltonian
and super-momentum constraints H̃μ = (H̄T ,Hi ),

H̄T = κ√
h

πijGijklπkl −
√

h

κ
(3)R ≈ 0, (3.6)

Hi = −2hijDkπ
jk ≈ 0, (3.7)

where the overline denotes average-free components, whose
integral over space vanishes, defined as

κ√
h

πijGijklπkl = κ√
h

πijGijklπ
kl

−
√

h∫
�t

√
h

∫
�t

κ√
h

πijGijklπ
kl, (3.8)

√
h (3)R = √

h (3)R −
√

h∫
�t

√
h

∫
�t

√
h (3)R. (3.9)

Since the zero mode of the Hamiltonian constraint

H0 =
∫

�t

HT =
∫

�t

(
κ√
h

πijGijklπ
kl −

√
h

κ

(3)R

)

+ λ0

∫
�t

√
h ≈ 0 (3.10)

is a second class constraint in the present theory, it does not
generate a gauge transformation.

The average-free gauge parameter ξ̄ depends of the met-
ric so that it remains average-free under a variation of the
metric,

δ

∫
�t

√
hξ̄ =

∫
�t

(
δ
√

hξ̄ + √
hδξ̄
)

= 0. (3.11)

This implies that the gauge parameter ξ̄ can be expressed as

ξ̄ = ξ − ξ0, ξ0 = 1∫
�t

√
h

∫
�t

√
hξ, (3.12)

where ξ is an unrestricted field that does not depend on any
variable. Now, the identity

∫
�t

√
hξ̄ = 0 can be used any-

where, even inside of Poisson brackets. On the other hand,
it means that ξ̄ has a nonvanishing Poisson bracket with the
canonical momentum πij .

In the ADM gauge transformation (3.5) we can write the
average-free part of the generator as

∫
�t

H̄T ξ̄ =
∫

�t

HGR
T ξ − HGR

0 ξ0, (3.13)
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where HGR
0 = ∫

�t
HGR

T and

HGR
T = κ√

h
πijGijklπ

kl −
√

h

κ

(3)R. (3.14)

Note that HGR
T and HGR

0 are not constraints in the present
theory, since they do not include the cosmological term√

hλ0 (see (3.10)). Actually, we shall use the following
equivalent form of the full generator of the gauge transfor-
mations (3.5)

∫
�t

H̃μξ̃μ =
∫

�t

(
HGR

T ξ̄ + Hiξ
i
)

, (3.15)

since it avoids the appearance of HGR
0 in evaluation of the

transformations.
Gauge transformation of canonical variables are obtained

from (3.5) as follows. The spatial metric transforms as

δξ̃ hij = 2κ√
h
Gijklπ

kl ξ̄+∂khij ξ
k+hik∂j ξ

k+hkj ∂iξ
k, (3.16)

since
{
hij , ξ̄

} = 0. The canonical momentum πij trans-
forms as

δξ̃π
ij =

[
1

2
hij

(
κ√
h

πklGklmnπ
mn +

√
h

κ

(3)R

)

− κ√
h

(
2π

(i
kπ

j)k − πijhklπ
kl
)

−
√

h

κ

(
(3)Rij − DiDj + hijDkDk

) ]
ξ̄

+ ∂k

(
πij ξk

)
− πik∂kξ

j − πkj ∂kξ
i

+
(

1∫
�t

√
h

∫
�t

κ√
h

πijGijklπ
kl −

√
h

κ

(3)R

)

×1

2

√
hhij ξ̄ . (3.17)

The algebra of gauge transformations is obtained as

δξ̃ δψ̃ϕ − δψ̃ δξ̃ ϕ = δ[
ξ̃ ,ψ̃

]ϕ, (3.18)

where we find the algebra of gauge parameters as

[
ξ̃ , ψ̃

]0 = −
(
ξ i∂iψ̄ − ∂i ξ̄ψi

)
,

[
ξ̃ , ψ̃

]i = −hij
(
ξ̄ ∂j ψ̄−∂j ξ̄ ψ̄

)−(ξj ∂jψ
i − ∂j ξ

iψj
)

. (3.19)

3.1 BRST Symmetry

The BRST transformation is obtained as

δbhij =
(

2κ√
h
Gijklπ

kl c̄+∂khij c
k+hik∂j c

k+hkj ∂ic
k

)
θ, (3.20a)

δbπ
ij =

[
1

2
hij

(
κ√
h

πklGklmnπ
mn +

√
h

κ

(3)R

+
√

h∫
�t

√
h

∫
�t

(
κ√
h

πijGijklπ
kl −

√
h

κ

(3)R

))

− κ√
h

(
2π

(i
kπ

j)k − πijhklπ
kl
)

−
√

h

κ

(
(3)Rij − DiDj + hijDkDk

)]
c̄θ

+
(
∂k

(
πij ck

)
− πik∂kc

j − πkj ∂kc
i
)

θ, (3.20b)

δbc̄ = −1

2

[
c̃, c̃
]0

θ = ci∂i c̄θ, (3.20c)

δbc
i = −1

2

[
c̃, c̃
]i

θ =
(
hij c̄∂j c̄ + cj ∂j c

i
)

θ, (3.20d)

δbc̄
∗ = η̄θ, (3.20e)

δbc
∗
i = ηiθ, (3.20f)

δbη̄ = 0, (3.20g)
δbηi = 0. (3.20h)

The BRST transformation of metric hij and the momen-
tum πij are obtained from their gauge transformations
(3.16) and (3.17), respectively, by replacing the gauge with
parameters as ξ̄ → c̄θ and ξ i → ciθ . The transformation
of the ghosts c̃μ = (c̄, ci) is obtained from the algebra of
gauge parameters (3.19) with the same replacement. Since
the generator H̄T has a vanishing integral over space, the
ghosts c̄, c̄∗ and the field η̄ are average-free as well.

3.2 Gauge Fixing and Ghost Action

As previously stated, the gauge generators in this unimod-
ular setting with fixed metric determinant are the average-
free Hamiltonian and super-momentum constraints, H̃μ =
(H̄T ,Hi ), demanding that one of the gauge conditions χ̃μ

has to be average-free, so that the number of gauge condi-
tions matches the number of generators exactly. We choose
it to be the zero-component, since the zero mode of the
super-Hamiltonian is a second-class constraint, and hence
we denote χ̃μ = (χ̄0, χi).

3.2.1 Unimodular Faddeev-Popov Gauge

The usual Faddeev-Popov (FP) gauge [62] is defined as

χ0
FP = ln h − � ≈ 0, χ1

FP = h23 ≈ 0, χ2
FP = h31 ≈ 0,

χ3
FP = h12 ≈ 0, (3.21)
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where ln h = ln(det hij ) and � is a fixed function. The
average-free component ln h of ln h is not a scalar density of
any weight. Hence, it is unclear which measure we should
use to integrate ln h over �t . Here, we treat ln h as a scalar,
so that

ln h = ln h − 1∫
�t

√
h

∫
�t

√
h ln h. (3.22)

The unimodular FP gauge conditions are thus defined as

χ̄0
FP = ln h − �̄ ≈ 0, χi

FP = 1

2
dijkhjk ≈ 0, (3.23)

where �̄ is a function with zero average,
∫
�t

√
h�̄ = 0, and

the last three conditions χi
FP (i = 1, 2, 3) are identical to

those in (3.21), which impose the off-diagonal components
of the metric to vanish, but written with the help of a strictly
positive permutation symbol

dijk =
{

1, if the indices ijk are any permutation of 123,
0, if any of the indices ijk are equal.

(3.24)

The BRST invariant gauge and ghost action in the unimod-
ular FP gauge is given by

SFP
gf +gh =

∫
d4x

(
− √

hη̄
(
ln h − �̄

)− 1

2

√
hηid

ijkhjk

− √
hc̄∗ (ln h − �̄ + 2

) (
Kc̄ + Dic

i
)

− √
hc∗

i d
ijk

(
Kjk + 1

2
hjkK

)
c̄

− 1

2

√
hc∗

i d
ijk
(
hjkDlc

l + ∂lhjkc
l + hjl∂kc

l

+ hlk∂j c
l
))

. (3.25)

It should be noted that (3.25) is written in terms of the
extrinsic curvature Kij and not momentum πij . This is
because when the canonical momenta are integrated in the
path integral, the momentum πij is expressed in terms of
the metric variables as

πij =
√

h

κ
GijklKkl. (3.26)

Moreover, in obtaining (3.25), we used the fact that
the (average-free) ghost c̄∗ has a vanishing average, so
that for any time-dependent function f (t) we obtain∫

d4xc̄∗√hf (t) = 0.
The path integral for the unimodular Faddeev-Popov

gauge condition is written as

ZFP
UG = N−1

∫ ∏
x

DgμνDη̄DηiDc̄∗Dc̄Dc∗
i Dcj g00(−g)−

3
2

×δ

⎛
⎝
∫
�t

(√−g− ε0
)

(−g00
)− 1

2
∫
�t

√
h

⎞
⎠exp

(
i

�

[
SEH [gμν ]+SFP

gf +gh

])
. (3.27)

3.2.2 Averaged Metric Determinant and Spatial Harmonic
Gauge

To illustrate the analysis with further examples we consider
now a mixed unimodular condition. The first (average-free)
gauge condition is chosen to agree with the unimodular
Faddeev-Popov gauge (3.23), while the other conditions
define harmonic coordinates on each spatial hypersurface
�t :

χ̄0
FP = ln h − �̄ ≈ 0, χi

H = ∂j

(√
hhij

)
≈ 0. (3.28)

The BRST invariant gauge and ghost action reads

SDH
gf +gh =

∫
d4x

(
−√

hη̄
(
ln h − �̄

)− ηi∂j

(√
hhij

)

− √
hc̄∗ (ln h − �̄ + 2

) (
Kc̄ + Dic

i
)

+ 2c∗
i ∂j

[√
h

(
Kij − 1

2
hijK

)
c̄

]

− c∗
i ∂j ∂k

(√
hhik

)
cj

− c∗
i ∂j

(√
hhij

)
∂kc

k + c∗
i ∂j

(√
hhjk

)
∂kc

i

+ c∗
i

√
hhjk∂j ∂kc

i
)

. (3.29)

Once again, the momentum has been expressed in terms
of metric variables (3.26), and we denote Kij = hikhjlKkl .
Finally, the path integral is given as

ZDH
UG = N−1

∫ ∏
x

DgμνDη̄DηiDc̄∗Dc̄Dc∗
i Dcjg00(−g)−

3
2

× δ

⎛
⎝
∫
�t

(√−g − ε0
)

(−g00
)− 1

2
∫
�t

√
h

⎞
⎠

× exp

(
i

�

[
SEH [gμν] + SDH

gf +gh

])
. (3.30)

3.2.3 Averaged Metric Trace and Spatial Harmonic Gauge

Another alternative gauge condition is proposed as follows:
the first gauge condition is chosen to be the average-free
component of the trace of the spatial metric, while the other
conditions define harmonic coordinates on each spatial
hypersurface �t :

χ̄0
T = tr(hij ) ≈ 0, χi

H = ∂j

(√
hhij

)
≈ 0, (3.31)

where

tr(hij ) = tr(hij ) − 1∫
�t

√
h

∫
�t

√
h tr(hij );

tr(hij ) =
∑

i

hii . (3.32)
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Hence, the BRST invariant gauge and ghost action in the
trace gauge condition is found to be

STH
gf +gh =

∫
d4x

(
−√

hη̄tr(hij ) − ηi∂j

(√
hhij

)

− √
hc̄∗tr(hij )

(
Kc̄ + Dic

i
)

−√
hc̄∗∑

i

(
2Kii c̄ + ∂jhiic

j + 2hij ∂ic
j
)

+ 2c∗
i ∂j

[√
h

(
Kij − 1

2
hijK

)
c̄

]

− c∗
i ∂j ∂k

(√
hhik

)
cj − c∗

i ∂j

(√
hhij

)
∂kc

k

+ c∗
i ∂j

(√
hhjk∂kc

i
))

. (3.33)

Finally, the path integral is written as

ZTH
UG = N−1

∫ ∏
x

DgμνDη̄DηiDc̄∗Dc̄Dc∗
i Dcjg00(−g)−

3
2

× δ

⎛
⎝
∫
�t

(√−g − ε0
)

(−g00
)− 1

2
∫
�t

√
h

⎞
⎠

× exp

(
i

�

[
SEH [gμν] + STH

gf +gh

])
. (3.34)

Before concluding this section, we mention a problem
that can appear in the present theory if one uses a (average-
free) gauge condition that involves the canonical momentum
πij . In particular, adapting the usual Dirac gauge conditions
to the present unimodular theory with fixed metric determi-
nant involves a problem which is discussed in Appendix A.

With this section, we conclude the first part of our analy-
sis by discussing the BRST invariant approach for the DUG
and UG theory. We have determined the BRST invariant
path integral for both theories for a set of gauge condi-
tions. We now proceed further and extend the previous
study by establishing connections between transition ampli-
tude in different gauges. To achieve this goal, we shall first
introduce the finite field-dependent BRST transformations.

4 The Generalized BRST Transformation

In this section, we illustrate the FFBRST (generalized
BRST) formulation [16] for the unimodular gravity the-
ory with full diffeomorphism invariance in an elegant way.
For that matter, we first write the BRST transformation
for all the fields of the theory, (2.10a)–(2.10d), denoted
collectively as φa(x) ≡ φ(x), as follows:

φ(x) −→ φ′(x) = φ(x) + sbφ(x) θ, (4.1)

where sbφ is the Slavnov variation of the field φ(x) and θ is
a Grassmann global parameter.

To generalize the BRST symmetry, we first make all
the fields φ(x) depend on a continuous parameter κ (0 ≤
κ ≤ 1) in such a way that the conditions φ(x, κ = 0) ≡
φ(x) and φ(x, κ = 1) ≡ φ′(x) = φ(x) + sbφ(x)θ[φ]
stand for the original field and the FFBRST transformed
field, respectively, where θ [φ] is now a (functional) finite
field-dependent parameter. Moreover, the FFBRST trans-
formation is justified by the following infinitesimal field-
dependent BRST transformation:

dgμν(x, κ)

dκ
= (

∂ρgμνc
ρ + gμρ∂νc

ρ + gρν∂μcρ
)
θ ′[φ(κ)],

dcμ(x, κ)

dκ
= −cν∂νc

μθ ′[φ(κ)],
dc̄μ(x, κ)

dκ
= ημθ ′[φ(κ)],

dημ(x, κ)

dκ
= 0. (4.2)

Integrating these equations with respect to κ , we find the
following field-dependent transformations

gμν(x, κ) = gμν(x, 0) + (∂ρgμνc
ρ + gμρ∂νc

ρ

+ gρν∂μcρ
)
θ [φ(κ)],

cμ(x, κ) = cμ(x, 0) − cν∂νc
μθ [φ(κ)],

c̄μ(x, κ) = c̄μ(x, 0) + ημθ [φ(κ)],
ημ(x, κ) = 0, (4.3)

where we have θ [φ(κ)] as a functional of the fields φ(x, κ)

[16]

θ [φ(κ)] =
∫ κ

0
dκ θ ′[φ(κ)],

= θ ′[φ(0)]
exp
(
κ δθ ′

δφ
sbφ
)

− 1

δθ ′
δφ

sbφ
. (4.4)

At the boundary value of κ , i.e. κ = 1, these expressions
yield the FFBRST transformations,

δbgμν(x) = (
∂ρgμνc

ρ + gμρ∂νc
ρ + gρν∂μcρ

)
θ [φ(1)],

δbc
μ(x) = −cν∂νc

μθ [φ(1)],
δbc̄μ(x) = ημθ [φ(1)],
δbημ(x) = 0, (4.5)

where finite field-dependent parameter reads θ [φ(1)] =
θ [φ(κ)]κ=1.

Here, we notice that the resulting FFBRST transforma-
tions with field-dependent parameter (4.5) are a symmetry
of the effective action. However, the path integral measure
changes non-trivially under these leading thus to a non-
trivial Jacobian. Hence, it is necessary derive the explicit
expression of the Jacobian for the functional measure under
the FFBRST transformations for an arbitrary θ parameter.
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4.1 Jacobian for Field-dependent BRST Transformation

To compute the Jacobian we first define the path integral for
unimodular gravity theory in a general gauge as follows,

Z =
∫

D� e

(
i
�
SEH [φ]+Sgf +gh[φ]

)
, (4.6)

where D� is the (BRST) covariant functional measure and
Sgf +gh[φ] refers to the general gauge-fixing and ghost part
of the effective action. In order to determine the Jacobian
expression for the functional measure under the FFBRST
transformations, we write [16]

D�(κ) = J (κ)D�(κ) = J (κ + dκ)D�(κ + dκ). (4.7)

Since the transformation from φ(κ) to φ(κ + dκ) is viewed
as an infinitesimal one, this can further be written as [16]

J (κ)

J (κ + dκ)
=
∑
φ

±δφ(κ + dκ)

δφ(κ)
, (4.8)

where ± sign is used for bosonic and fermionic fields,
respectively. Now, upon Taylor expansion, the above expres-
sion yields

1 − 1

J

dJ

dκ
dκ = 1 + dκ

∫
d4x

∑
φ

±sbφ(x, κ)
δθ ′[φ(κ)]

δφ(κ)
,

(4.9)

which further simplifies to

d ln J [φ]
dκ

= −
∫

d4x
∑
φ

±sbφ(x, κ)
δθ ′[φ(κ)]

δφ(κ)
. (4.10)

We now perform the integration over κ (after Taylor expan-
sion) with an appropriate limit, to get the following:

ln J [φ] = −
∫ 1

0
dκ

∫
d4x

∑
φ

±sbφ(x, κ)
δθ ′[φ(κ)]

δφ(κ)
,

= −
⎛
⎝
∫

d4x
∑
φ

±sbφ(x)
δθ ′[φ]

δφ

⎞
⎠ . (4.11)

This result leads to the final expression for the Jacobian
generated from a variation of the functional measure under
FFBRST transformations with an arbitrary parameter

J [φ] = exp

⎛
⎝−

∫
d4x

∑
φ

±sbφ(x)
δθ ′[φ]

δφ

⎞
⎠ . (4.12)

We remark here that this expression of Jacobian is rather
elegant than the one originally derived in [16]. Since the
Jacobian obtained here depends explicitly on the parameter
θ ′.

Now, with the expression (4.12) for the Jacobian (gen-
erated by FFBRST transformation) we find that the path
integral (4.6) changes as

∫
D�′ e

(
i
�
SEH [φ′]+Sgf +gh[φ′]

)

=
∫

J [φ]D� e

(
i
�
SEH [φ]+Sgf +gh[φ]

)

=
∫

D� e

(
i
�
SEH [φ]+Sgf +gh[φ]−∫ d4x

(∑
φ ±sbφ

δθ ′
δφ

))
. (4.13)

This is the FFBRST transformed path integral of the uni-
modular gravity theories (both DUG and UG) with an
extended action, where the gauge fixing and ghosts actions
are modified by the Jacobian. We emphasize that the form
of the functional parameter θ ′ should be chosen so that
the Jacobian (4.12) does not produce any physical change
in the quantum theory. Otherwise, one could choose θ ′ so
that the physical content of the quantum theory is modi-
fied, e.g. producing new vertices and/or propagating modes,
which would not be a symmetry transformation. For this
matter we emphasize that we consider in our analysis only
the path integral of the vacuum transition amplitude. We
shall now illustrate this result by establishing the connec-
tion between different gauges of the two presented versions
of unimodular gravity.

4.2 Connection of Different Gauges in Fully
Diffeomorphism-invariant Theory

In this section we study the connection of various important
gauges of the fully diffeomorphism-invariant unimodular
gravity (as stated in Section 2). In particular, notice that
these are well-defined gauges, since then there should be no
physical change in the quantum theory. We will show the
connection between the following gauges: (i) harmonic and
synchronous gauges, (ii) axial and harmonic gauges, (iii)
harmonic and Lorentz gauges, and, at last, (iv) Lorentz and
synchronous gauges.

4.2.1 Harmonic to Synchronous Gauge

For this analysis, we follow the standard procedure as dis-
cussed above. We first construct the infinitesimal version of
the functional parameter (4.5) as follows

θ ′[φ] = −
∫

d4x
[
−c̄μ∂νĝ

μν + √−gc̄0(g00 + 1)

+ √−gc̄ig0i

]
. (4.14)

The advantage of constructing an infinitesimal version is
that with such parameter the Jacobian can be computed
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directly from (4.12). Thus, the Jacobian expression for this
choice of parameter (4.14) is

J [φ] = exp

[ ∫
d4x

(
ημ∂νĝ

μν + c̄μ

[
∂ν

(
∂ρ(ĝμνcρ)

− ĝμρ∂ρcν − ĝρν∂ρcμ
)]

− √−gη0(g00 + 1) − √−gηig0i − √−gc̄0∇μcμ

− √−gc̄μ
(
g0μ∇νc

ν + ∂νg0μcν + g0ν∂μcν

+ gμν∂0c
ν
) )]

. (4.15)

With this Jacobian, the generating functional in harmonic
gauge (2.15) changes to

N−1
∫

D�′ e
i
(
SEH [φ′]+SH

gf +gh[φ′]
)

= N−1
∫

J [φ]D� e
i
(
SEH [φ]+SH

gf +gh[φ]
)

= N−1
∫

D� e
i(SEH [φ]+SS

gf +gh[φ])

= ZS
DUG, (4.16)

which is nothing but the transition amplitude in syn-
chronous gauge (2.18). Here φ′ and φ denote, respec-
tively, the transformed and generic fields of the DUG
theory. The invariant functional measure for DUG is defined

as D� ≡ ∏
x DgμνDημD c̄μDcνg00(−g)− 3

2 . Thus the
FFBRST transformation with parameter (4.14) establishes
the connection between harmonic and synchronous gauges,
(2.13) and (2.25), respectively, for fully diffeomorphism-
invariant unimodular gravity theory.

4.2.2 Axial to Harmonic Gauge

To relate axial and harmonic gauges, (2.19) and (2.13),
respectively, we consider the following infinitesimal field-
dependent parameter

θ ′[φ] = −
∫

d4x
[−a(μην)ĝ

μν + c̄μ∂νĝ
μν
]
. (4.17)

The Jacobian for functional measure under FFBRST trans-
formation is calculated by

J [φ] = exp

[ ∫
d4x

(
a(μην)ĝ

μν + a(μc̄ν)

[
∂ρ(ĝμνcρ)

− ĝμρ∂ρcν − ĝρν∂ρcμ
]

− ημ∂νĝ
μν + c̄μ

[−∂ν

(
∂ρ(ĝμνcρ) − ĝμρ∂ρcν

− ĝρν∂ρcμ
)] )]

. (4.18)

Now, substituting this Jacobian (4.18) into the expression of
path integral measure in axial gauge (2.21) as follows

N−1
∫

D�′ e
i
(
SEH [φ′]+SA

gf +gh[φ′]
)

= N−1
∫

J [φ]D� e
i
(
SEH [φ]+SA

gf +gh[φ]
)

= N−1
∫

D� e
i(SEH [φ]+SH

gf +gh[φ])

= ZH
DUG, (4.19)

and we thus get the expression of path integral in har-
monic gauge (2.15). Therefore, FFBRST transformation,
generated with the parameter (4.17), connects the axial and
harmonic gauges of the theory.

Here, we remark that the same value of Jacobian given
in (4.18) when replaced into the expression of the transi-
tion amplitude in Lorentz gauge (2.18) gives the transition
amplitude in planar gauge (2.24). Thus, the FFBRST trans-
formation with parameter (4.17) also connects the Lorentz
gauge (2.16) to planar gauge (2.22).

4.2.3 Harmonic to Lorentz Gauge

To establish the connection of the harmonic gauge to
Lorentz gauge, (2.13) and (2.16), respectively, we determine
the infinitesimal functional parameter as follows

θ ′[φ] = −
∫

d4x
[
c̄μ

α

2
ĝ

μν
R ην

]
. (4.20)

Utilizing this parameter, the Jacobian for path integral mea-
sure is calculated by

J [φ] = exp

[∫
d4x

(
−α

2
ĝ

μν
R ημην

)]
. (4.21)

This value for the Jacobian when inserted into the transi-
tion amplitude changes the theory from the harmonic gauge
(2.15) into the one in the Lorentz gauge (2.18) as follows

N−1
∫

D�′ e
i
(
SEH [φ′]+SH

gf +gh[φ′]
)

= N−1
∫

J [φ]Dφ e
i
(
SEH [φ]+SH

gf +gh[φ]
)

= N−1
∫

Dφ e
i(SEH [φ]+SL

gf +gh[φ])

= ZL
DUG. (4.22)

Here we emphasize that the Jacobian expression (4.21)
is also responsible for connecting the axial gauge (2.19) to
the planar gauge (2.22). Thus, the path integral for DUG in
axial gauge (2.21) is transformed to the transition amplitude
in planar gauge (2.24) under the FFBRST transformation
with parameter (4.20).
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4.2.4 Lorentz to Synchronous Gauge

Finally, we determine the connection between Lorentz
gauge and synchronous gauge, (2.16) and (2.25), respec-
tively. For this purpose, we construct the functional param-
eter as follows

θ ′[φ] = −
∫

d4x
[
−c̄μ

α

2
ĝ

μν
R ην − c̄μ∂νĝ

μν

+ √−gc̄0(g00 + 1) + √−gc̄ig0i

]
. (4.23)

The corresponding Jacobian is found to read as

J [φ] = exp

[ ∫
d4x

(
α

2
ĝ

μν
R ημην + ημ∂νĝ

μν

+ c̄μ

[
∂ν

(
∂ρ(ĝμνcρ) − ĝμρ∂ρcν − ĝρν∂ρcμ

)]
− √−gη0(g00 + 1) − √−gηig0i − √−gc̄0∇μcμ

− √−gc̄μ
(
g0μ∇νc

ν + ∂νg0μcν + g0ν∂μcν

+ gμν∂0c
ν
) )]

. (4.24)

Substituting this value (4.24) into the generating functional
in Lorentz gauge (2.18), we get

N−1
∫

D�′ e
i
(
SEH [φ′]+Sα

gf +gh[φ′]
)

= N−1
∫

J [φ]D� e
i
(
SEH [φ]+Sα

gf +gh[φ]
)

= N−1
∫

D� e
i(SEH [φ]+SS

gf +gh[φ])

= ZS
DUG. (4.25)

This establishes a connection between the path integral of
Lorentz gauge (2.18) and synchronous gauge (2.28).

Hence, we concluded this subsection of analysis of
FFBRST equivalence by establishing relations among dif-
ferent and relevant gauge conditions of fully diffeomor-
phism invariant theory of unimodular gravity. Next, we will
perform a similar analysis for unimodular gravity with fixed
metric determinant.

4.3 Connection of Different Gauges in Unimodular
Gravity with Fixed Metric Determinant

In this subsection, we analyse the connection of different
gauges of unimodular gravity with fixed metric determinant.
Following the results from Section 3, the FFBRST trans-
formation for unimodular gravity with fixed metric deter-
minant are determined by the replacement of the parameter
θ → θ [φ] into the (3.20a)–(3.20h).

With these results, we will show the following map-
ping: (i) unimodular Faddeev-Popov to averaged metric
determinant and spatial harmonic gauges, (ii) unimodular

Faddeev-Popov to averaged metric trace and spatial har-
monic gauges and, finally, (iii) averaged metric determinant
to averaged metric trace gauges.

4.3.1 Unimodular Faddeev-Popov to Averaged Metric
Determinant and Spatial Harmonic Gauges

In order to map the unimodular Faddeev-Popov and aver-
aged metric determinant and spatial harmonic gauges,
(3.23) and (3.28), respectively, we define the infinitesimal
field-dependent parameter as follows

θ ′[φ] = −
∫

d4x

[
−1

2
c∗
i

√
hdijkhjk + c∗

i ∂j (
√

hhij )

]
.

(4.26)

Now with the help of expression (4.12), we compute the
respective Jacobian corresponding to this parameter

J [φ] = exp

[ ∫
d4x

(
1

2

√
hηid

ijkhjk + √
hc∗

i d
ijk

×
(

Kjk + 1

2
hjkK

)
c̄

+ 1

2

√
hc∗

i d
ijk
(
hjkDlc

l+∂lhjkc
l+hjl∂kc

l+hlk∂j c
l
)

− ηi∂j

(√
hhij

)

+ 2c∗
i ∂j

[√
h

(
Kij − 1

2
hijK

)
c̄

]
−c∗

i ∂j ∂k

(√
hhik

)
cj

− c∗
i ∂j

(√
hhij

)
∂kc

k

+ c∗
i ∂j

(√
hhjk

)
∂kc

i + c∗
i

√
hhjk∂j ∂kc

i

)]
. (4.27)

With this result for the Jacobian (4.27), the transition
amplitude for unimodular gravity with fixed metric determi-
nant in Faddeev-Popov gauge (3.27) changes as

N−1
∫

D�′ e
i
�

(
SEH [φ′]+SFP

gf +gh

)

= N−1
∫

J [φ]D� e
i
�

(
SEH [φ]+SFP

gf +gh

)

= N−1
∫

D� e
i
�

(
SEH [φ]+SDH

gf +gh

)

= ZDH
UG , (4.28)

which is exactly the expression for the path integral in aver-
aged metric determinant and spatial harmonic gauge. Here
the explicit expression for the invariant functional measure
is now given as, D� ≡ ∏

x DgμνDη̄DηiDc̄∗Dc̄Dc∗
i Dcj

g00(−g)− 3
2 δ

( ∫
�t

(
√−g−ε0)

(−g00)
− 1

2
∫
�t

√
h

)
.
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4.3.2 Unimodular Faddeev-Popov to Averaged Metric
Trace and Spatial Harmonic Gauges

To connect the unimodular Faddeev-Popov gauge (3.21) to
averaged metric trace and spatial harmonic gauge (3.31), we
derive the transformation functional parameter as follows

θ ′[φ] = −
∫

d4x

[
− c̄∗√h(ln h − �̄ − tr(hij ))

+ c∗
i

√
h

(
−1

2
dijkhjk − ∂j (

√
hhij )

)]
. (4.29)

With this parameter, the Jacobian of functional measure is
calculated by

J [φ] = exp

[ ∫
d4x

(√
hη̄
(
ln h − �̄

)+ 1

2

√
hηid

ijkhjk

+ √
hc̄∗ (ln h − �̄ + 2

) (
Kc̄ + Dic

i
)

+ √
hc∗

i d
ijk

(
Kjk + 1

2
hjkK

)
c̄ + 1

2

√
hc∗

i d
ijk

×
(
hjkDlc

l + ∂lhjkc
l + hjl∂kc

l + hlk∂j c
l
)

−√
hη̄tr(hij ) − ηi∂j

(√
hhij

)

− √
hc̄∗tr(hij )

(
Kc̄ + Dic

i
)

− √
hc̄∗∑

i

(
2Kii c̄ + ∂jhiic

j + 2hij ∂ic
j
)

+ 2c∗
i ∂j

[√
h

(
Kij − 1

2
hijK

)
c̄

]

− c∗
i ∂j ∂k

(√
hhik

)
cj − c∗

i ∂j

(√
hhij

)
∂kc

k

+ c∗
i ∂j

(√
hhjk

)
∂kc

i

+ c∗
i

√
hhjk∂j ∂kc

i

)]
. (4.30)

This Jacobian (4.30) amounts the following change into the
expression of transition amplitude (3.27)

N−1
∫

D�′ e
i
�

(
SEH [φ′]+SFP

gf +gh

)

= N−1
∫

J [φ]D� e
i
�

(
SEH [φ]+SFP

gf +gh

)

= N−1
∫

D� e
i
�

(
SEH [φ]+ST H

gf +gh

)

= ZT H
UG . (4.31)

This relation assures the connection (under FFBRST
transformation) between path integrals in the unimodular
Faddeev-Popov and averaged metric trace and spatial har-
monic gauges, (3.27) and (3.34), respectively.

4.3.3 Averaged Metric Determinant to Averaged Metric
Trace Gauge

Finally, we establish a connection between averaged met-
ric determinant to averaged metric trace gauges, (3.28)
and (3.31), respectively. For this purpose, we construct the
following infinitesimal field-dependent parameter:

θ ′[φ] = −
∫

d4x
[
−c̄∗√h(ln h − �̄ − tr(hij ))

]
. (4.32)

The Jacobian expression (4.12) together with (4.32) yields

J [φ] = exp

[ ∫
d4x

(√
hη̄
(
ln h − �̄

)

+ √
hc̄∗ (ln h − �̄ + 2

) (
Kc̄ + Dic

i
)

− √
hη̄tr(hij ) − √

hc̄∗tr(hij )
(
Kc̄ + Dic

i
)

− √
hc̄∗∑

i

(
2Kii c̄+∂jhiic

j +2hij ∂ic
j
))]

.(4.33)

It can directly be seen that this Jacobian (4.33) is responsible
for the connection of averaged metric determinant gauge to
averaged metric trace gauge as follows

N−1
∫

D�′ e
i
�

(
SEH [φ′]+SDH

gf +gh

)

= N−1
∫

J [φ]D� e
i
�

(
SEH [φ]+SDH

gf +gh

)

= N−1
∫

D� e
i
�

(
SEH [φ]+ST H

gf +gh

)

= ZT H
UG . (4.34)

Thus, we conclude this subsection where we have explicitly
presented a detailed analysis concerning the FFBRST trans-
formation equivalence (with specific choices for the param-
eters) relating various gauges of the unimodular gravity with
fixed metric determinant.

5 Concluding Remarks

As we know, a gauge invariant theory can not be quantized
correctly without fixing the gauge properly. Being a gauge
theory, we have discussed the implementation of various
gauge conditions for two versions of the unimodular grav-
itational theory, fully diffeomorphism-invariant unimodular
gravity and unimodular gravity with fixed metric determi-
nant. We have further incorporated these gauges together
with ghost terms at quantum level by defining the respec-
tive path integral. Further on, we derived the nilpotent BRST
symmetry for the effective action as well as for the transition
amplitude.
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In particular, it should be noted that in the fully dif-
feomorphism invariant unimodular gravity [11], after the
auxiliary variables of action (2.4) have been integrated out,
the gauge symmetry of the path integral (2.5) is the same
as that of GR. Therefore, the formulation of gauge condi-
tions and the associated gauge fixing and ghost actions can
be achieved in a familiar way. We obtained the gauge fixing
and ghost action for several relevant gauges in Section 2.
The results can be applied to both (DUG) unimodular
gravity and GR due to the similar gauge symmetry.

Furthermore, we have formulated three possible gauges
for unimodular gravity theory with fixed metric determinant
(3.1) in Section 3. In this case, gauge fixing is more involved
since the gauge symmetry of the theory has been restricted,
so that the unimodular condition remains gauge invariant.
Consequently, the integral of the Hamiltonian constraint
over space is not a generator of a gauge transformation, and
hence, the integral of one of the gauge conditions must van-
ish, and the corresponding ghost and antighost fields are
average-free as well (see [11] for a detailed analysis). In
some cases, this restricted gauge structure may complicate
the formulation of gauge conditions and BRST invariant
actions, in particular, if the chosen gauge conditions involve
the canonical momentum conjugate to the induced metric
on the spatial hypersurface; an example of this problem is
discussed in Appendix A.

The BRST symmetry of these theories has been further
extended by making the transformation parameter finite and
field-dependent. We have shown that the FFBRST transfor-
mation of the Jacobian of the invariant functional measure,
with specific choices for the transformation parameter, con-
nects various gauges of both given unimodular theories of
gravity. This establishes a way to consistently relate sev-
eral path integral expressions when defined in different
gauge conditions. However, we should emphasize that we
are using the FFBRST transformation only for connecting
different well-defined gauges, since then there should be
no physical change in the quantum theory. Thus FFBRST
formulation discussed here could be useful in comparing
results in two gauges for unimodular gravity theories.
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Appendix A: Unimodular Dirac Gauge

In order to justify the absence of the Dirac gauge in our anal-
ysis of unimodular gravity with fixed metric determinant,
we highlight a problem in the formulation of a gauge condi-
tion that depends on the canonical momentum πij conjugate

to the induced metric hij . The Dirac gauge could be defined
in the unimodular setting as

χ̄0
D = hijπij = hijπ

ij −
√

h∫
�t

√
h

∫
�t

hijπ
ij ≈ 0,

χi
D = ∂j

(
h

1
3 hij

)
≈ 0. (A.1)

The BRST invariant gauge and ghost action for these gauge
conditions can be written in the form

SUD
gf +gh =

∫
d4x

(
−η̄χ̄0

D − ηiχ
i
D − c̄∗sbχ̄0

D − c∗
i sbχ

i
D

)
,

(A.2)

where the pair of ghosts c̄, c̄∗ are average-free, while the
ghosts ci, c∗

j are not.
Let us start by computing the Slanov variation of the

gauge conditions χi
D. This demand some direct calculation

that results into

sbχ
i
D = −2κ∂j

[
h− 1

6

(
πij − 1

3
hijhklπ

kl

)
c̄

]

+ 2

3
χi

DDjc
j − χ

j
DDjc

i

− h
1
3

(
δi
j h

kl∂k∂l + 1

3
hik∂k∂j

)
cj . (A.3)

Next, we proceed to compute the Slanov variation of the
gauge condition χ̄0

D,

sbχ̄
0
D = sb

(
hijπ

ij
)

− sb
√

h

(
1∫

�t

√
h

∫
�t

hijπ
ij

)

− √
hsb

(
1∫

�t

√
h

∫
�t

hijπ
ij

)
, (A.4)

where the last term of the above expression drops out of the
action (A.2), since the ghost c̄∗ has a vanishing average.

After evaluating the respective variation, we can use the
resulting expression (A.4) in order to write the third term of
the action (A.2) in the following form∫

d4xc̄∗sbχ̄0
D =

∫
d4xc̄∗

(
3

2
H̄T c̄− 2

κ

√
h
(
DiDi − (3)R

)
c̄

+ ∂k

(
hijπ

ij ck
))

+ 3
∫

d4x
√

hc̄∗c̄
(

1∫
�t

√
h

∫
�t

×
[

κ√
h

πijGijklπ
kl −

√
h

κ

(3)R

])

−
∫

d4xc̄∗ (−κ

2
hijπ

ij c̄ + √
hDic

i
)

×
[

1∫
�t

√
h

∫
�t

hijπ
ij

]
. (A.5)
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This is a problematic result, since it contains quadratic terms
in πij that are not constraints. In the path integral, the
Faddeev-Popov determinant should be at most linear in πij

so that the (gaussian) integration over the momenta can be
performed. The quadratic terms should involve a constraint
so that they can be absorbed via shifts of Lagrange multipli-
ers. Above only the constraint term 3

2H̄T appears, while the
integrated term is not a constraint. Indeed, we could use the
constraint H0 to write

1∫
�t

√
h

∫
�t

(
κ√
h

πijGijklπ
kl −

√
h

κ

(3)R

)
= H0∫

�t

√
h

−λ0,

(A.6)

but then the cosmological constant variable λ0 reappears,
which is not correct since it is integrated in the path inte-
gral to obtain the averaged unimodular condition factor

δ
(∫

�t

(√−g − ε0
))

[11]. The last term in (A.5) is equally

problematic, since it also involves a quadratic πij term,
which is not a constraint.
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