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Abstract Intensive calculations have been carried out to
study the structural, mechanical, and thermal properties of
β-Si3N4 with hexagonal P63/m structure. The calculated lat-
tice constants a and c are in agreement with the available
experimental data and similar theoretical calculations.
Through a series of researches, the mechanical parameters
(the elastic constants, bulk modulus, shear modulus, and
Young’s modulus) and Debye temperature, the wave veloci-
ties are systematically investigated. Additionally, the mechan-
ical anisotropy has been characterized by calculating Young’s
modulus and described by the three-dimensional (3D) surface
constructions and its projections. By using the born stability
criteria and phonon frequency, it is concluded that theβ-Si3N4

is stable mechanically and dynamically up to 35 GPa. Finally,
the thermal properties have been calculated by employing the
quasi-harmonic Debye model at different temperatures (0–
800 K) and pressures (0–35 GPa).
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1 Introduction

Si3N4 is widely used as an important ceramic with many
industrial applications, such as under high temperature

and corrosive environments. Three polymorphs for Si3N4

exist: α-Si3N4, β-Si3N4, and γ-Si3N4. Both α-Si3N4 and
β-Si3N4 have hexagonal structures P31/c and P63/m and
can be produced at ambient conditions [1, 2]. γ-Si3N4 has
a cubic structure. It can be produced at temperatures
above 2000 K and pressures above 15 GPa [3, 4]. It is
found that β-Si3N4 is a more stable phase [5]. Recently,
Cui et al. have predicted three potential hard metastable
phases of t-Si3N4, m-Si3N4, and o-Si3N4 using a recently
developed particle swarm optimization method within the
CALYPSO software package [6]. In this paper, we focus
on the β-Si3N4. In recent years, frequent experimental and
theoretical attempts have been used to study the β-Si3N4

[7–14]. On the experimental side, Flammini et al. have
carried out the thermal oxidation of the β-Si3N4 (0001)-
8 × 8 surface [10]. On the theoretical side, Ching et al.
have optimized the experimentally observed phases of
Si3N4 crystal structures by employing first principles cal-
culation [11]. Kuwabara et al. have calculated the lattice
dynamics of α-Si3N4, β-Si3N4, and γ-Si3N4 phases by
interatomic force constants in the real space method com-
bined with first-principles calculations [12]. Lu et al. have
performed to clarify the shear mechanical property of β-
Si3N4 nano-thin layer in the basal plane with different
extreme strain rates and loading temperatures via molec-
ular dynamics simulations [13]. Jiang et al. have also in-
vestigated the different roles of Lu and La in the inter-
granular film in β-Si3N4 on the growth morphology in-
vestigated via molecular dynamics simulations [14].

Although there are some studies, the mechanical an-
isotropy properties of β-Si3N4 are still limited both ex-
perimentally and theoretically as far as we are aware.
Therefore, we here have extended the mechanical prop-
erties and presented the Young’s modulus of β-Si3N4 in
detail.
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2 Methods of Calculation

β-Si3N4 crystallize in the hexagonal structure belonging to the
space group of P63/m (No. 176). The atomic positions are N
2c (0.3333, 6667, and 0.25), 6h (0.3302, 0.0301, and 0.25),
and Si 6h (0.1751, 0.7689, and 0.25). The experimental lattice
parameter a and cwere determined to be 7.6069 and 2.9091 Å
from the experimental data [15].

The structure and lattice dynamics of β-Si3N4 calculations
are carried out by using the Cambridge Serial Total Energy
(CASTEP) code [16], based on density functional theory
(DFT) by using Vanderbilt-type ultrasoft pseudopotentials
[17] and density functional perturbation theory (DFPT) [18]
by using norm-conserving pseudopotential [19], respectively.
The effects of exchange-correlation interaction are descried
with the local density approximation (LDA) of the Ceperley-
Alder data as parameterized by Perdew-Zunger (CA-PZ) [20].
Considering accuracy, we choose the cutoff energy to be in
520 eV, and the Brillouin-zone sampling mesh parameters for
the k-point set to be 7×7×8 in this work for every calculation.
For calculation of the elastic constants, we adopted the same
cutoff energy and Monkhorst-Pack mesh as the structure.
Through the method described above, Moreira et al. have
successfully investigated the elastic properties of some mate-
rials [21]. It suggests that the simulation method adopted in
this work is reasonable and reliable, giving us confidence in
the following calculations.

The thermal properties calculations of β-Si3N4 are
carried out by using the quasi-harmonic Debye model
[22, 23].

3 Results and Discussions

3.1 Structural Properties

By performing ab initio density functional calculations using
LDA functional within CA-PZ type, we obtained the equilib-
rium lattice constants for a= 7.5152 Å and c= 2.8702 Å,

which are very close to the experimental works:
a=7.6069 Å and c=2.9091 Å [15, 24] and other theoretical
results [8, 11, 25–27]. The above optimized lattice constants
are listed in Table 1 together with the available experimental
data and theoretical results. Then we further obtained the lat-
tice constants a, c and the relative lattice constants a/a0, c/c0,
and relative volume V/V0 as a function of the applied pressure
are given in Figs. 1 and 2, respectively, along with Li et al.
XRD experimental data [11].We found that present calculated
values are consistent with Li et al. XRD experimental data. It
is also worth seeing that the lattice constants a of β-Si3N4

decreases more with applied pressure than the lattice constants
c in Fig. 1.

3.2 Elastic Properties

For hexagonal P63/m structure, the number of the indepen-
dent elastic constants reduces to five C11, C12, C13, C33, and

Table 1 Calculated lattice constants a (Å), c (Å), and c/a of β-Si3N4,
together with experimental data and theoretical results

a c c/a

Present work 7.5153 2.8702 0.3819

Exp. [15] 7.6069 2.9091 0.3824

Exp. [24] 7.608 2.90 0.3812

Ref.[8] 7.562 2.893 0.3826

Ref. [11] 7.6226 2.9014 0.3818

Ref. [25] 7.61 2.91 0.3824

Ref. [26] 7.580 2.899 0.3825

Ref. [27] 7.555 2.814 0.3725

Fig. 1 The lattice constants a and c as a function of pressure at zero
temperature

Fig. 2 The relative lattice constants a/a0, c/c0, and relative volume V/V0

as a function of pressure at zero temperature
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C44. In order to check the influence of these elastic constants
(C11, C12, C13, C33 and C44) on the mechanical stability, we
referred to the Born stability criteria [28]. The calculated elas-
tic constants ofβ-Si3N4 under 0 pressure and high pressure up
to 35 GPa are given in Table 2. From Table 2, we found C11,
C12, C13, C33, and C44 still obey the Born stability criteria up
to 35 GPa, indicating that β-Si3N4 is still mechanically stable
up to 35 GPa. The calculated elastic constants of β-Si3N4

under 0 pressure are given in Table 2, and we compared them
with experimental data by using Brillouin scattering experi-
mental [9] and other similar theoretical calculations [29–32].
From it, we can find that the present calculated elastic con-
stants are more close to the experimental values [9]. However,
our obtained results are also quite consistent with other avail-
able calculations obtained by using a force field molecular

dynamics simulation, based on ab initio calculations [29]. In
Fig. 3, we also plotted the variation of elastic constants of β-
Si3N4 with respect to the variation of pressure. It is found from
Fig. 3 that the elastic constants C11, C12, C13, and C33 linearly
increase monotonously when pressure is enhanced. Moreover,
C44 decreases very slowly with the elevated pressure.

Base on the obtained elastic constants of β-Si3N4, we also
investigated its polycrystalline elastic properties, such as Voigt
bulk modulus (BV), the Reuss bulk modulus (BR), the Voigt
shear modulus (GV), and the Reuss shear modulus (GR). By
using the Voigt-Reuss-Hill average method [33, 34], the bulk
modulus B= (BR+BV)/2 and the shear modulus G= (GR+
GV)/2 are derived, then the Young’s modulus E is also obtain-
ed: E=9BG/(3B+G) using the above B andG. The calculated
results are summarized in Table 3. At T=0 K and P=0 GPa,
the calculated bulk modulus B is 257.84 GPa, which is much
accords with the experimental data of 259 GPa by using
Brillouin scattering [9].

Table 2 Calculated elastic
constants Cij (GPa) of β-Si3N4

under 0 pressure up to 35 GPa,
together with experimental data
and theoretical results

Pressure(GPa) C11 C12 C13 C33 C44

0 444.96 186.35 119.65 583.27 109.84

0 Expt. 433 [9] 195 [9] 127 [9] 574 [9] 108 [9]

0 Cal. 439.172 [29] 181.848 [29] 149.909 [29] 556.983 [29] 114.380 [29]

0 Cal. 409.3 [30] 271.2 [30] 200.6 [30] 603.6 [30] 108.0 [30]

0 Cal. 343 [31] 136 [31] 120 [31] 600 [31] 124 [31]

0 Cal. 315 [32] 239 [32] 222 [32] 332 [32] 40 [32]

5 459.77 204.83 135.70 606.49 108.18

10 473.88 227.17 151.49 628.41 102.84

15 490.82 246.87 168.50 651.76 100.10

20 508.44 264.53 182.49 680.26 96.67

25 517.41 283.41 198.90 704.70 92.17

30 537.12 292.64 216.10 724.21 93.95

35 541.81 318.40 232.16 743.49 85.25

Fig. 3 The present LDA calculated elastic constants of β-Si3N4 as a
function of pressure at zero temperature

Table 3 The present LDA calculated bulk modulus B (GPa), shear
modulus G (GPa), Young Modulus E (GPa), Poisson’s ratio σ, the ratio
of the shear modulus G to the bulk modulus B (B/G), and the
compressional wave velocities Vl (km/s), the shear wave velocities Vt

(km/s), the average wave velocity Vm (km/s), and Debye temperature Θ
(K) of the β-Si3N4 under high pressures at 0 K

B G E σ B/G Vl Vt Vm Θ

0 257.84 135.20 345.25 0.277 1.91 11.49 6.38 7.11 961.41

5 274.89 133.99 345.79 0.290 2.05 11.58 6.29 7.02 957.19

10 292.43 130.09 339.87 0.306 2.25 11.63 6.15 6.87 942.24

15 310.69 128.51 338.82 0.318 2.42 11.73 6.06 6.78 935.30

20 327.82 127.53 338.67 0.328 2.57 11.83 5.99 6.71 930.44

25 343.83 123.48 330.84 0.340 2.78 11.86 5.85 6.56 914.65

30 359.94 126.45 339.58 0.343 2.85 12.01 5.87 6.60 923.76

35 375.91 117.84 32.0.07 0.358 3.19 11.98 5.63 6.34 891.55
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The ratio B/G has been proposed to evaluate the ductile or
brittle character of materials by Pugh [35]. The critical ratio B/
G value is 1.75. If B/G>1.75, the material behaves in a ductile
manner, otherwise,B/G<1.75 in a brittlemanner. FromTable 3,
it can be found that the ratio of B/G is above 1.75 from 1.91 of
0 GPa to 3.19 of 35 GPa, however, the values increase with
increasing pressure gradually. Thus, it becomes more and more
ductile with increasing applied pressure. The Poisson’s ratios of
β-Si3N4 are calculated using the formula:σ=(3B−2G)/[2(3B+
G)], which are listed in Table 3.

Finally,weobtained thecompressionalwavevelocitiesVl, the
shearwavevelocitiesVt, and theaveragewavevelocityVmunder
0GPa up to 35GPa, according toNavier’s equations [36]. Three
wave velocities Vl, Vt, and Vm are listed in Table 3. The Debye
temperature (Θ) can be deduced from the above wave velocity
and summarized in Table 3. Our calculated Θ at T=0 K and

P=0 GPa is 964.41 K (see Table 3), which is quite consistent
with experimental data 923±5 K [7]. This indicates that our
calculated Debye temperature values under high pressure also
are trustable.

In order to display the elastic anisotropy more visually, we
presented the direction-dependent Young’s modulus (E). The
3D figure of directional dependences of the reciprocal of E for
the β-Si3N4 can be defined by the following equation due to
crystal structure [37]. We plotted the E in Fig. 4a. It is shown
clearly that theE shows a high degree of anisotropy along differ-
ent crystallographic. From the projections of E in Fig. 4b, the
anisotropy of the a-b plane seems alike, but that of the a-c or b-c
planes is serious,which reveals theelastic anisotropyofβ-Si3N4.

3.3 Lattice Dynamics

Figure 5 plot the phonon dispersion curves along with the total
phonon density of states of β-Si3N4 at 0 GPa. It can be seen

Fig. 4 a The direction
dependence of Young’s modulus
under zero pressure and b its
projections onto the a-b, b-c, and
a-c plane for β-Si3N4 under zero
pressure (unit, GPa)

Fig. 5 Phonon dispersion curves (a) and Phonon density of states (b) for
β-Si3N4 at T= 0 K and P= 0 GPa

Fig. 6 Phonon dispersion curves (a) and Phonon density of states (b) for
β-Si3N4 at T= 0 K and P= 35 GPa
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that thephonondispersioncurvesandtotalphonondensitiesofstates
at 0GPa agreewellwith previous calculation [12] and experimental
data [38], they show similar profiles. From Figs. 5 and 6, there is a
shift of position under pressure atP=0 and 35GPa. Additionally, a
stable crystalline structure requires all phonon frequencies tobepos-
itive.Figures5and6showsthephonondispersioncurvesofβ-Si3N4

at 0 and 35 GPa. As what is shown in Figs. 5 and 6, no imaginary
phonon frequencywas found in thewhole Brillouin zone direction,
indicating the dynamical stabilities ofβ-Si3N4 up to 35GPa.

3.4 Thermal Properties

By using the quasi-harmonic Debye model, we obtained the
thermal properties of β-Si3N4 under 0 GPa up to 35 GPa and
0 K up to 800 K.

Debye temperature (Θ) as the function of the pressure and
temperature illustrated by our calculated results is plotted in
Fig. 7. It can be found that Θ is nearly constant at low tem-
perature and decreases linearly with increasing temperature as
shown in Fig. 7a. When the temperature is constant, the Θ
increases almost linearly with applied pressure as shown in
Fig. 7b. In the quasi-harmonic Debye model used here, the Θ
of β-Si3N4 turns out to be 1093.18 K at the T=0 and P=0,
which is a bit larger the value 964.41 K obtained in terms of
our elastic constants and experimental data 923±5 K [7].

4 Conclusions

In summary, we have presented a theoretical study the structur-
al, elastic and thermal propertiesβ-Si3N4 usingGGA-PBE and
quasi-harmonic Debye model. Our theoretical results of lattice
constantsa and c are found to be in goodagreementwith exper-
imental data. Through calculations, the elastic constants, bulk
modulus, shear modulus, YoungModulus, Poisson’s ratio, the
ratio of the shearmodulus to the bulkmodulus, thewave veloc-
ities, and Debye temperature under high pressure and the me-
chanical anisotropies ofβ-Si3N4 are also calculated for the first
time.By the elastic stability criteria andphononcalculation, it is
predicted that β-Si3N4 is stable up to 35 GPa. Moreover, we
predict the thermal properties with pressure and temperature.
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