Braz J Phys (2016) 46:689-702
DOI 10.1007/513538-016-0456-x

CrossMark

B~

SOCIEDADE BRASILEIRA DE FISICA

GENERAL AND APPLIED PHYSICS

Thermal Instability of Radiative Plasma with Finite Electron
Inertia and Finite Larmor Radius Corrections for Structure

Formation

Sachin Kaothekar!

Received: 21 July 2016
© Sociedade Brasileira de Fisica 2016

Abstract An investigation is made on the effects of finite
electron inertia, finite Larmor radius (FLR) corrections, and
radiative heat-loss functions, on the thermal instability of an
infinite homogeneous, viscous plasma incorporating the ef-
fects of finite electron resistivity and thermal conductivity,
for structure formation in astrophysical plasma environment.
A general dispersion relation is derived using the normal
mode analysis method with the help of relevant linearized
perturbation equations of the problem. The wave propagation
is discussed for longitudinal and transverse directions to the
external magnetic field, and the conditions of modified ther-
mal instabilities and stabilities are discussed in different cases.
The thermal instability criterion gets modified by inclusion of
radiative heat-loss functions. The finite electrical resistivity
removes the effect of the magnetic field, and viscosity of the
medium removes the effect of FLR from the condition of
radiative instability. Numerical calculation shows a stabilizing
effect of heat-loss function, FLR corrections, and viscosity
and a destabilizing effect of finite electrical resistivity and
finite electron inertia on the thermal instability of the consid-
ered system. Results presented here are helpful for under-
standing the process of structure formation in the astrophysi-
cal plasma environment.

Keywords Thermal instability - Structure formation - FLR
corrections - Finite electron inertia - Radiative heat-loss
functions - Magnetohydrodynamics (MHD)

>4 Sachin Kaothekar
sackaothekar@ gmail.com

Department of Physics, Mahakal Institute of Technology,
Ujjain, Madhya Pradesh 456664, India

1 Introduction

Structure formation in the astrophysical plasma environment is
one of the most important and fascinating processes in modern
astrophysics and cosmology. Structures are formed in the as-
trophysical plasma environment because of unstable modes
produced by the thermally unstable medium. Thermally unsta-
ble modes are produced due to thermal instability in the inter-
stellar medium. Thermal instability takes places in a medium
which can turn out to be cooler owing to radiation and fluid
reduction. Additionally, reduction in the temperature constructs
the arrangement unbalanced and directs to configuration of
novel configurations due to density strengthening. In this insta-
bility, the critical length scale is smaller than that of the other
dynamical instability like the Jeans instability, i.e., a system can
become thermally unbalanced even if the organization is stable
beside the gravitational instability. Hence, we can say that the
physical basis of smaller-scale configurations is owing to ther-
mal instability rather than energetic instability. It is straightly
correlated with the structure of different stages in the diffuse
interstellar and intergalactic media, as well as in the solar
atmosphere. The thermal and radiative instability arising due
to various heat-loss mechanisms could definitely be the reason
for the astrophysical condensation and the configuration of
large-scale structures as well as of small objects. Several au-
thors investigated the phenomenon of thermal instability aris-
ing due to heat-loss mechanism in plasma. Field [1] has
discussed the importance of thermal instability in the forma-
tion of solar prominences, condensation in planetary nebula,
and condensation of galaxies from the intergalactic medium.
Hunter [2] has discussed the role of thermal instability in star
formation. Raju [3] has emphasis on the role of thermal insta-
bility in the formation of solar prominences. Aggarwal and
Talwar [4] have investigated magneto-gravitational instability
in a rotating gravitating fluid taking radiative heat-loss
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function. Ibanez [5] has studied the sound and thermal waves in
a fluid with an arbitrary heat-loss function. Hoven and Mok [6]
have carried out the problem of thermal instability in a sheared
magnetic field. Bodo et al. [7] have investigated magnetohy-
drodynamic thermal instability in cool inhomogeneous atmo-
sphere. Bora and Talwar [8] have discussed the
magnetothermal instability with generalized Ohm’s law taking
the effects of electrical resistivity, electron inertia, thermal con-
ductivity, and radiative heat-loss function. Burkert and Lin [9]
have pointed out the importance of thermal instability in the
formation of clumpy gas clouds, and have shown that the
thermal instability can lead to the breakup of large clouds into
cold dense clumps. Shadmeri and Ghanbari [10] have
discussed the problem of radiative cooling flows of self-
gravitating filamentary clouds. Nejad-Asghar and Ghanbari
[11] have discussed the formation of small-scale condensation
in the molecular clouds via thermal instability. Baruah et al.
[12] have studied the thermal (radiative) instability in weakly
ionized plasma with continuous ionization and recombination
taking general heat-loss function. Fukue and Kamaya [13] have
studied the thermal instability of partially ionized plasma taking
radiative cooling function and two-fluid theory into account.
Recently, Prajapati et al. [14] have investigated the thermal
instability of rotating viscous Hall plasma with arbitrary radia-
tive heat-loss function and electron inertia. More recently,
Kaothekar and Chhajlani [15] have examined the effect of po-
rosity and finite ion Larmor radius (FLR) corrections on Jeans
instability of self-gravitating radiative thermally conducting
viscous plasma. Thus, thermal and radiative effects are impor-
tant in investigations of plasma instability.

In addition to this, the electron inertia parameter is important in
the dynamics of interstellar matter, in magnetic reconnection
processes, in stability investigation of accelerated plasmas,
and in several other astrophysical situations. Tayler [16] has
discussed a simple hydromagnetic stability problem involving
finite conductivity, electron inertia, and Hall effect. Kalra and
Talwar [17] have investigated magneto-thermal instability of
unbounded plasma with electron inertia and Hall effect.
Pegoraro et al. [18] have shown the importance of electron
inertia in non-uniform collisionless plasma having small-scale
magnetic structures. Chatterjee and Das [19] have pointed out
the effect of electron inertia on the speed and shape of ion-
acoustic solitary waves in plasma. Shukla et al. [20] have
studied the effect of electron inertia on kinetic Alfven waves.
Damiano et al. [21] have pointed out the effects of electron
inertia and FLR on Hall magnetohydrodynamic waves.
Uberoi [22] has discussed electron inertia effects on the trans-
verse thermal instability incorporating the rotation parameters.
Recently, Pensia et al. [23] have investigated the effect of
black body radiation and electron inertia on the Jeans instabil-
ity of rotating and magnetized gaseous plasma of the interstel-
lar medium. More recently, Sutar and Pensia [24] have carried
out the problem of electron inertia effects on the gravitational
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instability under the influence of FLR corrections and
suspended particles. Thus, finite electron inertia is an impor-
tant factor in the discussion of thermal instability and other
hydromagnetic instability.

Along with this, as in the above discussed problems, the
effect of finite ion Larmor radius is not considered. In many
astrophysical plasma situations such as in solar corona, interstel-
lar, and interplanetary plasmas, the assumption of zero Larmor
radius is not valid. Roberts and Taylor [25] and Rosenbluth et al.
[26] have shown the stabilizing influence of FLR effects on
plasma instabilities. Herrnegger [27] has investigated the stabi-
lizing effect of FLR on gravitational instability, and shown that
the gravitational criterion is changed by FLR for wave propa-
gation perpendicular to the magnetic field. Sharma [28] has
investigated the stabilizing effect of FLR on gravitational insta-
bility of rotating plasma. Ariel [29] has discussed the stabilizing
effect of FLR on gravitational instability of conducting plasma
layer of finite thickness surrounded by a non-conducting matter.
Vaghela and Chhajlani [30] have studied the stabilizing effect of
FLR on magneto-gravitational stability of resistive plasma
through a porous medium with thermal conduction. Bhatia
and Chhonkar [31] have investigated the stabilizing effect of
FLR on the instability of a rotating layer of self-gravitating
plasma incorporating the effects of viscosity. Vyas and
Chhajlani [32] have pointed out the stabilizing effect of FLR
on the gravitational instability of magnetized rotating plasma
incorporating the effects of viscosity, finite electrical conductiv-
ity, porosity, and thermal conductivity. Marcu and Ballai [33]
have shown the stabilizing effect of FLR on thermosolutal sta-
bility of a two-component rotating plasma. Kaothekar and
Chhajlani [34] have investigated the effect of radiative heat-
loss function and finite Larmor radius corrections on Jeans in-
stability of viscous thermally conducting self-gravitating astro-
physical plasma. Recently, Kaothekar and Chhajlani [35] have
carried out the problem of Jeans instability of self-gravitating
rotating radiative plasma with finite Larmor radius corrections.
More recently, Kaothekar et al. [36] have investigated the effect
of Jeans instability of partially ionized self-gravitating viscous
plasma with Hall effect FLR corrections and porosity. Thus,
FLR effect is an important factor in the discussion of thermal
instability and other hydromagnetic instability.

In the light of the above work, we find that in these studies
(Vyas and Chhajlani [32], Bora and Talwar [8], Prajapati et al.
[14], and Kaothekar et al. [36]), the joint influence of FLR
corrections, electron inertia, radiative heat-loss functions, vis-
cosity, electrical resistivity, thermal conductivity, and magnet-
ic field on the thermal instability is not investigated.
Therefore, in the present work, thermal instability of viscous
magnetized plasma with electron inertia, FLR corrections, ra-
diative heat-loss functions, thermal conductivity, and finite
electrical resistivity for thermal configuration is studied.

This paper is organized as follows. Section 2 contains the
basic equations for a magneto thermal system. In Sect. 3,
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linearized perturbed equations and the dispersion relation are
derived for the first-order approximation. The instability cri-
terion for thermal modes is derived for longitudinal and trans-
verse propagation in Sect. 4. Numerical interpretation of the
linear growth rate is done in Sect. 5. Finally, Sect. 6 contains
the summary and discussion of the results.

2 Equations of the Problem

Let us consider an infinite homogeneous, thermally
conducting, radiating, viscous plasma with finite electron in-
ertia and finite electrical resistivity in the presence of magnetic
field B (0, 0, B). The equations of the problem with these
effects are written as

du 1 V.P 1

eV B) x B + vV? 1
7 pr 5 4—47T (Vx B) x B+ vV-u, (1)
dp

— =—pV. 2
5 pV.u , (2)
1l dp~ pdp

— = L-V.(AVT) =0, 3
y—1dt ~-1pdt tp ( ) (3)

p = pRT, (4)
OB 2 0

— = B V’B ——VZB

5 = VX x (ux B)+n er2 o (5)

V.B =0. (6)

where p, p, v, T, u (u,, u,, u), m, A\, R, v, ¢, and w,, denote
the fluid density, pressure, kinematic viscosity, temperature,
velocity, electrical resistivity, thermal conductivity, gas con-
stant, ratio of two specific heats, velocity of light, and electron
plasma frequency, respectively. Here, L (p, T) is the heat-loss
function per gram of the material per second exclusive of
thermal conduction and is in general a function of the local
values of density and temperature. The operator (d/d) is the
substantial derivative given as (d/df) = (O u . V). P is the
pressure tensor taking into account the effect of finite ion
gyration radius for the magnetic field along the z-axis as given
by Roberts and Taylor [25] which is

5uy Outy, 6”1 Oty
Pxx = ~pPLo o + ay ) Pyy = pYo + ay
Ou, Ouy,
P =0, Py = Py = Pﬂo(a;—7;>7
P =Py 6u) Lo ou, p p 5 Ou, n Oty
— — =P, = o | — .
jad PYo oz ay vz fa) PVo Ox oz
(7)

The parameter vy has the dimensions of the kinematic vis-
cosity and is defined as vy = !ZLRL /4, where R; is the ion-
Larmor radius and (2; is the ion gyration frequency.

3 Linearized Perturbation Equations

The perturbation in fluid density, pressure, temperature, veloc-
ity, magnetic field, pressure tensor, and heat-loss function is
given as 6p, p, 0T, u (i, u,, u.), B (0B, 6B,, 6B.), 6 P,and L,
respectively. The perturbation state is given as

p=rpotop, p=pot+op, T=To+dT,
B=By+0B, P=P,+0P, and

u = uy + u(with ug = 0),
L = Lo+ L(with Ly = 0).

(8)

Suffix “0” represents the initial equilibrium state, which is
independent of space and time.

Substituting the perturbation state into Egs. (1), (2), (3), (4),
(5), and (6) and linearizing them by neglecting higher order
perturbations, suffix “0” is dropped from the equilibrium
quantities.

The linearized perturbation equations of motion for such
medium are

V. P 1
O = — 7V6p——+4—(VX O0B)x B +vVu , (9)
P
O0tdp = —pVau, (10)
- la, op— ——a, sp+ p(L,dp + LpdT)= AV2ST = 0, (11)

2
06B= Vx (uxB) + V0B +-0V*5B, (13)
w

pe

V.6B = 0, (14)

where Ly and L, respectively denote partial derivatives (OL/
07), and (OL/Op)r of the heat-loss function evaluated for the
initial (unperturbed) state.

4 Dispersion Relation
We seck plain wave solution of the form
exp(ikyx + ik,z + iot). (15)

where o is the frequency of harmonic disturbance and k, and
k, are the wave numbers of the perturbations along the x- and
z-axes, where k> = kf + ki.
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The perturbed pressure tensor components P, are

Py = — p vl kyuy, Py = p wvi ku,, P, = 0 (16)
Py, = Py, = pvoikyuy, Py, = Py = 2pvoiku,, P, =P, = ZZpUO(k u, + k).
The components of Eq. (13) may be given as Taking the divergence of Eq. (9) and using Egs. (10), (11),
12), (13), (14), (15), (16), (17), and (18), btai
0B, = (iB/d)k.u, (12), (13), (14), (15), (16), (17), and (18), we obtain
0B, iB/d)k.u,, 17 L V2P )
5B B —((zB//a)l)I;xux, ( ) {sz y }u,( + [wokx(kf +4k§)]uy— [w2 +w vk + Qﬂ s =0. (22)
Using Egs. (11), (12), and (15), we write The set of Egs. (19), (20), (21), and (22) can be written in
the following form:
A OD)[TLr—pL, + (AT /p)] + wé }5p (8) o
. ' T
{ -1 [(Tp/p)Lr + (AET/p) | +w } [y » 0 L
k
Using Egs. (10), (11), (12), (13), (14), (15), (16), (17), and -P N, ~upkyk. 0 uy
(18) in Eq. (9), we may write the following algebraic equa- " =0.
tions for the components of Eq. (9) 0 2uokik, M, 2 2 .
22 k ikyD 0 0 —R
{w—i—vkz—i- : } wt [l +260) - B ods= 0, (19) | I,
V22 (23)
—[vo (K2 +2k2)uc + [w + Uk v } u,—2vok ko, = 0, (20)
kok i ke s —
2vokykouy + (w to )”z + 2 5= (21) We have made the following assumptions,
, B 2 2 J“"Q? 2 _ 2.2 2 2 : 2
=i = o . =K, 2 =RA, jo=w, d=(watnk?),
2 2 2 2
A= (1) (TLT*pLﬁAk T> . &= 01 (TpLTJrM) . o= <1+ K ) ;
p P P Whe
. 2 2\ (“-’+ Ukz) K 2 2 2 (24)
0 = ivoky (K + 4k2)=ikE, Ny =M, to— Mi=wtuk, F= vo (k3 + 2k2),
272
RI:werkaer!ZzT,D:Zk N = M+ D, P = F,
c = (w/ p)l/ >, s = op / p , isthe condensation of the medium.
The general dispersion relation can be obtained from the
determinant of the matrix of Eq. (23) which is
2k2 V2k2
[w2 +w vk + .QzT] {w + uk? + d] { (w + vkz) [w +uk? + a’z] + 4'U(2)k§k§}
2 ik V2k?
UO;{ < !22 [ + vk + 7 } [ivokx(ki +4kf)} + [w+ Ukz] [wz + wok? JanT]
' (25)
20k k2 V? k
x o (k2 + 202)]7 + 25 2 o (4 282)] + 55 25 [ (2 + 262)] oo+ o]
2k 2
X [ikyvo (ks +4k2)] — Yk 27 [wtvk][wtok’] - kil 07 = 0.

@ Springer



Braz J Phys (2016) 46:689-702

693

The dispersion relation (25) represents the combined
influence of viscosity, finite electrical conductivity, mag-
netic field, thermal conductivity, radiative heat-loss func-
tion, finite electron inertia, and FLR corrections on ther-
mal instability of plasma. In the absence of FLR correc-
tions, dispersion relation (25) is identical to Prajapati
et al. [14] for the non-rotational and non-gravitational
cases. In the absence of FLR corrections and viscosity
dispersion, relation (25) is identical to Bora and Talwar
[8] for the non-gravitational case. In the absence of radi-
ative heat-loss function, thermal conductivity, finite elec-
trical resistivity, viscosity, and finite electron inertia, the
general dispersion relation (25) is identical to Sharma [28]
for the non-rotational and non-gravitational cases. In the
absence of viscosity, finite electrical resistivity, FLR cor-
rections, thermal conductivity, and radiative heat-loss
function dispersion, relation (25) is reduced to that obtain-
ed by Damiano et al. [21]. Also, in the absence of FLR
corrections, viscosity, finite conductivity, finite electron
inertia, and thermal conductivity dispersion, relation (25)
is reduced to that obtained by Field [1]. The general dis-
persion relation (25) is identical to Kaothekar et al. [36]
for the non-gravitational and non-porous cases.

ot + 2k + avk?]w’ + {[avk2 + nk2]2 + 2a [V 4 2005k kP vk?] }wz + 2{ [avk® + nk?]
><[V2k2 + nkzvkz} + 4a77kzvék4} w + { [Vzkz + ﬂszk2]2+4U(2)k4 (n2k4)} =0.

5 Discussion
5.1 Longitudinal Wave Propagation (k. =0, k,=k)

In this case, the perturbations are taken to be parallel to the
direction of the magnetic field (i.e., £, =0, k,=k). The dis-
persion relation (25) reduces to

27212
de } +[2U()k2]2} X [wz +w vk® + Q2T] =0.

[w+ vk x { [w+ vk* +
(26)

The first component of the dispersion relation (26) gives
w+ vk? = 0. (27)

This represents a damped mode modified by the presence
of viscosity of the medium. Thus, the viscous force is capable
of stabilizing the growth rate of the considered system. The
above mode is unaffected by the presence of FLR correction,
finite electron inertia, magnetic field strength, finite electrical
resistivity, thermal conductivity, and radiative heat-loss func-
tion. This dispersion relation is identical to Prajapati et al. [14].

The second factor of Eq. (26) on simplification gives

The above equation shows the dispersion relation for finite-
ly conducting viscous plasma including the effects of finite
electron inertia, FLR corrections, and magnetic field. It is
independent of radiative heat-loss functions and thermal con-
ductivity. Hence, the above dispersion relation represents the
wave propagation. Equation (28) is a modified form of
Vaghela and Chhajlani [30] by inclusion of finite electron
inertia in our case.

In the absence of viscosity, finite resistivity, and FLR cor-
rections (v=mn=wvy=0), Eq. (28) becomes

At 4 2a VIERA + VI = 0. (29)

The roots of the above equation are

(30)

Equation (30) shows the Alfven mode modified by fi-
nite electron inertia, and in this mode, there is no insta-
bility. The above relation shows the modified form of

Alfven mode by inclusion of finite electron inertia.
Thus, finite electron inertia modifies the mode by chang-
ing the growth rate.

In the absence of viscosity and finite resistivity (v=7=0),
Eq. (28) becomes

At + 2w V2 + 4azvék4)wz + V4 = 0. (31)

The roots of the above equation are

1
—(Vzk2 +2a v%k4) + 2uok? (a V2k? + azvgk4) /2
Wi = .
' o

(32)

The above relation shows the modified form of Alfven
mode by inclusion of FLR corrections and finite electron in-
ertia. Thus, FLR corrections and finite electron inertia modify
the mode by changing the growth rate. Equation (31) is the
modified form of Vaghela and Chhajlani [30] by inclusion of
finite electron inertia in our case.
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The third component of the dispersion relation (26) on
simplifying gives

W+ {vk2 + (7—1)<T/;LT +ﬂ>}w2 + [(7—1)<TPLT

P2 p
A=T

I
P

+ [kz(y—l) (TLT—pL/, +

MNET
+ —) vk2—|—czk2]w
p

The above equation represents the combined influence of
thermal conductivity, radiative heat-loss function, and viscos-
ity on the thermal instability of plasma, but there is no effect of
finite electron inertia, finite electrical conductivity, FLR cor-
rections, and magnetic field strength on the thermal instability
of the considered system. When the constant term of cubic
Eq. (33) is less than zero, this allows at least one positive real
root which corresponds to the instability of the system. The
condition of instability obtained from the constant term of

Eq. (33) is given as
NET
)<o
P

The above condition of instability is independent of FLR
corrections, finite electron inertia, finite electrical conductivi-
ty, magnetic field strength, and viscosity. The above inequality
(34) is the reduced form of Bora and Talwar [8]. In the present
case, we have considered the effects of FLR correction and
viscosity, but Bora and Talwar [8] have not considered these
effects. Thus, the dispersion relation in the present analysis is
modified due to the presence of FLR correction and viscosity,
but the condition of instability is unaffected by the presence of
FLR correction and viscosity. Thus, we conclude that the FLR
correction and viscosity of the medium have no effect on the
condition of instability. Also, it is clear that the growth rate of
dispersion relation given by Bora and Talwar [8] is getting
modified due to the presence of FLR corrections and viscosity
in our present case. Thus, we conclude that FLR corrections
and viscosity modify the growth rate of instability in the pres-
ent case. Hence, these are the new findings in our case than
that of Bora and Talwar [8]. Equation (33) can be written in
the form, according to Field [1]:

k% (y-1) (TLT—pr + (34)

k* k?
w? +C(U—+kT +—>w2
C k)\
k> K
+c{v— (kr+—) +k2}w
C k)\

K i
- | kr—k, +—
+ ’}/ ( T P + k)\>

— 0. (35)
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(33)
where we have used
(v-DLr Rep
frp =177 j = d 36
T Re B A (")/_1))\ , an ( )
o — (oL,
P = T 5
ReT

To study the effects of viscosity and radiative heat-loss
functions on the growth rate of thermal instability, we solve
Eq. (33) numerically. Eq. (33) can be written in non-
dimensional form with the help of the following dimension-
less quantities

- k, « k .« k, . k
:u’k :k_’k/\:—p’kT:_T'
P

® w v
kyc’ c

w =

Using Eq. (37), we write Eq. (33) in non-dimensional form
as

W+ [U*k*2 +ky + kik*z]w*z
+ [0k (kyp + kb ) + 6w

k*z % % o %
+ 3 (k=1 + k3k™?)

=0. (38)

The parameters are taken as non-dimensional.
Numerical calculations were performed to determine the
roots of w" from dispersion relation (38), as a function of
wave number & for several values of the different param-
eters involved, taking v = 5/3. Out of the three modes,
only one mode is unstable, for which the calculations are
presented in Figs. 1, 2, and 3, where the growth rate w"
(positive real value of w) has been plotted against the
wave number & to show the dependence of the growth
rate on the different physical parameters such as heat-loss
function and viscosity .

Figure 1 shows the effect of k, on the growth rate of
thermal instability for fixed values of other parameters.
From the figure, it is clear that as the value of k;\ increases
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Fig. 1 The normalized growth 0.10 -
rate (w) as a function of ‘ 0.09 —=—k,=0.11
normalized wave number (), for *
different values of k), having k7. 0.08 o k,=051
=05andv =1. x 0.07 - —a—k, =091
—~ 0.06
“s
— 0.05
]
€ 0.04-
S
; 0.03 1
® 0.02
0.01 4
0'00 T T T T 1 T T T T T 1 T
00 02 04 06 08 10 12 14 16 18 20 22 24

both the peak value and the growth rate of thermal insta-
bility decrease. Thus, the parameter k, moves the present
system toward the stabilization. In Fig. 2, we have plotted
the growth rate of thermal instability against the wave
number for different values of the parameter k,. From
the figure, we conclude that as the value of k; increases,
the peak value of curves decreases and the area of the
growth rate also decreases. Hence, the presence of k; also
stabilizes the system. In Fig. 3, we have shown the effect
of viscosity on the growth rate of thermal instability. The
figure displays that on increasing the value of viscosity
the growth rate of thermal instability also decreases.
Therefore, the parameters k; k;, and viscosity stabi-
lize the system.

If the constant term of cubic Eq. (33) is greater than
zero, then all the coefficients of the equation (33) must be
positive. Equation (33) is a third degree in the power of w
having its coefficients positive, which is a necessary con-
dition for the stability of the system. To achieve the suf-
ficient condition, the principal diagonal minors of the

wave number (k' ) — =

Hurwitz matrix must be positive. The principal diagonal

minors are
TpLr  MT
A = {vkz + (1) (ﬂ +—)} >0,
P
TpL N°T
Ay = vk? {Al(fy—l) <%+T> + czkz} + (v-1)k*pL, > 0,

AT

Ay =24, |:k2(’}/*1) (TLT*pL/, + 7>:| >0.

(39)

Since Q? >0, Qf > 0 and > 1, it is clear that all the As

are positive, hence the system represented by Eq. (33) is a
stable system.

In the absence of thermal conductivity ( A =0), dispersion
relation (33) gives

ok LT oLr

+ { + czkz] w+ {kz (
Cp

2 pL, -
c —TLT>] =0.

(40)

Cp

Fig. 2 The normalized growth 0.24
rate (w") as a function of
normalized wave number (), for 0.21
different values of k7, having k), 0.18 -
=0.1andv' =1. T '
1 0454
2 0124
Q
<
009
H
© 0.06 -
o
0.03
0.00
0.0

1.8 21 24 2.7 3.0

) ———

T T
1.2 1.5

T
0.9
wave number ( k”
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Fig. 3 The normalized growth
rate (w) as a function of
normalized wave number (), for
different values of v", having k;
=05and ky = 0.1.

0.18 —
0.16 —
0.14 -
0.12 o
0.10 o
0.08 —

0.06 —

growth rate ( o )—>

0.04 -

0.02 —

0.00

=0.11
0.51
0.91

+V
*
—e—y =

*
—a—yY =

0.0

The condition of instability obtained from the constant term
of the above equation is given as

L
K2 1 PLp
2 (e-72)] <o

Thus, we conclude that for longitudinal wave propa-
gation as given by Eq. (33), the system is unstable only
for thermal criterion of instability; otherwise, it is stable.
Also, for longitudinal wave propagation, the thermal cri-
terion remains unaffected by FLR corrections, viscosity,
magnetic field, and finite electrical resistivity, but ther-
mal conductivity and radiative heat-loss function modify
the fundamental expression and the fundamental thermal
instability criterion becomes radiative instability

criterion.
T
)] )

(41)

e

TpL
Wwa + {a{kaz—f-('y—l)( il S
p

ToLr = MNeT
02k + 2] + i {( )( il
p p
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x(y—l)( & T+—> + V2 (- ( PoT 4
p p
TpLr NET
+ 0k vg k* (y-1) (%+ +1 2[ (- 1)(TLT L,

p
X [kz(y—l) (TLT—pr +M>] =0.
P

e
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)] ave o (2
o)

4—V2 }w + {Uk2 nk*vk?

Ak T) + nk* (k) + « {kz(fy— )(TLT—pL,,+
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wave number ( k* ) —=

5.2 Transverse Wave Propagation (k. =k, k,=0)

In this case, the perturbations are taken to be perpendicular to
the direction of the magnetic field (i.e., k, =k, k.=0). The
dispersion relation (25) reduces to

V2i2
[ervkz]z{[quvkz} X {wz +ka2+!22T+w dk } +wv§k4} =0.

(42)
The first component of the dispersion relation (42) gives
w+ vk? = 0. (43)

This represents a stable viscous mode, and is discussed in
Eq. (26).

The second component of the dispersion relation (42) on
simplifying gives

2T
Ak—) + 2K
p
)\k T> o+ + ()

NET
) + nk*vk?

i

(TpLT

} + vk? {217k2 <TpLT

(44)
k2

T
M )}}w + nk*vk?
p

The above equation represents the combined influ-
ence of radiative heat-loss function, FLR corrections,
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finite electron inertia, finite electrical conductivity, ther-
mal conductivity, viscosity, and magnetic field on
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Fig. 4 The normalized growth 0.06 B
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thermal instability of the plasma. If we neglect the effect of
FLR corrections, Eq. (44) is identical to Prajapati et al.
[14] for the non-rotational and non-gravitational cases.
In the present case, we have considered the effects of
FLR corrections, but Prajapati et al. [14] have not con-
sidered this effect. Thus, the dispersion relation in the
present analysis is modified due to the presence of FLR
corrections, but the condition of instability is unaffected
by the presence of FLR corrections. Thus, we conclude
that FLR corrections have no effect on the condition of
radiative instability, but the growth rate of the disper-
sion relation given by Prajapati et al. [14] gets modified
due to the presence of FLR corrections in our present
case. Thus, we conclude that FLR corrections modify
the growth rate of radiative instability in the present
case. Hence, this is the new finding in our case, com-
pared to that of Prajapati et al. [14].

When the constant term of Eq. (44) is less than zero,

wave number ( k* ) —=

instability obtained from constant term of Eq. (44) is giv-
en as

2|

The above inequality (45) is the reduced form of Bora and
Talwar [8]. From Eq. (45), we see that if a heat-loss function
decreases with density, thermal instability does not arise, but
when the heat-loss function increases with density (L, >0),
thermal instability occurs if A < (szp— pTi L/(K*T), and for
purely density-dependent heat-loss function, thermal instabil-
ity occurs if A < (0*L )/(KT).

Thus, to discuss the effect of each parameter (viz., heat-loss
function, viscosity, and FLR corrections) on the growth rate of
unstable modes, we solve Eq. (44) numerically by introducing
the following dimensionless quantities

NET

TLr—pL, +T)} < 0. (45)

this allows at least one positive real root which corre- . w o . Uk, o« ko« k, « kr . wk,
. oy .. W = 5 :7ak :*7kA:*7kT:77 = (46)
sponds to the instability of the system. The condition of e c k, ky k, c
Fig. 5 The normalized growth 0.16 "
rate (w) as a function of —=—k = 0.21
normalized wave number (k*), for 0.14 k *
different values of k;, having 012 4 r = 0.51
a=1, k, =05 and \ —a—k, =091
V*:VS:T]*:I 1. 0.10
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Fig. 6 The normalized growth 0.09 -
rate (w) as a function of —=—y = 0.21
. i« 0.08
normalized wave number (k"), for * 0.51
different values of v*, having 0.07 - v.=9
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Using Eq. (46), we write Eq. (44) in a non-dimensional
form as

W+ {a 202 + ky + Kk P+ 0k wt - {a 20"k (ky 4+ Kok )+ 0k o2k B2
x [k +kyk™ + 20"k 2| +V 2k Yo Ha (ky + kyk )0k + (ky + Kk ) vk ™ + o'k + (kp + kyk ™) +ok™?
x 20k (ky + kk™?) + 0k 20k + V] + 0k otk k2 + (kp + kak ) + VP + {0 [0
2
x(kp +kyk?) + V2K (kp + kb ™) + 0’k + [’% (k7 + k;k*z—l)” + 0k Ptk (ky + kyk ) + 0k
2

X

*2
= (k7 + kik*zl)] }w* + kP k? {% (k7 + k;k*zl)] =0.

(47)

In Figs. 4, 5, 6, 7, 8, and 9, the dimensionless growth rate  decreases with increasing parameter k;. Thus, the presence of
(w:k) has been plotted against the dimensionless wave number k; stabilizes the growth rate of the system. From Fig. 6, we
(k') to see the effect of various physical parameters such as  conclude that the growth rate decreases with increasing the
viscosity, radiative heat-loss function, resistivity, and FLR  yajye of viscosity. Thus, the effect of viscosity is stabilizing.
corrections. From Fig. 4, we see that as the value of k) in- Figure 7 displays the influence of FLR corrections on the
creases, the growth rate decreases. Thus, the effect of param-  growth rate of thermal instability. From the figure, it is clear
eter k; is stabilizing. It is clear from Fig. 5 that the growthrate ~ that the FLR corrections have a stabilizing effect on the

Fig. 7 The normalized growth 0.20 *
rate (w") as a function of : A—V,=091
normalized wave nuinber k"), for 0.18 - V; = 051
different values of v, having 0.16 - .
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v=n=1
0124
]
e 0.10 -
S 0.08
£
5 0.06 —
© 0.04
0.02 -
0.00 T T T T T T T

T T
0.0 0.3 0.6 0.9 1.2 1.5 1.8 21 2.4 2.7
wave number ( k* ) ———=
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Fig. 8 The normalized growth 0.10
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growth rate of thermal instability. Figure 8 shows the effect of
finite electron inertia o on the growth rate of thermal instabil-
ity. From the curves, it is clear that the growth rate of thermal
instability increases as the value of finite electron inertia in-
creases. Hence, the finite electron inertia « has a destabilizing
influence on the system. Figure 9 displays the influence of
resistivity on the growth rate of thermal instability. From the
figure, it is clear that the resistivity has a destabilizing effect on
the growth rate of thermal instability. Therefore, the parame-
ters radiative heat-loss functions, viscosity, and FLR

corrections have a stabilizing influence on the system while
the finite electron inertia and resistivity have a destabilizing
influence on the growth rate of the system.

Now we wish to examine the effect of finite electron iner-
tia, FLR corrections, and radiative heat-loss functions on the
considered system with some simplifications, and at the same
time we wish to investigate the physics involved in such sim-
plifications in the present problem.

In the absence of thermal conductivity (A =0), Eq. (44)
reduces to

yLp
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Fig. 9 The normalized growth *
rate (w') as a function of 0.24 —=—7 =021
normalized wave number (k*), for | o ¥
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wave number ( k
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The condition of instability obtained from the constant term
of Eq. (48) is given as

2 pL
S = 0
()] <o

It is already discussed in Eq. (41). On comparing Egs. (40)
and (48), we see that no new mode comes due to inclusion of
thermal conductivity, but the condition of instability and
growth rate of instability both get modified by inclusion of

(49)

TpL T
aw' + {a[2vk2 + (’y—l)( PT | Ak
p p

TpLy ~ NET
+ught + K + VR W + {a[vkz('y 1) (ﬂ + _> OBk (y
p p

+)\ka>]+vk2V2k2 (y 1)<

+uk? (czkz) + (v-1) (TPLT
p

ol (22 T e e

TpLT

thermal conductivity. Also, on comparing Eq. (48) with
Eq. (29) of Aggarwal and Talwar [4], we conclude that the
growth rate of radiative instability gets modified by the inclu-
sion of finite electron inertia and FLR corrections in our case,
but the condition of instability is independent of finite electron
inertia and FLR corrections.

For infinitely conducting medium (n=0), Eq. (44)
becomes

) e (7 20)

e T)
oy

(50)

e
)
S

The condition of instability obtained from the constant term
of Eq. (50) is given as

2 2
{ (TPLT Ak )V2k2 [kz (TLT—pr L T) } <o0. (51)
P P r

This relation is the reduced form of Bora and Talwar [8].
From Eq. (51), we see that magnetic field tries to stabilize the
system. On comparing Egs. (44) and (50), we see that one
mode is increased due to inclusion of finite resistivity. Also,
on comparing Egs. (45) and (53), we conclude that inclusion
of finite resistivity removes the effect of magnetic field and
finite electron inertia from condition of instability and tries to
destabilize the system. Also, on comparing Eq. (50) with
Eq. (29) of Aggarwal and Talwar [4], we conclude that the
condition of instability gets modified by inclusion of finite

TpL
awt + [nkz + a('yl)( [; !

+ {a[ugk“( —1)<T’;LT

TpLr MT TpLr Mk
x(pT )VZkz}w—l—nkz[( )<PT+
P p p P
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MNET MNCT
» ) +k2(7—1)<TLT—pr +

T N T
)vék“—%—kz(v—l)(TLT—pL,}—k 5 >] =0.

electron inertia, and the growth rate of radiative instability gets
modified by inclusion of finite electron inertia and FLR cor-
rections in our case. Hence, these are the new results in our
case, compared to those of Aggarwal and Talwar [4]. In the
case of purely temperature-dependent heat-loss function (L, =
0), increasing with temperature (L7> 0), thermal instability
does not occur for transverse wave propagation; if the heat-
loss function decreases with an increase in temperature (L7 <
0), thermal instability arises with A < (|L7]p)/(kK). Again, for a
purely density-dependent heat-loss function (L7=0), thermal
instability arises for A < (L,)/(7} KH[1 + (pVZ)/(pa)] in the case
when heat-loss function increases with density (L, > 0). In that
case, thermal instability is modified due to the presence of
magnetic field strength.
In the absence of viscosity (v=0), Eq. (44) becomes

TpLT

T
M ) + Vzkz}
P

+ 0k [kt + K] + (1)

2
(52)

The condition of instability obtained from the constant term
of Eq. (52) is given as

TpL
{(Pr+
P
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(53)

From Eq. (53), we see that FLR corrections try to stabilize
the radiative instability. This is the reduced form of Bora and
Talwar [8]. On comparing Egs. (44) and (52), we see that one
mode is increased due to inclusion of viscosity; also, the in-
clusion of viscosity removes the effect of FLR corrections
from the condition of instability.. On comparing Eqs. (45)
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and (53), we conclude that the condition of instability given
by Bora and Talwar [8] gets modified by inclusion of FLR
corrections, thus the present results are the improvement of
Bora and Talwar [8]. In the case of purely temperature-
dependent heat-loss function (L, = 0), increasing with temper-
ature (L7> 0), thermal instability does not occur for transverse
wave propagation; if the heat-loss function decreases with an
increase in temperature (L7 < 0), thermal instability arises with

ooy )

+ k2 (’yil) <TLT PL,)—F

[a(vgk* + 2K%) + Vi w + { [vgk“ (v-1) (

KT TpL KT
)} + V2B (D) x(ﬂ—i—)\—)} - 0
p P P

A< (IL7Ap)/(k?). Again, for a purely density-dependent heat-
loss function (L7=0), thermal instability arises for A < (L,)
/(TK®)[1 + (pv3)/(p)] in the case when the heat-loss function
increases with density (L, > 0). In that case, thermal instability is
modified due to the presence of the magnetic field strength..

For an inviscid perfectly conducting medium (v=mn=0),
Eq. (44) becomes

TpLT

/\k2T>
+ -
p

The above equation is the reduced form of Bora and Talwar
[8] in the absence of FLR corrections. The condition of insta-
bility obtained from the constant term of Eq. (54) is given as

(e

N2 T MNET TpLy NK*T
) +k2<TLT pL, + >:|+V2k2 (”T+ )} <o0.
p p P p

From Eq. (55), we see that FLR corrections and magnetic
field try to stabilize the radiative instability. This is the reduced
form of Bora and Talwar [8]. On comparing Egs. (44) and
(55), we conclude that the condition of radiative instability
and the growth rate given by Bora and Talwar [8] are modified
by inclusion of FLR corrections, thus the present results are
the improvement of Bora and Talwar [8]. In the case of purely
temperature-dependent heat-loss function (L, = 0), increasing
with temperature (L7>0), thermal instability does not occur
for transverse wave propagation; if the heat-loss function de-
creases with an increase in temperature (L7<0), thermal in-
stability arises with A < (|L7{p)/(k*). Again, for a purely
density-dependent heat-loss function (L7=0), thermal insta-
bility arises for A < (ppL,) /(K°T) [evdk® + V2 + (p/p)]
in the case when the heat-loss function increases with density
(L,>0). In that case, thermal instability is modified due to the
presence of magnetic field strength, finite electron inertia, and
FLR corrections.

In the absence of viscosity, finite resistivity, thermal con-
ductivity, and radiative heat-loss function (v=n=A=Ly ,=
0), Eq. (44) becomes

272

<1 +5 f )wz +
Wye

The above Eq. (56) is the modified form of Uberoi [22] by

inclusion of FLR corrections in our problem. The condition of
instability obtained from Eq. (56) is given as

2k?
L4+~ | (nk* + ) + V2| =0. (56)

w[m

(57)

<1 + Czkz) (vak* + *K*) + VP
w? 0

pe

From Eq. (57), we see that magnetic field and FLR correc-
tions stabilize the system. On comparing Egs. (44) and (56),
we see that the dispersion relation given by Uberoi [22] is
modified by inclusion of FLR corrections, radiative heat-loss
function, thermal conductivity, viscosity, and finite electrical
resistivity in our case. Hence, we improve the result of Uberoi
[22].

Thus, we conclude that for transverse wave propagation,
the thermal criterion is affected by finite electron inertia,
FLR corrections, radiative heat-loss functions, viscosity,
magnetic field strength, thermal conductivity, and finite
electrical resistivity. From the curves, we find that FLR
corrections, viscosity, and heat-loss function have a stabi-
lizing influence on the growth rate of thermal instability,
whereas finite eclectron inertia and finite electrical resistiv-
ity have a destabilizing influence on the thermal instability
of plasma.

6 Conclusion
The thermal instability of an infinite homogeneous viscous

thermally and electrically conducting, radiating fluid includ-
ing FLR corrections and finite electron inertia has been
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investigated. For simplicity, the longitudinal and transverse
wave propagation to the direction of external magnetic field
has been considered. It is found that the thermal criterion
remains valid and gets modified because of radiative heat-
loss function and thermal conductivity. For longitudinal wave
propagation, finite electron inertia, FLR correction, viscosity,
magnetic field strength, and finite resistivity have no effect on
thermal criterion. But thermal and radiative effects indepen-
dently as well as jointly modify the thermal criterion. Also,
FLR corrections and finite electron inertia modify the growth
rate of the Alfven mode.

For transverse wave propagation, FLR corrections, mag-
netic field strength, viscosity, and finite resistivity affect the
condition of radiative instability. FLR corrections stabilize the
system in the case of the non-viscous medium. Also, magnetic
field stabilizes the system but finite conductivity removes the
effect of magnetic field, thereby destabilizing the system.
Numerical calculation shows the stabilizing effect of heat-loss
function, viscosity and FLR corrections, and the destabilizing
effect of finite electron inertia and finite electrical resistivity
on the thermal instability.
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