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Abstract I discuss in this brief review some properties of
magnetohydrodynamic (MHD) discontinuities in the inter-
planetary space. My emphasis is on a special case of MHD
discontinuity, namely interplanetary (IP) shocks, and those
that are found at 1 AU. I derive the Rankine-Hugoniot (RH)
equations to evaluate plasma parameters in the downstream
region (shocked plasma) in relation to the upstream region
(unshocked plasma). These properties are used to classify
IP shocks in terms of their geometry and their direction
of propagation in relation to the Sun. The shock geome-
try is determined in terms of two angles: θBn , the angle
between the upstream magnetic field and the shock nor-
mal, and θxn , the angle between the shock normal and the
Sun-Earth line. Sources of IP shocks frequently found in
the solar wind at Earth’s orbit are presented. Then the RH
equations are solved for two categories of IP shocks in a
special case: perpendicular shocks, when θBn is 90◦, and
oblique shocks, when that angle is 45◦. Finally, I highlight
the importance of knowing the shock geometry, mainly the
impact angle θxn , specially whether the shock is frontal or
inclined, for space weather-related investigations. IP shocks
are known to be more geoeffective if they strike the Earth’s
magnetosphere frontally, or with impact angle nearly null.
These results have been reported both by modeling and
experimental studies in the literature.
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1 Introduction

The interplanetary medium is surrounded by an electrically
conducting fluid called plasma. When the moving plasma,
or the solar wind, interacts with magnetic fields in its way,
electric currents are induced, which in turn generate mag-
netic fields that change the plasma movement. The branch
of science that describes the dynamics of the plasma motion
is called magnetohydrodynamics, or simply MHD. The
MHD theory corresponds to a coupled system of fluid equa-
tions and the Maxwell equations under special conditions.
These equations are often employed in studies of plasma
behavior. Plasmas have an interesting property related to the
formation of discontinuities. Discontinuities are non-linear
effects resulting from wave steepening. When MHD dis-
continuities are driven in this environment, conservation of
mass, momentum, and energy are necessary to describe the
plasma ahead and behind the discontinuity. These equations
are called the Rankine-Hugoniot (RH) jump conditions. The
type of discontinuity reviewed in this paper is a particular
case of discontinuity called MHD shock that propagates in
the interplanetary space, named interplanetary (IP) shocks.
Other types of discontinuities are briefly mentioned in our
review. In this case, references are given for the interested
reader.

In this brief review, I derive the RH equations from
basic MHD equations. RH equations are commonly used to
study shock behavior, in particular the comparison between
regions of unshocked and shocked plasmas. Conditions for
the occurrence of discontinuities in the plasma are pre-
sented, in particular for the case of MHD shocks. I then
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classify MHD shocks in terms of their shock normal angles
in relation to the upstream magnetic field vector in the
shock reference frame and their motion relative to the Sun.
The main sources of MHD shocks in the interplanetary
space, solar perturbations named coronal mass ejections
(CMEs) and corotating interaction regions (CIRs), will be
presented. Then I solve the RH equations for the particu-
lar cases of perpendicular and oblique shocks. Finally, we
present some formulas generally used to calculate shock
normal orientation and shock speed. These quantities have
an important role in determining how IP shocks propagate
in the interplanetary space. I then emphasize the importance
of knowing the shock geometry in determining geomagnetic
activity followed by the impact of IP shocks on the Earth’s
magnetosphere. This in turn is an important feature for the
study of space weather-related phenomena.

2 Magnetohydrodynamic Equations

2.1 The Vlasov Equation

Plasma is a kind of a fluid which contains approximately the
same amount of particles with positive and negative charges
[29]. This condition implies that a plasma is an almost elec-
trically neutral fluid. Each class of particles, such as He2+,
O+, and e−, is named species s. Statistical studies involving
large amounts of particles require the use of a space defined
in six dimensions called the phase space. The phase space
is defined in terms of the position r = (x, y, z) and velocity
v = (vx, vy, vz) vectors. The density of this large number
of particles is then written in terms of a distribution function
fs(r, v, t) for each species as shown below:

dns = f (r, v, t)d3rd3v (1)

The above equation is useful to define macroscopic
parameters in terms of different moments of the velocity v.
The moment of order zero in v is obtained by integrating (1)
over all the phase space, and the result is the particle number
density for each species in the system:

ns =
+∞∫

−∞
fs(r, v, t)d3v (2)

The first-order moment is obtained by integrating (1)
again with the first power of v. This is the average velocity
distribution for each species in the system (the integral lim-
its are dropped but the integral is still calculated over all the
space phase):

vs = 1

ns

∫
vfsd

3v (3)

The second moment of the distribution function is the
pressure tensor [4]

P̄ = ms

∫
(v − vs)(v − vs)fsd

3v (4)

Equations (1–4) define macroscopic parameters. Macro-
scopic MHD equations are derived from the distribution
function fs . Taking the time derivative of the distribution
function, where i = 1, 2, 3 below, one gets

dfs

dt
= ∂fs

∂t
+

3∑
i=1

∂fs

∂xi

∂xi

∂t
+

3∑
i=1

∂fs

∂vi

∂vi

∂t

= ∂fs

∂t
+ v · ∇fs + a · ∇vfs

The mean free path of particles in the interplanetary
plasma is of the order of nearly 1 AU, or approximately
150 million km. Collisions in the interplanetary plasma
occur approximately once every 108 s. Thus, this plasma is
assumed to be collisionless. If the interplanetary plasma is
collisionless, the time derivative of the distribution function
vanishes [52]. As a result, the above equation, known as the
Vlasov equation, can be written as

∂fs

∂t
+ v · ∇fs + a · ∇vfs = 0 (5)

The forces acting on the interplanetary plasma are strictly
electromagnetic forces. Gravitational and rotational forces
may be neglected for our purposes [44]. From Newton’s
second law and the Lorentz force

msa = qs(E + v × B) , (6)

the Vlasov equation is given by

∂fs

∂t
+ v · ∇fs + qs

ms

(E + v × B) · ∇vfs = 0 (7)

The electric and magnetic fields are obtained from the
Maxwell equations. The Vlasov equation as represented
above shall be used to determine the MHD one-fluid theory
macroscopic equations.

2.2 The Maxwell Equations in the MHD Context

As mentioned above, a plasma is composed of positive and
negative particles. Therefore, the plasma motion depends on
the electric and magnetic fields E and B and is governed by
Maxwell’s equations as described below [23]:

∇ · E = ρq

ε0
(8)

∇ · B = 0 (9)

∇ × E = −∂B
∂t

(10)

∇ × B = μ0J + μ0ε0
∂E
∂t

(11)
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These equations need some adjustments to be included in
the MHD theory. The charge density ρq in the interplanetary
plasma is null due to the plasma quasi-neutrality condition.
The speed of light is defined as c = 1/

√
μ0ε0. Consid-

ering the MHD characteristic dimensions for length, time,
and speed as L, τ , and U (non-relativistic speed), the spatial
and time derivative of B and E can be written as approxi-
mately |∇ × B| ≈ B/L and μ0ε0|∂E/∂t | ≈ E/(c2τ) from
the dimensional analysis of Faraday’s law (10), one gets
E = UB. Thus, by comparing the above derivatives,

μ0ε0∂E/∂t

|∇ × B| ≈ E/(c2τ)

B/L
= U2

c2
� 1 (12)

Using these assumptions, the Maxwell equations in the
MHD context are defined by

∇ · E = 0 (13)

∇ · B = 0 (14)

∇ × E = −∂B
∂t

(15)

∇ × B = μ0J (16)

By taking the divergent of Ampère’s law (16), it is pos-
sible to show that ∇ · J = 0, which implies that currents
are closed within plasmas. The current density is written
in terms of the velocity J = nev, which then implies that
∇ · v = 0.

2.3 The Adiabatic State Equation

In thermodynamics, a gas can expand rapidly enough with-
out exchanging heat with the external medium. Such process
is called an adiabatic process [45]. From the first law of
thermodynamics, which is the energy conservation law for
thermodynamic fluids, it is possible to show that the adia-
batic fluid obeys the relation PV γ = constant, where γ is
the ratio of the heat capacity with constant pressure to the
heat capacity with constant volume. This equation can be
written in a conservative form as

d

dt

(
P

ργ

)
= 0 . (17)

The adiabatic state equation will be useful later in deriv-
ing MHD macroscopic equations in conservative forms.

2.4 Multi-Fluid Theory: Macroscopic Equations

The problem analysis in plasma physics goes beyond
the definition of the distribution function fs . Often, it is
necessary to write equations in terms of average macro-
scopic quantities calculated from the distribution function.
Such average macroscopic quantities are described by the
moment equations. The moment equations are calculated

from the Vlasov equation by multiplying (7) by powers of
the velocity v.

The zeroth macroscopic equation or zeroth moment
equation is obtained from the Vlasov equation by multiply-
ing (7) by v0 and integrating it in the velocity space V .
Assuming a generic acceleration a instead of the Lorentz
acceleration, this equation is written by
∫

V

∂fs

∂t
d3v +

∫
V

v · ∇fsd
3v +

∫
V

a · ∇vfsd
3v = 0 (18)

The first term of the above equation is the time derivative
of the particle number density for each species s:
∫

V

∂fs

∂t
d3v = ∂ns

∂t
(19)

The second term can be rearranged as
∫

V

v · ∇fsd
3v = ∇ ·

∫
V

vfsd
3v = ∇ · (nsvs) (20)

The third term is rewritten using the Gauss theorem:
∫

V

∇v · (afs)d
3v =

∫
S

(afs) · dS = 0 (21)

This term vanishes because the distribution function fs is
null at infinity. As a result, by plugging (19–21) in (18), one
gets

∂ns

∂t
+ ∇ · (nsvs) = 0

Multiplying the above equation by ms , where ρs = msns ,
one obtains the first macroscopic equation or the mass
conservation equation for each species s:

∂ρs

∂t
+ ∇ · (ρsvs) = 0 (22)

The first moment equation is obtained by multiplying the
Vlasov (7) by the first power in velocity v and integrating it
all over the space velocity:

∫
V

v
∂fs

∂t
d3v +

∫
V

v(v · ∇fs)d
3v +

∫
V

v(a · ∇vfs)d
3v = 0

(23)

Using (3), the first term of the above equation can be
written as:∫

V

v
∂fs

∂t
d3v = ∂

∂t

∫
V

vfsd
3v = ∂

∂t
(nsvs) (24)

Here, I use dyadics which result from the product
between two vectors [34]. In dyadic algebra, assuming ∇ ·
v = 0, one can get the following identity:

∇ · (vvf ) = v(v · ∇f ) (25)
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Then after some manipulations with the term vv and
using (2) and (3), the second term of (23) is given by

∫
V

v(v · ∇fs)d
3v = ∇ ·

∫
V

vvfsd
3v

= ∇ ·
∫

V

(v − vs )(v − vs )fsd
3v +

∫
V

[vsv + vvs − vsvs ]fsd
3v

= ∇ ·
[∫

V

(v − vs )(v − vs )fsd
3v + (nsvsvs )

]

Using (4), the second integral in (23) is∫
V

v(v · ∇fs)d
3v = 1

ms

∇ · P̄s + ∇ · (nsvsvs) (26)

Now, we integrate the third term of (23) by parts. Assum-
ing the distribution function vanishes at infinity, the last
term in (23) can be written as∫

V

v(a · ∇vfs)d
3v = −a

∫
V

fsd
3v = −ans (27)

In the case of a plasma, the above acceleration is the
Lorentz acceleration given by (6). The total charge is given
by qs = nses , where es is the electric charge of each species.
The Lorentz acceleration is then a = nses[E+ vs ×B]/ms .
Thus, by grouping all terms obtained from (23), we get

∂

∂t
(nsvs)+ 1

ms

∇ · P̄s +∇ ·(nsvsvs)− nses

ms

[E+vs ×B] = 0

(28)

Therefore, by multiplying the above equation by ms with
some simplifications, one gets the first moment equation or
the MHD momentum equation:

ρs

[
∂vs

∂t
+ (vs · ∇)vs

]
+∇ ·P̄s −nses[E+vs ×B] = 0 (29)

The operator ∂/∂t + v · ∇ is named the convective
derivative.

2.5 MHD One-Fluid Theory

In the last section, we presented the macroscopic equations
for different plasma species s. In the interplanetary plasma,
such species are mostly protons, and only 5 % are either
heavier atoms or molecules. Without loss of generality, it is
possible to approach the interplanetary plasma composition
to approximate equal portions of protons and electrons. The
MHD one-fluid theory consists then in combining the con-
servation equations of mass and momentum for protons and
electrons.

In order to write these equation in terms of only one fluid,
we assume that the mass of protons are much larger than the
mass of electrons, or mp � me. Therefore, the dominant
species in the plasma is the proton species, and all quantities
with index s may be written in terms of proton quantities.

In resistive MHD, pressure is assumed to be a scalar [20].
As a result, without loss of generality, we can drop the pro-
ton index and rewrite the mass and momentum equations in
conservative forms given by

∂

∂t
(ρv) + ∇ · (ρv) = 0 (30)

ρ

[
∂v
∂t

+ (v · ∇)v
]

+ ∇P − ρqE − J × B = 0 (31)

The term dependent on J in the momentum equation can
be substituted by the Ampère law (16) to give J × B =
(∇×B)×B/μ0. Due to the fact that plasmas are electrically
neutral, the electric charge density ρq vanishes. Thus, the
momentum equation can be written as

∂

∂t
(ρv) + ∇ · (ρvv) + ∇P − 1

μ0
(∇ × B) × B = 0 (32)

We now seek for one more equation to complete our set
of MHD conservative equations. This equation is the second
moment equation or the energy equation. As the plasma is
electrically neutral, the charge density is zero. This task can
be accomplished by multiplying (32) by v:

ρv·
[
∂v
∂t

+ (v · ∇)v
]
+(v·∇)P− v

μ0
·[(∇×B)×B] = 0 (33)

The first term in (33) obeys the following identity:

ρv ·
[
∂v
∂t

+ (v · ∇)v
]

= ∂

∂t

(
1

2
ρv2

)
+ ∇ ·

(
1

2
ρv2v

)
(34)

Now let us use the adiabatic state (17). Using the con-
vective derivative, expanding the time derivative on the
right-hand side, and using the mass conservation (30), one
gets

∂P

∂t
+ (v · ∇)P = γP

ρ

[
∂ρ

∂t
+ (v · ∇)ρ

]

= −γP∇ · v (35)

Using the identity P(∇ · v) = ∇ · (P v) − v · ∇P and
solving for the second term in (35), we get

(v · ∇)P = 1

γ − 1

∂P

∂t
+ γ

γ − 1
∇ · (P v) (36)

The last term in (33) is given by

v · (∇ × B) × B = − ∂

∂t

(
1

2
B2

)
− ∇ · (E × B) (37)

Finally, after collecting all terms, the macroscopic MHD
energy equation can be written as

∂

∂t

(
1

2
ρv2 + P

γ − 1
+ B2

2μ0

)
+

∇ ·
[

1

2
ρv2v + γP

γ − 1
v + 1

μ0
(E × B)

]
= 0 (38)
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In these equations, ρ is the plasma density, B is the
magnetic field, v is the plasma bulk speed, P/(γ − 1)

is the internal energy, and γP/(γ − 1) is the enthalpy
of the system. In summary, the conserved quantities are
described as follows. Equation (30) indicates conservation
of mass along the discontinuity. The other two equations
indicate conservation of both momentum (31) and energy
(38), respectively.

As described in the literature [44], a plasma can be stud-
ied in terms of its typical speeds, magnetic field, and some
dimensionless parameters. In summary, such speeds are the
sound speed

cS =
(

γP

ρ

)1/2

, (39)

the Alfvén speed

vA = B√
μ0ρ

, (40)

and the magnetosonic speed,

vMS =
√

1

2
(v2

A + c2
S) ±

√
(v2

A + c2
S)2 − 4c2

Sv2
A cos2 θBn

(41)

whose positive root indicates the fast magnetosonic speed,
and the negative root indicates the slow magnetosonic
speed.

The dimensionless plasma parameters are represented by
the plasma beta, which is the ratio between the plasma
pressure and the magnetic pressure:

β = 2μ0P

B2
, (42)

and other parameters called Mach numbers, the ratio of
the fluid speed v′ to the characteristic medium speed. Such
Mach numbers are the sonic Mach number:

MS = v′

cS

, (43)

the Alfénic Mach number

MA = v′

vA

, (44)

and, in the same sense, the magnetosonic Mach number is
written as

MMS = v′

vMS

. (45)

In the particular case of MHD shocks, the speed consid-
ered is the speed of the shock in a frame of reference moving
with the shock. If vs is the shock speed along the shock
normal, one changes v′ → |vs − vp| in the expressions (43–
45), where vp is the plasma speed in the Earth’s frame of
reference.

3 Magnetohydrodynamic Shocks

3.1 The RH Equations for MHD Discontinuities

A shock is formed in a medium when a wave suffers a dis-
continuity in which its main parameters change, such as the
fluid density, temperature (pressure), and velocity [7, 9, 49].
A necessary condition is that the relative speed between
the shock and the fluid flow has to be greater than the
sound speed in the non-shocked side of the discontinuity.
Also, with the increase of pressure and temperature, one can
affirm that the entropy increases beyond the shock, which
indicates that the kinetic energy of the wave gives rise to
the increase in thermal energy of the shocked fluid. Such
descriptions are valid for a regular fluid, where particles
change energy and momentum due to collisions. In the case
of the solar wind, average densities are typically 5 particles
per cm3 at 1 AU. With mean free path of the order of the
dimensions of the medium, which is approximately 1 AU,
calculated from kinetic theory, collisions in the plasma are
unlikely to occur [52]. Instead, momentum and energy are
transmitted among particles due to the presence of the mag-
netic field, which makes the process even more complicated.
Now, not only the magnetic field magnitude matters but also
its direction in relation to the shock normal is important
[9]. The presence of the magnetic field also adds two other
complications: First, the plasma does not have only a typ-
ical speed such as the sound speed, since the concepts of
Alfvén speed and the fast magnetosonic speed are neces-
sary to explain the wave behavior of the plasma. Second, the
shock geometry plays an important role in the shock physics
since the magnetic field vector orientation in relation to the
shock normal has different consequences when this angle is
large or small. This last feature will be discussed further. As
a result, a shock only exists when its relative speed between
the shock and the medium is larger than the magnetosonic
speed, or according to expression (45), when MMS ≥ 1 [9].

The Rankine-Hugoniot (RH) jump conditions are derived
from the MHD macroscopic equations written in conser-
vative forms. These equations are (30), the mass conserva-
tion equation, (31), the momentum equation, and (38), the
energy equation, written slightly different after some minor
manipulations:

∂

∂t
(ρv) + ∇ · (ρv) = 0 (46)

∂

∂t
(ρv) + ∇ ·

[
ρvv +

(
P + B2

2μ0

)
1 − BB

μ0

]
= 0 (47)

cm
∂

∂t

(
1

2
ρv2 + P

γ − 1
+ B2

2μ0

)
+

∇ ·
[

1

2
ρv2v + γP

γ − 1
v + 1

μ0
(E × B)

]
= 0 (48)
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In order to relate plasma parameters in upstream
(unshocked plasma) and downstream (shocked plasma)
regions, let us consider a straightforward method as
described in reference [20]. Figure 1 represents a plasma
flowing through a very thin surface, with thickness h → 0,
across an MHD discontinuity of areas A1 (unshocked side)
and A2 (shocked side) along, say, the normal n, which is per-
pendicular to both surfaces. Integrating equation (46) and
applying the Gauss theorem to its second term, we get:

∫
V1

∂ρ1

∂t
d3x +

∫
V2

∂ρ2

∂t
d3x +

∫
V2

∇ · (ρv)1d
3x +

∫
V1

∇ · (ρv)2d
3x = 0

∫
V1

∂ρ1

∂t
d3x +

∫
V2

∂ρ2

∂t
d3x +

∫
A1

(ρv)1 · dA1 +
∫

A2

(ρv)2 · dA2 = 0 (49)

Now due to the very small box thickness, we can consider
both volumes V1 and V2 shrinking to zero. This argument
implies that the first two terms in (49) vanish. Assuming
both surfaces are parallel to each other, A1 = A2. The scalar
products in the two remaining parts of (49) are negative for
A1 and positive for A2 due to the normal vector direction.
We also define two unitary vectors, n̂, normal to the shock
surface, and t̂, tangential to the normal surface. Therefore,
(49) can be written in a conservative form as

ρ1(v1 · n) = ρ2(v2 · n) (50)

Fig. 1 Schematic representation of a tiny box across the surface of an
MHD discontinuity. Assuming the box thickness to be infinitely small,
or h→ 0, its volume shrinks to zero. Figure adapted from reference [20]

Applying the same method to the other (47–48), the RH
jump conditions for conservation of mass. momentum, and
energy are written as:

[ρvn] = 0 (51)[
ρvnv +

(
P + B2

2μ0

)
n̂ − BnB

μ0

]
= 0 (52)

[(
1

2
ρv2 + γP

γ − 1

)
vn + 1

μ0
(E × B)n

]
= 0 (53)

The parameters of these equations are the same as those
found in the MHD equations: v is the flow speed in the
discontinuity reference frame, the indices n represent nor-
mal quantities, and the others are regular plasma parameters.
Quantities between squared brackets, [(	)] = 0, indicate
that they are conserved along the discontinuity stream, i.e.,
[	] = 	2 − 	1. Equation (51) represents the conservation
of mass flux, (52) represents the conservation of momentum
flux, and (53) represents the energy conservation.

These equations can still be written in a more straight-
forward way. The electric field in (53) can be eliminated by
using E = −v × B and the triple vector product identity
(F×G)×H = (F ·H)G− (G ·H)F. The scalar products of
(52) with the unitary vectors n̂ and t̂ generate (55) and (56)
below. The Maxwell equations require that the normal com-
ponent of the magnetic field and the tangential component
of the electric field are conserved through the discontinu-
ity surface [23]. Then, the complete set of the RH jump
conditions is given by

[ρvn] = 0 (54)[
ρv2

n + P + B2
t

2μ0

]
= 0 (55)

[
ρvnvt − BnBt

μ0

]
= 0 (56)

[(
1

2
ρv2 + γP

γ − 1
+ B2

μ0
− (v · B)

Bn

μ0

)
vn

]
= 0 (57)

[Bn] = 0 (58)

[Et ] = [vn × Bt + vt × Bn] = 0 (59)

It should be mentioned at this point that MHD shock
waves correspond to only one type of discontinuities found
in the solar wind. Shock waves correspond to the most com-
plicated type of MHD discontinuities due to the fact that
all plasma parameters in the RH equations may vary. The
other solar wind discontinuities are the contact discontinuity
(CD), the tangential discontinuity (TD), and the rotational
discontinuity (RD), first suggested by a theoretical work
[30] Properties of different discontinuities in the solar wind
have been discussed by several authors [14, 20, 22, 57, 64].
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There is no plasma flow across a CD surface, which
means vn = 0. However, the plasma density suffers jumps
across the CD surface, or [ρ] �= 0. In the particular case
of a CD in which Bn = 0, this discontinuity is called a TD.
This difference was observed with Mariner 5 data [58]. In
a TD, the plasma flow and magnetic field are parallel to
the discontinuity surface. An RD has no jump in plasma
density, [ρ] = 0, but plasma flows across an RD surface.
Thermal pressure does not change across an RD surface, or
vn �= 0. Table 1 summarizes the main properties of CDs,
TDs, RDs, and shock waves. CDs are much more difficult
to be identified due to the rapid diffusion of plasma along
the surface magnetic field lines, and the jump becomes very
smooth [8, 14]. However, more recently, the possibility of
CD observations has been brought about [21]. Based on the
rarity of identification and consequently the observation of
solar wind discontinuities other than MHD shock waves,
the former does not take part in the scope of this review.
Therefore, from now on, we will only consider MHD shock
waves propagating in the interplanetary space in our MHD
discontinuity analyses.

3.2 Shock Normal Decomposition

To describe how IP shocks propagate in the interplanetary
medium, it is necessary to define the shock normal in terms
of polar angles θxn , the angle between the shock normal and
the Sun-Earth line, and clock angles ϕyn , the angle between
the shock normal with the Y axis. The ranges of these angles
are 0 ≤ θxn ≤ π and 0 ≤ ϕyn ≤ 2π , respectively, as
described elsewhere [37, 39, 65]. In spherical coordinates,
the normal components of the vector n = (nx, ny, nz) are
given by the orthonormal system of coordinates

nx = cos θxn

ny = sin θxn cos ϕyn (60)

nz = sin θxn sin ϕyn

which satisfy |n| = 1 as a normalization condition. There-
fore, translated from the shock frame of reference to a

Cartesian frame of reference defined in GSE coordinates,
the magnetic field (and also the speed) is written as

⎛
⎝ Bx

By

Bz

⎞
⎠ =

⎛
⎝ cos θxn − sin θxn 0

sin θxn cos ϕyn cos θxn cos ϕyn − sin ϕyn

sin θxn sin ϕyn cos θxn sin ϕyn cos ϕyn

⎞
⎠

×
⎛
⎝ Bn

Bt

0

⎞
⎠ (61)

The RH equations are solved in the special frame of ref-
erence in which the shock is stationary. The magnetic field
is invariant because the system is non-relativistic, so B′ = B
where prime quantities are in the frame of reference where
observations are made. All calculations are computed in the
Hoffmann-Teller frame of reference, where v ‖ B and as
a result, the electric field vanishes in this reference frame
[15]. Then it is necessary to calculate a Galilean transforma-
tion, from the shock frame of reference to another frame of
reference that may be a spacecraft or the Earth. Therefore,
defining the shock speed as vs = vsn, with n represented by
(60), this transformed velocity is given by

v′ = v + vs (62)

3.3 Types of Shocks

The following discussion about types and classifications
of shocks is based on descriptions found in the literature
[9, 30], and in a more recent review [64]. As has already
been discussed, the solar wind has different typical speeds.
The magnetosonic speed depends both on the sound and
the Alfvén speeds. When the relative shock speed, cal-
culated in the shock frame of reference, is greater than
the magnetosonic speed, the shock is classified as a fast
shock. For the other case, the shock is said to be slow.
If the shock propagates away from the Sun, it is classi-
fied as forward. Then, if the shock propagates toward the
Sun, the shock is said to be reverse, although all shocks

Table 1 Classification of the MHD discontinuities accordingly to normal speed, normal magnetic field, and density variations across the
discontinuity

CDa TDb RDc Shock wave

Normal speed Null Null �=0 �=0

Jump in plasma density �=0 �=0 Null �=0

Normal magnetic field Null �=0 �=0 Null or �=0

aContact discontinuity
bTangential discontinuity. A TD is a particular case of a CD in which Bn = 0
cRotational discontinuity
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propagate toward the Earth because they are dragged by the
solar wind [46]. As a result, shocks can be fast and slow
forward, and fast and slow reverse. Figure 2 shows qualita-
tively how the plasma parameters vary after the shock takes
place. In the case of IP shocks propagating in the interplan-
etary space, fast forward shocks (FFSs) are more frequent
and cause more disturbances in the Earth’s magnetosphere-
ionosphere-thermosphere system [5, 16, 26, 39, 42, 56].
Plasma density, magnetic field, temperature, and speed have
positive jumps in FFSs. In all cases, the shock speed is
measured in the Earth’s or spacecraft’s frame of reference.
Although less frequent than fast shocks, slow shocks have
also been observed in the solar wind [10, 12, 68, 69].

Figure 3 represents a real FFS observed by the ACE satel-
lite on 23 June 2000 at 1226 UT and (234,36.6,-0.7)RE GSE
upstream of the Earth. Typically, jumps in plasma parame-
ters and magnetic field associated with FFS are very sharp,
as can be seen in Fig. 3, from top to bottom: magnetic field,
thermal plasma pressure, particle number density, speed,
and dynamic pressure proportional to ρv2. The increase in
the dynamic pressure is a result of the shock compression
and shock enveloping of the Earth’s magnetosphere [11, 50,
59]. As a result, a myriad of events can be measured on the
ground after the impact of an FFS [2, 71, 73].

The presence of the magnetic field vector in the space
plasma introduces an additional complexity in relation to
an ordinary gas because the angle between the magnetic
field vector and the shock normal plays an important role
inj determining downstream plasma parameters. Thus, an IP
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Fig. 2 Schematic variations of the parameters n, P, B, and v for the
four types of interplanetary shocks. Upper panels: left, fast forward,
and right, slow forward shocks. Bottom panels: left, fast reverse, and
right, slow reverse shocks

Fig. 3 An FFS observed by ACE spacecraft on 23 June 2000 at
1226 UT. Jumps in all plasma parameters are step-like and positive.
The increase of the dynamic pressure ρv2 indicates the occurrence of
an IP shock as well

shock can be classified as either perpendicular or oblique
[8, 9, 30]. A common choice is that for the former case,
the angle between the magnetic field vector and the shock
normal, the obliquity θBn , is 90◦. In the latter case, θBn is
45◦. When this angle is 0◦, the shock is said to be parallel.
Figure 4 shows both magnetic and velocity vectors in the
shock frame of reference for an FFS case. On the top panel,
the magnetic field lies in the plane perpendicular to the
plane containing the shock normal. The downstream mag-
netic field increases and the velocity decreases. The same
occurs in the case of an oblique shock, represented in the
bottom panel of the same figure. Generally, the shock nor-
mal orientation is necessary to obtain θBn , but it has been
shown that it is possible to calculate the shock obliquity
knowing only upstream and downstream plasma parameters
[13].

The shock obliquity θBn plays a significant role in ener-
getic particle acceleration at interplanetary traveling shocks
[31]. The critical shock Mach number (Mc) depends upon
the upstream plasma β and the angle θBn [17, 27]. If the
shock has a Mach number greater than a determined Mc, the
shock is said to be supercritical. If the shock is supercritical,
electron resistivity and ion viscosity dissipations may occur
at the shock. Recently, it has been shown that approximately
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Fig. 4 Schematic representation of fast forward shocks (FFSs) in the
shock reference frame. a represents a perpendicular shock in which
the magnetic field vector lies in the plane perpendicular to the shock
normal, the tangential plane. In this case, the magnitude of the mag-
netic field downstream increases in relation to its upstream magnitude.
The opposite occurs to the velocity of the medium. b shows an oblique
shock, with the magnetic field lying in both planes. The medium veloc-
ity increases in this case. The shock normal is defined pointing to the
downstream, low entropy region. Figure adapted from the literature [9]

1/3 of IP shocks driven by CMEs are supercritical and 2/3
of IP shocks driven by CIRs are supercritical [72].

Now let us take the Earth’s magnetosphere interaction
with the solar wind. The first consequence of this interac-
tion is the formation of a bow shock right in front of the
Earth’s magnetosphere [48]. Figure 5 shows that the bow
shock is the diffuse hyperbolically shaped region standing at
a distance in front of the magnetopause. The bow shock has
a complicated magnetic structure, with a “foot”, a “ramp”,
and an “overshoot”. Overshoots occur in the bow shock due
to the fact that jumps in magnetic field often exceed those
predicted by the RH conditions [33, 35, 47]. The inclined
blue lines represent the interplanetary magnetic field (IMF).
In this figure, the IMF lies in the equatorial plane. The

Fig. 5 Representation of the solar wind interaction with the Earth’s
bow shock [28]. Quasi-perpendicular and quasi-parallel shocks are
shown. Blue lines represent the IMF. The shocked region is the
magnetosheath

direction of the shock normal is indicated at two positions.
Where it points perpendicularly to the IMF, the character
of the bow shock is perpendicular. In the vicinity of this
point where the IMF is tangent to the bow shock, the shock
behaves quasi-perpendicularly. When the shock is aligned
with or against the IMF, the bow shock behaves as a quasi-
parallel shock. Quasi-perpendicular shocks are magnetically
quiet compared to quasi-parallel shocks [3]. This is indi-
cated here by the gradually increasing oscillatory behavior
of the magnetic field when passing along the shock from the
quasi-perpendicular part into the quasi-parallel part. Corre-
spondingly, the behavior of the plasma downstream of the
shock is strongly disturbed behind the quasi-perpendicular
shock. The bow shock is often found to be supercritical.

Finally, when the shock is supercritical, as is the case
for the bow shock, electrons and ions are reflected from it.
Reflection is strongest at the quasi-perpendicular shock but
particles can escape upstream only along the magnetic field.
Hence, the upstream region is divided into an electron (yel-
low) and an ion foreshock accounting for the faster escape
speeds of electrons than ions. More details on the shock
behavior of the bow shock can be found in [48], and the
interaction of solar wind discontinuities and interplanetary
shocks are discussed by [70].

3.4 Sources of IP Shocks

The two major IP shock drivers are named coronal mass
ejections (CMEs) [18] and corotating interaction regions
(CIRs) [43]. CMEs are known to be well correlated with
solar activity [25], but such relation is not obvious for
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CIRs since their numbers do not vary noticeably through-
out the solar cycle [24]. A schematic representation of an
IP shock driven by a CME (or ICME, which is a CME
propagating in the interplanetary medium) is shown in
Fig. 6. CMEs are formed in the Sun’s corona, the upper
layer of the Sun’s atmosphere. Although the corona could
be seen during solar eclipses for centuries, CMEs were
only observed after the space era with coronagraphs such
as LASCO (Large Angle and Spectrometric Coronagraph
Experiment) onboard the satellite SOHO (SOlar and Helio-
spheric Observatory). While propagating throughout the
interplanetary space, solar wind discontinuities, or almost
always IP shocks, are formed ahead of CMEs. Figure 7
shows an image taken by LASCO of a very strong CME that
occurred on 18 November 2003. The shock/sheath region in
the leading edge region is responsible for driving IP shocks.
This region can be seen in Fig. 7.

An example of a CIR-related IP shock is schematically
represented by Fig. 8 which shows that the rotating geom-
etry of CIRs may propitiate a good condition for shock
inclinations in relation to the Sun-Earth line. The view is
from above the north pole of the Sun, looking down on
the ecliptic plane. Spatial differences in the nearly radial
expansion (indicated by the dark vectors) are coupled with
solar rotation to produce compression regions (shaded) and
rarefactions in the interplanetary medium. Secondary non-
radial motions are driven by pressure gradients built up in
the stream interaction (large open arrows). Magnetic field
lines, which correspond to streamlines of flow in the rotating
frame, are drawn out into the spiral configuration as shown
in Fig. 8. Shocks may occur if the difference between the

Fig. 6 Schematic representation of a shock formation in front of an
ICME, as shown in [74]

Fig. 7 A CME image taken by the LASCO telescope onboard the
SOHO spacecraft on 18 November 2003 at 1026 UT. The CME
shock/sheath region that drove an IP shock is seen in the image

fast speed stream and slow speed stream is greater than the
magnetosonic speed of the medium. According to CIR evo-
lution studies [60], most CIRs complete their evolution in
the interplanetary space by 4.2 AU. Therefore, the number
of CIR-driven shocks observed at 1 AU is relatively low.

IP shocks driven by these solar disturbances are different
in several aspects, such as shock strength, radial propaga-
tion, and occurrence throughout the solar cycle [36]. As a
result, geomagnetic activity followed by CMEs and CIRs
may also lead to distinct observations, for example, intensity
and duration of geomagnetic storms [6].

Often, IP shock structures are thought as planar struc-
tures that propagate in the interplanetary space [51]. Such
structure allows the determination of a unitary vector per-
pendicular to the shock surface, usually pointing toward
the Sun, named shock normal. IP shock normals driven
by either CMEs or CIRs usually differ in orientation [24,
25]. CME-driven shocks tend to have their shock normals
aligned with the Sun-Earth due to their mostly usual radial
propagations, as shown by Fig. 6. On the other hand, shocks
driven by CIRs are more likely to have their shock normal
inclined in relation to the Sun-Earth line, as seen in Fig. 8.
This happens due to the fact that fast and slow streams tend
to follow the Parker spiral [43].

3.5 RH Solutions for MHD Shocks

In this section, we solve the RH equations for the spe-
cific cases of perpendicular and oblique shocks. Our task
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Fig. 8 Schematic representation of the stream interaction in the iner-
tial frame after [43]. When the difference between the fast and slow
streams becomes greater than the magnetosonic speed of the medium,
a shock may occur

is to find relationships between upstream and downstream
shock parameters. Equations (54–59) are written explicitly
in terms of upstream (1) and downstream (2) parameters.
The shock compression ratio is defined as the ratio of the
downstream plasma density to the upstream plasma den-
sity, i.e., X ≡ ρ2/ρ1. From the mass conservation (54), this
choice implies that v2/v1 = X−1. All other conditions will
depend on the compression ratio X.

In the case of perpendicular shocks, where θBn = 90◦, the
magnetic field lies in the plane which contains the discon-
tinuity and does not have a normal component (see Fig. 4).
Then, from the relation for the velocity, we get B2/B1 = X.
By rewriting (55) explicitly with vn = v and Bt = B, we
get

ρ2v
2
2 + P2 + B2

2

2μ0
= ρ1v

2
1 + P1 + B2

1

2μ0
(63)

By dividing the above equation by P1, using the sonic
Mach number MS (43), and (63), and the plasma beta (42),
after some manipulations, we get

P2

P1
= γM2

S

(
1 − 1

X

)
+ 1

β
(1 − X2) + 1 (64)

Table 2 summarizes the results for the RH equations
obtained in the case of perpendicular shocks.

The solutions for oblique shocks are more complicated
because θBn �= 90◦ and all normal and tangential compo-
nents of magnetic field and velocity are not null. Here, we
choose the de Hoffmann-Teller reference frame, so v1 ×

Table 2 RH solutions for perpendicular shocks

Perpendicular shocks, θBn = 90◦

Compression ratio X = ρ2

ρ1

Velocity
v2

v1
= 1

X

Magnetic field
B2

B1
= X

Plasma pressure
P2

P1
= γM2

S

(
1 − 1

X

)
+ 1

β
(1 − X2) + 1

B1 = v2 × B2 = 0. This choice yields the following
relationships:

v1t = v1nB1t

B1n

and v1t = v2nB2t

B2n

(65)

whose ratio is given by

v2t

v1t

= 1

X

B2t

B1t

(66)

In order to find a relationship between the upstream
and downstream velocity and magnetic field, we write (56)
explicitly in terms of upstream and downstream parameters

ρ2v2nv2t − B2nB2t

μ0
= ρ1v1nv1t − B1nB1t

μ0
(67)

and, after solving for v2t /v1t using the compression ratio
and the Alfvèn speed, we get

v2t

v1t

= v2
1 − v2

A

v2
1 − Xv2

A

and
B2t

B1t

= X(v2
1 − v2

A)

v2
1 − Xv2

A

(68)

The choice of the de Hoffmann-Teller reference frame
assures that all magnetic terms in (57) vanish. As a result,
solving for P2/P1, we get

P2

P1
= X + 1

2
(γ − 1)XM2

Sv2
1

(
1 − v2

2

v2
1

)
(69)

The results obtained for oblique shocks are summarized
in Table 3.

Table 3 RH solutions for oblique shocks

Oblique shocks, θBn �= 90◦

Compression ratio X = ρ2

ρ1

Normal velocity
v2n

vn1
= 1

X

Tangential velocity
v2t

v1t

= v2
1 − v2

A

v2
1 − Xv2

A

Normal magnetic field
B2n

B1n

= X

Tangential magnetic field
B2t

B1t

= X(v2
1 − v2

A)

v2
1 − Xv2

A

Plasma pressure
P2

P1
= X + 1

2
(γ − 1)XM2

Sv2
1

(
1 − v2

2

v2
1

)
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Figure 9 represents the solutions of (64) and (69), the
ratio of downstream to upstream plasma thermal pressures,
for perpendicular (upper panel) and oblique (lower panel)
shocks, respectively. Here, P2/P1 are plotted as a function
of the fast magnetosonic Mach number Ms. These ratios are
plotted for different shock strengths, i.e., shocks with dif-
ferent compression ratios. The plasma compression in the
shocked region is larger for stronger shocks. However, as
one would expect, the plasma compression is higher in the
cases of perpendicular shocks due to the shock symmetry.
In general, impacts of almost perpendicular shocks trig-
ger higher geomagnetic activity in comparison to oblique
shocks under the same plasma and IMF conditions. This has
already been reported in the literature with simulations and
observations as well [26, 37–39, 41, 53, 54, 67].

3.6 Shock Speed and Normal Calculation Methods

Once one has the observed shock parameters, i.e., upstream
and downstream plasma and IMF parameters, the shock
speed can be calculated using the RH (54–59). Taking (54),

Downstream to upstream pressure ratios

20

40

60

80

P
2
/P

1

0 2 4 6 8 10

M
s

20

40

60

80

P
2
/P

1

  X = 1.5

  X = 2.0

  X = 3.0

  X = 4.0

  X = 1.5

  X = 2.0

  X = 3.0

  X = 4.0

Perpendicular shocks

(θ
Bn

 = 90
o

)

Oblique shocks (θ
Bn

 = 45
o

)

Fig. 9 Rankine-Hugoniot solutions for two types of interplanetary
shocks according to their obliquities θBn : upper panel, perpendicular
shocks; lower panel, oblique shocks

it is possible to write the shock speed as

vs = [ρv]
[ρ] · n , (70)

where v is the relative speed of the shock in relation
to the medium. However, the shock normal is still to be
determined.

The IP shock normal is one of the most important fea-
tures to be understood in a shock. Throughout the years,
many single spacecraft shock normal methods have been
suggested, such as the magnetic coplanarity [14, 32], veloc-
ity coplanarity and plasma/IMF data mixed methods [1],
and the interactive scheme by [65], later improved by [62].
A summary of IP shock normal calculation methods can be
found in [55].

Thus, the equations for the most important single space-
craft methods to determine shock normal orientations are
the magnetic coplanarity,

nMC = B2 × B1 × [B]
|B2 × B1 × [B]| , (71)

the plasma/IMF data mixed methods,

nMX1 = (B1 × [v]) × [B]
|(B1 × [v]) × [B]| (72)

nMX2 = (B2 × [v]) × [B]
|(B2 × [v]) × [B]| (73)

nMX3 = ([B] × [v]) × [B]
|([B] × [v]) × [B]| , (74)

and the velocity coplanarity,

nV C = [v]
|[v]| . (75)

The solutions obtained from the RH equations in this
section were calculated for two different obliquities, i.e.,
for perpendicular (θBn = 90◦) and oblique (θBn �= 90◦)
MHD shocks. In the oblique shock case, the reference frame
was chosen that the magnetic field and the velocity vec-
tors are parallel, which implies that the tangential electric
field along the shock is null [15]. These solutions were
used to calculate downstream from upstream plasma param-
eters for two different interplanetary shocks, a perpendicular
shock and an oblique shock in the shock frame of refer-
ence [38]. Equation (62) is used to translate all plasma
parameters from the shock reference frame to the Earth’s (or
spacecraft’s) frame of reference.

Equations (71–75) were used to build an IP shock data
base with calculated shock normals to conduct a statistical
study of geomagnetic activity triggered by IP shocks with
different orientations. More details about this shock study
will be subjected of a forthcoming review and can be found
in the literature [37–41].
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4 Conclusion

In this paper, we briefly presented a review of MHD shocks
in the interplanetary space at 1 AU. The main points dis-
cussed in our review are as follows:

• The derivation of the MHD equations from the Vlasov
and Maxwell equations for the one- and multi-fluid
MHD theories.

• From a suitable set of MHD equations, we derived
the Rankine-Hugoniot equations to study how plasma
parameters change through an MHD discontinuity. We
then paid particular attention to a special case of MHD
discontinuities, namely MHD shocks. In MHD shocks,
all plasma parameters are allowed to vary through the
shock surface.

• We reviewed some properties of MHD shocks with
emphasis on fast forward interplanetary shocks.
Sources and properties of IP shocks which in turn
depend upon the angle between the upstream mag-
netic field vector and the shock normal vector were
presented. The main sources of IP shocks observed at
1 AU are coronal mass ejections (CMEs) and corotating
interaction regions (CIRs).

• The Rankine-Hugoniot solutions were solved for both
the cases of perpendicular and oblique shocks. Due to
the symmetry of the shock structure in the upstream
region, theory suggests that the stronger and more per-
pendicular the shock, the higher the compression of
the downstream region. This effect may lead to higher
IP shock geoeffectiveness of IP shocks if the shock
obliquity angle is close to 90◦.

In summary, this work supplies the reader with an intro-
ductory basis on the physics of MHD shocks. The reader
may find more information about IP shocks, as well as geo-
magnetic activity followed by IP shocks and other MHD
discontinuities, in the reference list [46, 61, 64]. Finally, I
would like to emphasize the importance of the shock geom-
etry in determining the geomagnetic activity followed by
IP shock interactions with the Earth’s magnetosphere. Such
effects have already been discussed in the literature, both
with modeling [19, 38, 40, 53, 54, 66] and experimental data
[26, 37, 39, 41, 63, 67]. This will be subjected for another
review.
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