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Abstract An investigation is made on the effects of finite
electron inertia, finite Larmor radius (FLR) corrections, and
radiative heat-loss functions, on the thermal instability of an
infinite homogeneous, viscous plasma incorporating the ef-
fects of finite electron resistivity and thermal conductivity,
for structure formation in astrophysical plasma environment.
A general dispersion relation is derived using the normal
mode analysis method with the help of relevant linearized
perturbation equations of the problem. The wave propagation
is discussed for longitudinal and transverse directions to the
external magnetic field, and the conditions of modified ther-
mal instabilities and stabilities are discussed in different cases.
The thermal instability criterion gets modified by inclusion of
radiative heat-loss functions. The finite electrical resistivity
removes the effect of the magnetic field, and viscosity of the
medium removes the effect of FLR from the condition of
radiative instability. Numerical calculation shows a stabilizing
effect of heat-loss function, FLR corrections, and viscosity
and a destabilizing effect of finite electrical resistivity and
finite electron inertia on the thermal instability of the consid-
ered system. Results presented here are helpful for under-
standing the process of structure formation in the astrophysi-
cal plasma environment.

Keywords Thermal instability . Structure formation . FLR
corrections . Finite electron inertia . Radiative heat-loss
functions . Magnetohydrodynamics (MHD)

1 Introduction

Structure formation in the astrophysical plasma environment is
one of the most important and fascinating processes in modern
astrophysics and cosmology. Structures are formed in the as-
trophysical plasma environment because of unstable modes
produced by the thermally unstable medium. Thermally unsta-
ble modes are produced due to thermal instability in the inter-
stellar medium. Thermal instability takes places in a medium
which can turn out to be cooler owing to radiation and fluid
reduction. Additionally, reduction in the temperature constructs
the arrangement unbalanced and directs to configuration of
novel configurations due to density strengthening. In this insta-
bility, the critical length scale is smaller than that of the other
dynamical instability like the Jeans instability, i.e., a system can
become thermally unbalanced even if the organization is stable
beside the gravitational instability. Hence, we can say that the
physical basis of smaller-scale configurations is owing to ther-
mal instability rather than energetic instability. It is straightly
correlated with the structure of different stages in the diffuse
interstellar and intergalactic media, as well as in the solar
atmosphere. The thermal and radiative instability arising due
to various heat-loss mechanisms could definitely be the reason
for the astrophysical condensation and the configuration of
large-scale structures as well as of small objects. Several au-
thors investigated the phenomenon of thermal instability aris-
ing due to heat-loss mechanism in plasma. Field [1] has
discussed the importance of thermal instability in the forma-
tion of solar prominences, condensation in planetary nebula,
and condensation of galaxies from the intergalactic medium.
Hunter [2] has discussed the role of thermal instability in star
formation. Raju [3] has emphasis on the role of thermal insta-
bility in the formation of solar prominences. Aggarwal and
Talwar [4] have investigated magneto-gravitational instability
in a rotating gravitating fluid taking radiative heat-loss
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function. Ibanez [5] has studied the sound and thermal waves in
a fluid with an arbitrary heat-loss function. Hoven and Mok [6]
have carried out the problem of thermal instability in a sheared
magnetic field. Bodo et al. [7] have investigated magnetohy-
drodynamic thermal instability in cool inhomogeneous atmo-
sphere. Bora and Talwar [8] have discussed the
magnetothermal instability with generalized Ohm’s law taking
the effects of electrical resistivity, electron inertia, thermal con-
ductivity, and radiative heat-loss function. Burkert and Lin [9]
have pointed out the importance of thermal instability in the
formation of clumpy gas clouds, and have shown that the
thermal instability can lead to the breakup of large clouds into
cold dense clumps. Shadmeri and Ghanbari [10] have
discussed the problem of radiative cooling flows of self-
gravitating filamentary clouds. Nejad-Asghar and Ghanbari
[11] have discussed the formation of small-scale condensation
in the molecular clouds via thermal instability. Baruah et al.
[12] have studied the thermal (radiative) instability in weakly
ionized plasma with continuous ionization and recombination
taking general heat-loss function. Fukue and Kamaya [13] have
studied the thermal instability of partially ionized plasma taking
radiative cooling function and two-fluid theory into account.
Recently, Prajapati et al. [14] have investigated the thermal
instability of rotating viscous Hall plasma with arbitrary radia-
tive heat-loss function and electron inertia. More recently,
Kaothekar and Chhajlani [15] have examined the effect of po-
rosity and finite ion Larmor radius (FLR) corrections on Jeans
instability of self-gravitating radiative thermally conducting
viscous plasma. Thus, thermal and radiative effects are impor-
tant in investigations of plasma instability.

In addition to this, the electron inertia parameter is important in
the dynamics of interstellar matter, in magnetic reconnection
processes, in stability investigation of accelerated plasmas,
and in several other astrophysical situations. Tayler [16] has
discussed a simple hydromagnetic stability problem involving
finite conductivity, electron inertia, and Hall effect. Kalra and
Talwar [17] have investigated magneto-thermal instability of
unbounded plasma with electron inertia and Hall effect.
Pegoraro et al. [18] have shown the importance of electron
inertia in non-uniform collisionless plasma having small-scale
magnetic structures. Chatterjee and Das [19] have pointed out
the effect of electron inertia on the speed and shape of ion-
acoustic solitary waves in plasma. Shukla et al. [20] have
studied the effect of electron inertia on kinetic Alfven waves.
Damiano et al. [21] have pointed out the effects of electron
inertia and FLR on Hall magnetohydrodynamic waves.
Uberoi [22] has discussed electron inertia effects on the trans-
verse thermal instability incorporating the rotation parameters.
Recently, Pensia et al. [23] have investigated the effect of
black body radiation and electron inertia on the Jeans instabil-
ity of rotating and magnetized gaseous plasma of the interstel-
lar medium. More recently, Sutar and Pensia [24] have carried
out the problem of electron inertia effects on the gravitational

instability under the influence of FLR corrections and
suspended particles. Thus, finite electron inertia is an impor-
tant factor in the discussion of thermal instability and other
hydromagnetic instability.

Along with this, as in the above discussed problems, the
effect of finite ion Larmor radius is not considered. In many
astrophysical plasma situations such as in solar corona, interstel-
lar, and interplanetary plasmas, the assumption of zero Larmor
radius is not valid. Roberts and Taylor [25] and Rosenbluth et al.
[26] have shown the stabilizing influence of FLR effects on
plasma instabilities. Herrnegger [27] has investigated the stabi-
lizing effect of FLR on gravitational instability, and shown that
the gravitational criterion is changed by FLR for wave propa-
gation perpendicular to the magnetic field. Sharma [28] has
investigated the stabilizing effect of FLR on gravitational insta-
bility of rotating plasma. Ariel [29] has discussed the stabilizing
effect of FLR on gravitational instability of conducting plasma
layer of finite thickness surrounded by a non-conducting matter.
Vaghela and Chhajlani [30] have studied the stabilizing effect of
FLR on magneto-gravitational stability of resistive plasma
through a porous medium with thermal conduction. Bhatia
and Chhonkar [31] have investigated the stabilizing effect of
FLR on the instability of a rotating layer of self-gravitating
plasma incorporating the effects of viscosity. Vyas and
Chhajlani [32] have pointed out the stabilizing effect of FLR
on the gravitational instability of magnetized rotating plasma
incorporating the effects of viscosity, finite electrical conductiv-
ity, porosity, and thermal conductivity. Marcu and Ballai [33]
have shown the stabilizing effect of FLR on thermosolutal sta-
bility of a two-component rotating plasma. Kaothekar and
Chhajlani [34] have investigated the effect of radiative heat-
loss function and finite Larmor radius corrections on Jeans in-
stability of viscous thermally conducting self-gravitating astro-
physical plasma. Recently, Kaothekar and Chhajlani [35] have
carried out the problem of Jeans instability of self-gravitating
rotating radiative plasma with finite Larmor radius corrections.
More recently, Kaothekar et al. [36] have investigated the effect
of Jeans instability of partially ionized self-gravitating viscous
plasma with Hall effect FLR corrections and porosity. Thus,
FLR effect is an important factor in the discussion of thermal
instability and other hydromagnetic instability.

In the light of the above work, we find that in these studies
(Vyas and Chhajlani [32], Bora and Talwar [8], Prajapati et al.
[14], and Kaothekar et al. [36]), the joint influence of FLR
corrections, electron inertia, radiative heat-loss functions, vis-
cosity, electrical resistivity, thermal conductivity, and magnet-
ic field on the thermal instability is not investigated.
Therefore, in the present work, thermal instability of viscous
magnetized plasma with electron inertia, FLR corrections, ra-
diative heat-loss functions, thermal conductivity, and finite
electrical resistivity for thermal configuration is studied.

This paper is organized as follows. Section 2 contains the
basic equations for a magneto thermal system. In Sect. 3,
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linearized perturbed equations and the dispersion relation are
derived for the first-order approximation. The instability cri-
terion for thermal modes is derived for longitudinal and trans-
verse propagation in Sect. 4. Numerical interpretation of the
linear growth rate is done in Sect. 5. Finally, Sect. 6 contains
the summary and discussion of the results.

2 Equations of the Problem

Let us consider an infinite homogeneous, thermally
conducting, radiating, viscous plasma with finite electron in-
ertia and finite electrical resistivity in the presence of magnetic
field B (0, 0, B). The equations of the problem with these
effects are written as

du
dt

¼ −
1

ρ
∇p−

∇⋅ P
$

ρ
þ 1

4πρ
∇ � Bð Þ � Bþ υ∇2u; ð1Þ

dρ
dt

¼ − ρ∇:u ; ð2Þ
1

γ−1
dp
dt

−
γ

γ−1
p
ρ
dρ
dt

þ ρ L−∇: λ∇Tð Þ ¼ 0; ð3Þ

p ¼ ρRT ; ð4Þ
∂B
∂t

¼ ∇ � u� Bð Þ þ η∇2Bþ c2

ω2
pe

∂
∂t

∇2B; ð5Þ

∇:B ¼ 0: ð6Þ
where ρ, p, υ, T, u (ux, uy, uz), η, λ, R, γ , c, and ωpe denote
the fluid density, pressure, kinematic viscosity, temperature,
velocity, electrical resistivity, thermal conductivity, gas con-
stant, ratio of two specific heats, velocity of light, and electron
plasma frequency, respectively. Here, L (ρ, T) is the heat-loss
function per gram of the material per second exclusive of
thermal conduction and is in general a function of the local
values of density and temperature. The operator (d/dt) is the
substantial derivative given as (d/dt) = (∂t+ u . ∇). P

$
is the

pressure tensor taking into account the effect of finite ion
gyration radius for the magnetic field along the z-axis as given
by Roberts and Taylor [25] which is

Pxx ¼ −ρυ0
∂uy
∂x

þ ∂ux
∂y

� �
; Pyy ¼ ρυ0

∂uy
∂x

þ ∂ux
∂y

� �
;

Pzz ¼ 0; Pxy ¼ Pyx ¼ ρυ0
∂ux
∂x

−
∂uy
∂y

� �
;

Pxz ¼ Pzx ¼ −2ρυ0
∂uy
∂z

þ ∂uz
∂y

� �
; Pyz ¼ Pzy ¼ 2ρυ0

∂uz
∂x

þ ∂ux
∂z

� �
:

ð7Þ

The parameter υ0 has the dimensions of the kinematic vis-

cosity and is defined as υ0 ¼ ΩLR2
L=4, where RL is the ion-

Larmor radius and ΩL is the ion gyration frequency.

3 Linearized Perturbation Equations

The perturbation in fluid density, pressure, temperature, veloc-
ity, magnetic field, pressure tensor, and heat-loss function is

given as δρ, δp, δT, u (ux, uy, uz), δB (δBx, δBy, δBz), δ P
$
, and L,

respectively. The perturbation state is given as

ρ ¼ ρ0 þ δρ ; p ¼ p0 þ δp ; T ¼ T 0 þ δT ; u ¼ u0 þ u with u0 ¼ 0ð Þ;
B ¼ B0 þ δB; P

$¼ P
$
0 þ δ P

$
; and L ¼ L0 þ L with L0 ¼ 0ð Þ:

ð8Þ

Suffix B0^ represents the initial equilibrium state, which is
independent of space and time.

Substituting the perturbation state into Eqs. (1), (2), (3), (4),
(5), and (6) and linearizing them by neglecting higher order
perturbations, suffix B0^ is dropped from the equilibrium
quantities.

The linearized perturbation equations of motion for such
medium are

∂tu ¼ −
1

ρ
∇δp−

∇⋅ P
$

ρ
þ 1

4πρ
∇ � δBð Þ � B þ υ∇2u ; ð9Þ

∂ t δρ ¼ −ρ∇:u ; ð10Þ

1

γ−1
∂t δp−

γ
γ−1

p
ρ
∂t δρþ ρ Lρδρ þ LTδT

� �
− λ∇2δT ¼ 0; ð11Þ

δp
p

¼ δT
T

þ δρ
ρ
; ð12Þ

∂ t δB ¼ ∇ � u� Bð Þ þ η∇2δB þ c2

ω2
pe
∂ t∇2δB; ð13Þ

∇:δB ¼ 0; ð14Þ

where LT and Lρ respectively denote partial derivatives (∂L/
∂T)ρ and (∂L/∂ρ)T of the heat-loss function evaluated for the
initial (unperturbed) state.

4 Dispersion Relation

We seek plain wave solution of the form

exp ikxxþ ikzzþ iσ tð Þ: ð15Þ

where σ is the frequency of harmonic disturbance and kx and
kz are the wave numbers of the perturbations along the x- and
z-axes, where k2 ¼ k2x þ k2z .
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The perturbed pressure tensor components Pxx are

Pxx ¼ − ρ υ0i kxuy; Pyy ¼ ρ υ0i kxuy; Pzz ¼ 0 ;
Pxy ¼ Pyx ¼ ρυ0ikxux; Pxz ¼ Pzx ¼ −2ρυ0ikzuy; Pyz ¼ Pzy ¼ 2iρυ0 kxuz þ kzuxð Þ: ð16Þ

The components of Eq. (13) may be given as

δBx ¼ iB=dð Þkzux;
δBy ¼ iB=dð Þkzuy;
δBz ¼ − iB=dð Þkxux;

ð17Þ

Using Eqs. (11), (12), and (15), we write

δp ¼ γ−1ð Þ TLT−ρLρ þ λk2T=ρ
� �� �þ ωc2

� 	
γ−1ð Þ Tρ=pð ÞLT þ λk2T=ρ

� �� �þ ω
� 	 δρ: ð18Þ

Using Eqs. (10), (11), (12), (13), (14), (15), (16), (17), and
(18) in Eq. (9), we may write the following algebraic equa-
tions for the components of Eq. (9)

ωþ υk2 þ V2k2

d


 �
ux þ υ0 k2x þ 2k2z

� �� �
uy þ ikx

k2
Ω2

T s ¼ 0; ð19Þ

− υ0 k2x þ 2k2z
� �� �

ux þ ωþ υk2þ V2k2z
d

�
uy−2υ0kxkzuz ¼ 0;



ð20Þ

2υ0kxkzuy þ ωþ υk2
� �

uz þ ikz
k2

Ω2
T s ¼ 0: ð21Þ

Taking the divergence of Eq. (9) and using Eqs. (10), (11),
(12), (13), (14), (15), (16), (17), and (18), we obtain

ikx
V2k2

d


 �
ux þ iυ0kx k2x þ 4k2z

� �� �
uy− ω2 þ ω υk2 þΩ2

T

� �
s ¼ 0: ð22Þ

The set of Eqs. (19), (20), (21), and (22) can be written in
the following form:

N P 0
ikx
k2

Ω2
T

−P N1 −2υ0kxkz 0

0 2υ0kxkz M1
ikz
k2

Ω2
T

ikxD Q 0 −R1

2
666666666664

3
777777777775

ux

uy

uz

s

2
666666666666664

3
777777777777775

¼ 0:

ð23Þ

We have made the following assumptions,

V2 ¼ B2

4πρ
; Ω2

T ¼ Ω2
I þ ωΩ2

j

ξ þ ω
; Ω2

j ¼ c2k2 ; Ω2
I ¼ k2A; iσ ¼ ω; d ¼ ωαþ ηk2

� �
;

A ¼ γ−1ð Þ TLT−ρLρ þ λk2T
ρ

� �
; ξ ¼ γ−1ð Þ TρLT

p
þ λk2T

p

� �
; α ¼ 1þ c2k2

ω2
pe

 !
;

Q ¼ iυ0kx k2x þ 4k2z
� �

−ikxE; N 1 ¼ M1 þ
ωþ υk2
� �2

k2z
d

; M1 ¼ ωþ υk2; F ¼ υ0 k2x þ 2k2z
� �

;

R1 ¼ ω2 þ ω υ k2 þ Ω2
T ; D ¼ V2k2

d
; N ¼ M 1 þ D ; P ¼ F ;

c ¼ γp=ρð Þ1=2 ; s ¼ δρ = ρ ; is the condensation of the medium:

ð24Þ

The general dispersion relation can be obtained from the
determinant of the matrix of Eq. (23) which is

ω2 þ ω υk2 þΩ2
T

� �
ωþ υk2 þ V2k2

d


 �
ωþ υk2
� �

ωþ υk2 þ V2k2z
d

�

þ 4υ20k

2
xk

2
z

�


þ 2υ0ikxk2z
k2

Ω2
T ωþ υk2 þ V2k2

d


 �
iυ0kx k2x þ 4k2z

� �� � þ ωþ υk2
� �

ω2 þ ωυk2
� þΩ2

T

�
� υ0 k2x þ 2k2z

� �� �2 þ 2υ0k2xk
2
z V

2

d
Ω2

T υ0 k2x þ 2k2z
� �� �þ ikx

k2
Ω2

T υ0 k2x þ 2k2z
� �� �

ωþ υk2
� �

� ikxυ0 k2x þ 4k2z
� �� �

−
V2k2x
d

Ω2
T ωþ υk2
� �

ωþ υk2
� �

− 4υ20 k
4
x k

2
z

V2

d
Ω2

T ¼ 0 :

ð25Þ
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The dispersion relation (25) represents the combined
influence of viscosity, finite electrical conductivity, mag-
netic field, thermal conductivity, radiative heat-loss func-
tion, finite electron inertia, and FLR corrections on ther-
mal instability of plasma. In the absence of FLR correc-
tions, dispersion relation (25) is identical to Prajapati
et al. [14] for the non-rotational and non-gravitational
cases. In the absence of FLR corrections and viscosity
dispersion, relation (25) is identical to Bora and Talwar
[8] for the non-gravitational case. In the absence of radi-
ative heat-loss function, thermal conductivity, finite elec-
trical resistivity, viscosity, and finite electron inertia, the
general dispersion relation (25) is identical to Sharma [28]
for the non-rotational and non-gravitational cases. In the
absence of viscosity, finite electrical resistivity, FLR cor-
rections, thermal conductivity, and radiative heat-loss
function dispersion, relation (25) is reduced to that obtain-
ed by Damiano et al. [21]. Also, in the absence of FLR
corrections, viscosity, finite conductivity, finite electron
inertia, and thermal conductivity dispersion, relation (25)
is reduced to that obtained by Field [1]. The general dis-
persion relation (25) is identical to Kaothekar et al. [36]
for the non-gravitational and non-porous cases.

5 Discussion

5.1 Longitudinal Wave Propagation (kx = 0, kz = k)

In this case, the perturbations are taken to be parallel to the
direction of the magnetic field (i.e., kx = 0 , kz = k). The dis-
persion relation (25) reduces to

ωþ υk2
� �� ωþ υk2 þ V2k2

d


 �2
þ

(
2υ0k2
� �2)� ω2 þ ω υk2 þΩ2

T

� � ¼ 0:

ð26Þ

The first component of the dispersion relation (26) gives

ωþ υk2 ¼ 0: ð27Þ

This represents a damped mode modified by the presence
of viscosity of the medium. Thus, the viscous force is capable
of stabilizing the growth rate of the considered system. The
above mode is unaffected by the presence of FLR correction,
finite electron inertia, magnetic field strength, finite electrical
resistivity, thermal conductivity, and radiative heat-loss func-
tion. This dispersion relation is identical to Prajapati et al. [14].

The second factor of Eq. (26) on simplification gives

α2ω4 þ 2α ηk2 þ αυk2
� �

ω3 þ αυk2 þ ηk2
� �2 þ 2α V2k2 þ 2αυ20k

4þηk2υk2
��n o

ω2 þ 2 αυk2 þ ηk2
� ��

� V2k2 þ ηk2υk2
� �þ 4αηk2υ20k

4
	
ω þ V2k2 þ ηk2υk2

� �2n
þ4υ20k

4 η2k4
� �	 ¼ 0 :

ð28Þ

The above equation shows the dispersion relation for finite-
ly conducting viscous plasma including the effects of finite
electron inertia, FLR corrections, and magnetic field. It is
independent of radiative heat-loss functions and thermal con-
ductivity. Hence, the above dispersion relation represents the
wave propagation. Equation (28) is a modified form of
Vaghela and Chhajlani [30] by inclusion of finite electron
inertia in our case.

In the absence of viscosity, finite resistivity, and FLR cor-
rections (υ = η = υ0 = 0), Eq. (28) becomes

α2ω4 þ 2α V2k2ω2 þ V4k4 ¼ 0: ð29Þ

The roots of the above equation are

ω2
1;2 ¼ −

V2k2

α
: ð30Þ

Equation (30) shows the Alfven mode modified by fi-
nite electron inertia, and in this mode, there is no insta-
bility. The above relation shows the modified form of

Alfven mode by inclusion of finite electron inertia.
Thus, finite electron inertia modifies the mode by chang-
ing the growth rate.

In the absence of viscosity and finite resistivity (υ = η = 0),
Eq. (28) becomes

α2ω4 þ 2α V2k2 þ 4α2υ20k
4

� �
ω2 þ V4k4 ¼ 0: ð31Þ

The roots of the above equation are

ω2
1;2 ¼

− V2k2 þ 2α υ20k
4

� �� 2υ0k2 α V2k2 þ α2υ20k
4

� �1=2

α
:

ð32Þ

The above relation shows the modified form of Alfven
mode by inclusion of FLR corrections and finite electron in-
ertia. Thus, FLR corrections and finite electron inertia modify
the mode by changing the growth rate. Equation (31) is the
modified form of Vaghela and Chhajlani [30] by inclusion of
finite electron inertia in our case.
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The third component of the dispersion relation (26) on
simplifying gives

ω3 þ υk2 þ γ−1ð Þ TρLT
p

þ λk2T
p

� �
 �
ω2 þ γ−1ð Þ TρLT

p
þ λk2T

p

� �
υk2



þc2k2

�
ω

þ k2 γ−1ð Þ TLT−ρLρ þ λk2T
ρ

� �
 �
¼ 0 :

ð33Þ

The above equation represents the combined influence of
thermal conductivity, radiative heat-loss function, and viscos-
ity on the thermal instability of plasma, but there is no effect of
finite electron inertia, finite electrical conductivity, FLR cor-
rections, and magnetic field strength on the thermal instability
of the considered system. When the constant term of cubic
Eq. (33) is less than zero, this allows at least one positive real
root which corresponds to the instability of the system. The
condition of instability obtained from the constant term of
Eq. (33) is given as

k22 γ−1ð Þ TLT−ρLρ þ λk2T
ρ

� �
< 0: ð34Þ

The above condition of instability is independent of FLR
corrections, finite electron inertia, finite electrical conductivi-
ty, magnetic field strength, and viscosity. The above inequality
(34) is the reduced form of Bora and Talwar [8]. In the present
case, we have considered the effects of FLR correction and
viscosity, but Bora and Talwar [8] have not considered these
effects. Thus, the dispersion relation in the present analysis is
modified due to the presence of FLR correction and viscosity,
but the condition of instability is unaffected by the presence of
FLR correction and viscosity. Thus, we conclude that the FLR
correction and viscosity of the medium have no effect on the
condition of instability. Also, it is clear that the growth rate of
dispersion relation given by Bora and Talwar [8] is getting
modified due to the presence of FLR corrections and viscosity
in our present case. Thus, we conclude that FLR corrections
and viscosity modify the growth rate of instability in the pres-
ent case. Hence, these are the new findings in our case than
that of Bora and Talwar [8]. Equation (33) can be written in
the form, according to Field [1]:

ω3 þ c
υk2

c
þ kT þ k2

kλ

� �
ω2

þ c
υk2

c
kT þ k2

kλ

� �
þ k2

�
ω




þ k2c3

γ
kT−kρ þ k2

kλ

� �

¼ 0: ð35Þ

where we have used

kT ¼ γ−1ð ÞLT
Rc

; kλ ¼ Rcρ
γ−1ð Þλ ; and

kρ ¼ γ−1ð ÞρLρ
RcT

:

ð36Þ

To study the effects of viscosity and radiative heat-loss
functions on the growth rate of thermal instability, we solve
Eq. (33) numerically. Eq. (33) can be written in non-
dimensional form with the help of the following dimension-
less quantities

ω* ¼ ω
kρc

; υ* ¼ υkρ
c

; k* ¼ k
kρ

; k*λ ¼ kρ
kλ

; k*T ¼ kT
kρ

: ð37Þ

Using Eq. (37), we write Eq. (33) in non-dimensional form
as

ω*3 þ υ*k*2 þ k*T þ k*λk
*2� �

ω*2

þ υ*k*2 k*T þ k*λk
*2� �þ k*2

� �
ω*

þ k*2

γ
k*T−1þ k*λk

*2� �
¼ 0: ð38Þ

The parameters are taken as non-dimensional.
Numerical calculations were performed to determine the
roots of ω* from dispersion relation (38), as a function of
wave number k* for several values of the different param-
eters involved, taking γ = 5/3. Out of the three modes,
only one mode is unstable, for which the calculations are
presented in Figs. 1, 2, and 3, where the growth rate ω*

(positive real value of ω) has been plotted against the
wave number k* to show the dependence of the growth
rate on the different physical parameters such as heat-loss
function and viscosity ν*.

Figure 1 shows the effect of k*λ on the growth rate of
thermal instability for fixed values of other parameters.

From the figure, it is clear that as the value of k*λ increases
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both the peak value and the growth rate of thermal insta-

bility decrease. Thus, the parameter k*λ moves the present
system toward the stabilization. In Fig. 2, we have plotted
the growth rate of thermal instability against the wave

number for different values of the parameter k*T. From
the figure, we conclude that as the value of k*T increases,
the peak value of curves decreases and the area of the

growth rate also decreases. Hence, the presence of k*T also
stabilizes the system. In Fig. 3, we have shown the effect
of viscosity on the growth rate of thermal instability. The
figure displays that on increasing the value of viscosity
the growth rate of thermal instability also decreases.

Therefore, the parameters k*λ, k
*
T , and ν* viscosity stabi-

lize the system.
If the constant term of cubic Eq. (33) is greater than

zero, then all the coefficients of the equation (33) must be
positive. Equation (33) is a third degree in the power of ω
having its coefficients positive, which is a necessary con-
dition for the stability of the system. To achieve the suf-
ficient condition, the principal diagonal minors of the

Hurwitz matrix must be positive. The principal diagonal
minors are

Δ1 ¼ υk2 þ γ−1ð Þ TρLT
p

þ λk2T
p

� �
 �
>0;

Δ2 ¼ υk2 Δ1 γ−1ð Þ TρLT
p

þ λk2T
p

� �
þ c2k2


 �
þ γ−1ð Þk2ρLρ > 0;

Δ3 ¼Δ2 k2 γ−1ð Þ TLT−ρLρ þ λk2T
ρ

� �
 �
> 0 :

ð39Þ

SinceΩ2
j > 0; Ω2

I > 0 and γ > 1, it is clear that all theΔs
are positive, hence the system represented by Eq. (33) is a
stable system.

In the absence of thermal conductivity ( λ = 0), dispersion
relation (33) gives

ω3 þ υk2 þ γLT
cp


 �
ω2 þ υk2

γLT
cp

þ c2k2

 �

ωþ γLT
cp

k2 c
02
−
pLρ
TLT

� �
 �
¼ 0:

ð40Þ
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Fig. 1 The normalized growth
rate (ω*) as a function of
normalized wave number (k*), for
different values of k*λ, having k
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= 0.5 and v* = 1.
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The condition of instability obtained from the constant term
of the above equation is given as

k2 c02−
pLρ
TLT

� �
 �
< 0; ð41Þ

Thus, we conclude that for longitudinal wave propa-
gation as given by Eq. (33), the system is unstable only
for thermal criterion of instability; otherwise, it is stable.
Also, for longitudinal wave propagation, the thermal cri-
terion remains unaffected by FLR corrections, viscosity,
magnetic field, and finite electrical resistivity, but ther-
mal conductivity and radiative heat-loss function modify
the fundamental expression and the fundamental thermal
instability criterion becomes radiative instability
criterion.

5.2 Transverse Wave Propagation (kx = k, kz = 0)

In this case, the perturbations are taken to be perpendicular to
the direction of the magnetic field (i.e., kx = k , kz = 0). The
dispersion relation (25) reduces to

ωþ υk2
� �2

ωþ υk2
� �� ω2 þ ω υk2 þΩ2

T þ ωV2k2

d


 �

þ ωυ20k

4

�
¼ 0:

ð42Þ

The first component of the dispersion relation (42) gives

ωþ υk2 ¼ 0: ð43Þ

This represents a stable viscous mode, and is discussed in
Eq. (26).

The second component of the dispersion relation (42) on
simplifying gives

ω5α þ α 2υk2 þ γ−1ð Þ TρLT
p

þ λk2T
p

� �
 �
þ ηk2


 �
ω4 þ α 2υk2 γ−1ð Þ TρLT

p
þ λk2T

p

� �


þ υ2 k4

þυ20k
4 þ c2k2

� þ ηk2 γ−1ð Þ TρLT
p

þ λk2T
p

� �

þ 2υk2

�
þ V2k2

�
ω3 þ α γ−1ð Þ TρLT

p
þ λk2T

p

� �
υk2 þ γ−1ð Þ





� TρLT
p

þ λk2T
p

� �
υ20k

4 þ υk2 c2k2
� �þ k2 γ−1ð Þ TρLT

p
þ λk2T

p

� ��
þ υk2 2ηk2 γ−1ð Þ TρLT

p
þ λk2T

p

� �
þ ηk2υk2




þV2k2
� þ η k2 υ20k

4
� þc2k2

�þ γ−1ð Þ TρLT
p

þ λk2T
p

� �
þ V2k2

�
ω2 þ υk2 ηk2υk2

��
� γ−1ð Þ TρLT

p
þ λk2T

p

� �
þ V2 k2 γ−1ð Þ TρLT

p
þ λk2T

p

� �
þ η k2 c2k2

� � þ α k2 γ−1ð Þ TLT−ρLρ þ λk2T
ρ

� ���


þ η k2 υ20 k
4 γ−1ð Þ TρLT

p
þ λk2T

p

� �
þηk2 k2 γ−1ð Þ TLT−ρLρ þ λk2T

ρ

� �
 ��
ω þ η k2 υ k2

� k2 γ−1ð Þ TLT−ρLρ þ λk2T
ρ

� �
 �
¼ 0 :

ð44Þ

The above equation represents the combined influ-
ence of radiative heat-loss function, FLR corrections,

finite electron inertia, finite electrical conductivity, ther-
mal conductivity, viscosity, and magnetic field on
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Fig. 3 The normalized growth
rate (ω*) as a function of
normalized wave number (k*), for
different values of v*, having k*T
= 0.5 and k*λ ¼ 0:1:
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thermal instability of the plasma. If we neglect the effect of
FLR corrections, Eq. (44) is identical to Prajapati et al.
[14] for the non-rotational and non-gravitational cases.
In the present case, we have considered the effects of
FLR corrections, but Prajapati et al. [14] have not con-
sidered this effect. Thus, the dispersion relation in the
present analysis is modified due to the presence of FLR
corrections, but the condition of instability is unaffected
by the presence of FLR corrections. Thus, we conclude
that FLR corrections have no effect on the condition of
radiative instability, but the growth rate of the disper-
sion relation given by Prajapati et al. [14] gets modified
due to the presence of FLR corrections in our present
case. Thus, we conclude that FLR corrections modify
the growth rate of radiative instability in the present
case. Hence, this is the new finding in our case, com-
pared to that of Prajapati et al. [14].

When the constant term of Eq. (44) is less than zero,
this allows at least one positive real root which corre-
sponds to the instability of the system. The condition of

instability obtained from constant term of Eq. (44) is giv-
en as

k2 γ−1ð Þ TLT−ρLρ þ λk2T
ρ

� �
 �
< 0: ð45Þ

The above inequality (45) is the reduced form of Bora and
Talwar [8]. From Eq. (45), we see that if a heat-loss function
decreases with density, thermal instability does not arise, but
when the heat-loss function increases with density (Lρ > 0),
thermal instability occurs if λ < (ρ2Lρ − ρTLT)/(k

2T), and for
purely density-dependent heat-loss function, thermal instabil-
ity occurs if λ < (ρ2Lρ)/(k

2T).
Thus, to discuss the effect of each parameter (viz., heat-loss

function, viscosity, and FLR corrections) on the growth rate of
unstable modes, we solve Eq. (44) numerically by introducing
the following dimensionless quantities

ω* ¼ ω
kρc

; υ* ¼ υkρ
c

; k* ¼ k
kρ

; k*λ ¼ kρ
kλ

; k*T ¼ kT
kρ

; υ*0 ¼
υ0kρ
c

: ð46Þ
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Fig. 4 The normalized growth
rate (ω*) as a function of
normalized wave number (k*), for
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α ¼ 1; k*T = 0.5 and
v* ¼ v*0 ¼ η* ¼ 1
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Using Eq. (46), we write Eq. (44) in a non-dimensional
form as

ω*5αþ α 2υ*k*2 þ k*T þ k*λk
*2� �þ η*k*2

� 	
ω*4þ α 2υ*k*2 k*T þ k*λk

*2� �þ υ*2k*4þ υ*20 k*4þ k*2
� �� þη*k*2

� k*T þ k*λk
*2 þ 2υ*k*2

� �þV*2k*2
	
ω*3þ α k*T þ k*λk

*2� �
υ*k*2 þ k*T þ k*λk

*2� �
υ*20 k*4 þ υ*k*4 þ k*T þ k*λk

*2� �� �� þυ*k*2

� 2η*k*2 k*T þ k*λk
*2� �þ η*k*2υ*k*2 þ V*2k*2

� �þ η*k*2 υ*20 k*4
� þk*2

�þ k*T þ k*λk
*2� �þ V*2k*2

	
ω*2 þ υ*k*2 η*k*2υ*k*2

��
� k*T þ k*λk

*2� �þ V*2k*2 k*T þ k*λk
*2� �þ η*k*4 þ α

k*2

γ
k*T þ k*λk

*2−1
� �
 ��

þ η*k*2υ*20 k*4 k*T þ k*λk
*2� �þ η*k*2

� k*2

γ
k*T þ k*λk

*2−1
� �
 ��

ω* þ η* k*2υ* k*2
k*2

γ
k*T þ k*λk

*2−1
� �
 �

¼ 0 :

ð47Þ

In Figs. 4, 5, 6, 7, 8, and 9, the dimensionless growth rate
(ω*) has been plotted against the dimensionless wave number
(k*) to see the effect of various physical parameters such as
viscosity, radiative heat-loss function, resistivity, and FLR

corrections. From Fig. 4, we see that as the value of k*λ in-
creases, the growth rate decreases. Thus, the effect of param-

eter k*λ is stabilizing. It is clear from Fig. 5 that the growth rate

decreases with increasing parameter k*T. Thus, the presence of
k*T stabilizes the growth rate of the system. From Fig. 6, we
conclude that the growth rate decreases with increasing the
value of viscosity. Thus, the effect of viscosity is stabilizing.

Figure 7 displays the influence of FLR corrections on the
growth rate of thermal instability. From the figure, it is clear
that the FLR corrections have a stabilizing effect on the
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Fig. 6 The normalized growth
rate (ω*) as a function of
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α ¼ 1; k*T = 0.5 and
k*λ ¼ 0:1; v*0 ¼ η* ¼ 1

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20 ν *

0
= 0 .9 1

ν *

0
= 0 .5 1

ν *

0
= 0 .2 1

g
r
o
w
t
h
 r
a
t
e
 (
 

 )

wave number (  k
∗
 )

Fig. 7 The normalized growth
rate (ω*) as a function of
normalized wave number (k*), for
different values of v*0, having
α ¼ 1; k*λ = 0.1, k*T = 0.5, and
v* = η* = 1

698 Braz J Phys (2016) 46:689–702



growth rate of thermal instability. Figure 8 shows the effect of
finite electron inertia α on the growth rate of thermal instabil-
ity. From the curves, it is clear that the growth rate of thermal
instability increases as the value of finite electron inertia in-
creases. Hence, the finite electron inertia α has a destabilizing
influence on the system. Figure 9 displays the influence of
resistivity on the growth rate of thermal instability. From the
figure, it is clear that the resistivity has a destabilizing effect on
the growth rate of thermal instability. Therefore, the parame-
ters radiative heat-loss functions, viscosity, and FLR

corrections have a stabilizing influence on the system while
the finite electron inertia and resistivity have a destabilizing
influence on the growth rate of the system.

Now we wish to examine the effect of finite electron iner-
tia, FLR corrections, and radiative heat-loss functions on the
considered system with some simplifications, and at the same
time we wish to investigate the physics involved in such sim-
plifications in the present problem.

In the absence of thermal conductivity (λ = 0), Eq. (44)
reduces to
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Fig. 9 The normalized growth
rate (ω*) as a function of
normalized wave number (k*), for
different values of η*, having
α ¼ 1; k*λ = 0.1, k*T = 0.5, and
v* ¼ v*0 ¼ 1
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αω5þ α 2υk2 þ γLT
cp
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þ ηk2


 �
ω4 þ α 2υk2

γLT
cp

þ υ2k4




þ υ20k
4 þ c2k2

�
þ ηk2 2υk2 þ γLT

cp


 �
þ V2k2

�
ω3

þ α
γLT
cp

υ2k4 þ υ20k
4

� �


þ υ k 2 c2k2

� �þ γLT
cp

k2 c
02
−
pLρ
TLT

� �
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þ υ k2 2ηk2

γLT
cp

þ ηk2υk2



þ V2k2
�

þ η k2 υ20k
4 þ c2k2

� �þ γLT
cp

� �
V2k2

�
ω2 þ υk2 ηk2υk2

γLT
cp




þ V2 k2

γLT
cp

þ η k2 c2k2
� � þ α

γLT
cp

� k2 c
02
−
pLρ
TLT

� �
 ��
þ ηk2

γLT
cp

� �
υ20k

4 þ c
02
k2−

pLρk2

TLT


 ��
ωþη k2υk2

γLT
cp

k2 c
02
−
pLρ
TLT

� �
 �
¼ 0:

ð48Þ



The condition of instability obtained from the constant term
of Eq. (48) is given as

k2 c
02
−
pLρ
TLT

� �
 �
< 0; ð49Þ

It is already discussed in Eq. (41). On comparing Eqs. (40)
and (48), we see that no new mode comes due to inclusion of
thermal conductivity, but the condition of instability and
growth rate of instability both get modified by inclusion of

thermal conductivity. Also, on comparing Eq. (48) with
Eq. (29) of Aggarwal and Talwar [4], we conclude that the
growth rate of radiative instability gets modified by the inclu-
sion of finite electron inertia and FLR corrections in our case,
but the condition of instability is independent of finite electron
inertia and FLR corrections.

For infinitely conducting medium (η = 0), Eq. (44)
becomes

αω4 þ α 2υk2 þ γ−1ð Þ TρLT
p

þ λk2T
p

� �
 �
 �
ω3 þ α 2υk2

�
γ−1ð Þ TρLT

p
þ λk2T

p

� �

þ υ2k4

þυ20k
4 þ c2k2

�þ V2k2
	
ω2 þ α υk2

�
γ−1ð Þ TρLT

p
þ λk2T

p

� �

þ υ20k

4 γ−1ð Þ TρLT
p

þ λk2T
p

� �

þυk2 c2k2
� �þ γ−1ð Þ TρLT

p
þ λk2T

ρ

� ��
þυk2V2k2 þ γ−1ð Þ TρLT

p
þ λk2T

p

� �
þ V2k2

�
ω

þυk2 γ−1ð Þ TρLT
p

þ λk2T
p

� �

V2k2 þ α k2 γ−1ð Þ TLT−ρLρ þ λk2T

ρ

� �
 ��
¼0:

ð50Þ

The condition of instability obtained from the constant term
of Eq. (50) is given as

TρLT
p

þ λk2T
p

� �
V2k2 þ α k2 TLT−ρLρ þ λk2T

ρ

� �

 �
< 0: ð51Þ

This relation is the reduced form of Bora and Talwar [8].
From Eq. (51), we see that magnetic field tries to stabilize the
system. On comparing Eqs. (44) and (50), we see that one
mode is increased due to inclusion of finite resistivity. Also,
on comparing Eqs. (45) and (53), we conclude that inclusion
of finite resistivity removes the effect of magnetic field and
finite electron inertia from condition of instability and tries to
destabilize the system. Also, on comparing Eq. (50) with
Eq. (29) of Aggarwal and Talwar [4], we conclude that the
condition of instability gets modified by inclusion of finite

electron inertia, and the growth rate of radiative instability gets
modified by inclusion of finite electron inertia and FLR cor-
rections in our case. Hence, these are the new results in our
case, compared to those of Aggarwal and Talwar [4]. In the
case of purely temperature-dependent heat-loss function (Lρ =
0), increasing with temperature (LT > 0), thermal instability
does not occur for transverse wave propagation; if the heat-
loss function decreases with an increase in temperature (LT <
0), thermal instability arises with λ < (|LT|ρ)/(k

2). Again, for a
purely density-dependent heat-loss function (LT = 0), thermal
instability arises for λ < (Lρ)/(Tk

4)[1 + (ρV2)/(pα)] in the case
when heat-loss function increases with density (Lρ > 0). In that
case, thermal instability is modified due to the presence of
magnetic field strength.

In the absence of viscosity (υ = 0), Eq. (44) becomes

αω4 þ ηk2 þ α γ−1ð Þ TρLT
p

þ λk2T
p

� �
 �
ω3 þ α υ20k

4 þ c2k2
� �þ ηk2 γ−1ð Þ TρLT

p
þ λk2T

p

� �

þ V2k2

�
ω2

þ α υ20k
4 γ−1ð Þ TρLT

p
þ λk2T

p

� �
þ k2 γ−1ð Þ TLT−ρLρ þ λk2T

ρ

� �


þ η k2 υ20k

4 þ c2k2
� � þ γ−1ð Þ

� TρLT
p

þ λk2T
p

� �
V2k2

�
ω þ ηk2 γ−1ð Þ TρLT

p
þ λk2T

p

� �

υ20 k

4þk2 γ−1ð Þ TLT−ρLρ þ λk2T
ρ

� ��
¼ 0 :

ð52Þ

The condition of instability obtained from the constant term
of Eq. (52) is given as

TρLT
p

þ λk2T
p

� �
υ20k

4



þ k2 TLT−ρLρ þ λk2T

ρ

� ��
< 0: ð53Þ

From Eq. (53), we see that FLR corrections try to stabilize
the radiative instability. This is the reduced form of Bora and
Talwar [8]. On comparing Eqs. (44) and (52), we see that one
mode is increased due to inclusion of viscosity; also, the in-
clusion of viscosity removes the effect of FLR corrections
from the condition of instability.. On comparing Eqs. (45)
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and (53), we conclude that the condition of instability given
by Bora and Talwar [8] gets modified by inclusion of FLR
corrections, thus the present results are the improvement of
Bora and Talwar [8]. In the case of purely temperature-
dependent heat-loss function (Lρ = 0), increasing with temper-
ature (LT > 0), thermal instability does not occur for transverse
wave propagation; if the heat-loss function decreases with an
increase in temperature (LT < 0), thermal instability arises with

λ < (|LT|ρ)/(k
2). Again, for a purely density-dependent heat-

loss function (LT = 0), thermal instability arises for λ < Lρ
� �

= Tk6
� �

1þ ρυ20
� �

= pð Þ� �
in the casewhen the heat-loss function

increases with density (Lρ > 0). In that case, thermal instability is
modified due to the presence of the magnetic field strength..

For an inviscid perfectly conducting medium (υ = η = 0),
Eq. (44) becomes

αω3 þ α γ−1ð Þ TρLT
p

þ λk2T
p

� �
 �
ω2 þ α υ20k

4 þ c2k2
� �þ V2k2

� �
ωþ α υ20k

4 γ−1ð Þ TρLT
p

�


þ λk2T

p

�

þ k2 γ−1ð Þ TLT−ρLρ þ λk2T
ρ

� ��
þ V2 k2 γ−1ð Þ � TρLT

p
þ λk2T

p

� ��
¼ 0 :

ð54Þ

The above equation is the reduced form of Bora and Talwar
[8] in the absence of FLR corrections. The condition of insta-
bility obtained from the constant term of Eq. (54) is given as

α υ20k
4 TρLT

p
þ λk2T

p

� �
þ k2 TLT−ρLρ þ λk2T

ρ

� �
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þV2k2

TρLT
p

þ λk2T
p

� ��
< 0: ð55Þ

From Eq. (55), we see that FLR corrections and magnetic
field try to stabilize the radiative instability. This is the reduced
form of Bora and Talwar [8]. On comparing Eqs. (44) and
(55), we conclude that the condition of radiative instability
and the growth rate given by Bora and Talwar [8] are modified
by inclusion of FLR corrections, thus the present results are
the improvement of Bora and Talwar [8]. In the case of purely
temperature-dependent heat-loss function (Lρ = 0), increasing
with temperature (LT > 0), thermal instability does not occur
for transverse wave propagation; if the heat-loss function de-
creases with an increase in temperature (LT < 0), thermal in-
stability arises with λ < (|LT|ρ)/(k

2). Again, for a purely
density-dependent heat-loss function (LT = 0), thermal insta-

bility arises for λ < ρpLρ
� �

= k2T
� �

αυ20k
2 þ V2 þ p=ρð Þ� �

in the case when the heat-loss function increases with density
(Lρ > 0). In that case, thermal instability is modified due to the
presence of magnetic field strength, finite electron inertia, and
FLR corrections.

In the absence of viscosity, finite resistivity, thermal con-
ductivity, and radiative heat-loss function (υ = η = λ = LT , ρ =
0), Eq. (44) becomes

1þ c2k2

ω2
pe

 !
ω2 þ 1þ c2k2

ω2
pe

 !
υ20k

4 þ c2k2
� �þ V2k2

" #
¼ 0: ð56Þ

The above Eq. (56) is the modified form of Uberoi [22] by
inclusion of FLR corrections in our problem. The condition of
instability obtained from Eq. (56) is given as

1þ c2k2

ω2
pe

 !
υ20k

4 þ c2k2
� �þ V2k2

" #
< 0: ð57Þ

From Eq. (57), we see that magnetic field and FLR correc-
tions stabilize the system. On comparing Eqs. (44) and (56),
we see that the dispersion relation given by Uberoi [22] is
modified by inclusion of FLR corrections, radiative heat-loss
function, thermal conductivity, viscosity, and finite electrical
resistivity in our case. Hence, we improve the result of Uberoi
[22].

Thus, we conclude that for transverse wave propagation,
the thermal criterion is affected by finite electron inertia,
FLR corrections, radiative heat-loss functions, viscosity,
magnetic field strength, thermal conductivity, and finite
electrical resistivity. From the curves, we find that FLR
corrections, viscosity, and heat-loss function have a stabi-
lizing influence on the growth rate of thermal instability,
whereas finite electron inertia and finite electrical resistiv-
ity have a destabilizing influence on the thermal instability
of plasma.

6 Conclusion

The thermal instability of an infinite homogeneous viscous
thermally and electrically conducting, radiating fluid includ-
ing FLR corrections and finite electron inertia has been
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investigated. For simplicity, the longitudinal and transverse
wave propagation to the direction of external magnetic field
has been considered. It is found that the thermal criterion
remains valid and gets modified because of radiative heat-
loss function and thermal conductivity. For longitudinal wave
propagation, finite electron inertia, FLR correction, viscosity,
magnetic field strength, and finite resistivity have no effect on
thermal criterion. But thermal and radiative effects indepen-
dently as well as jointly modify the thermal criterion. Also,
FLR corrections and finite electron inertia modify the growth
rate of the Alfven mode.

For transverse wave propagation, FLR corrections, mag-
netic field strength, viscosity, and finite resistivity affect the
condition of radiative instability. FLR corrections stabilize the
system in the case of the non-viscous medium. Also, magnetic
field stabilizes the system but finite conductivity removes the
effect of magnetic field, thereby destabilizing the system.
Numerical calculation shows the stabilizing effect of heat-loss
function, viscosity and FLR corrections, and the destabilizing
effect of finite electron inertia and finite electrical resistivity
on the thermal instability.
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