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Abstract Traveling wave solution of the Gardner equa-
tion is studied analytically by using the two dependent
(G′/G, 1/G)-expansion and (1/G′)-expansion methods
and direct integration. The exact solutions of the Gardner
equations are obtained. Our analytic solutions are applied
to the unmagnetized four-component and dusty plasma sys-
tems consisting of hot protons and electrons to investigate
dynamical features of the solitons and shock waves pro-
duced in these systems. A wide variety of parameters of
the plasma is used, and the basic features of the Gard-
ner solitons that are beyond the existing study in litera-
ture are found. It is observed that the analytic solutions
from (G′/G, 1/G)-expansion and (1/G′)-expansion meth-
ods only produce shock waves but the solitary waves are
found from the analytic solutions derived from the direct
integration. It is also noted that the superhot electrons and
relative mass density of the electrons significantly effect
the soliton’s amplitude, width, and position. We have also
numerically proved that the combination of every value of
nomalized density μ1 or temperature ratio σ1 with the other
sets of plasma parameters creates a region where the solu-
tions have similar physical properties. The time-dependent
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behavior of the soliton is also studied, and a periodic motion
of soliton along the phase variable η is found during the
evolution. The investigations and the limits presented in this
study may be helpful for studying and understanding the
nonlinear properties of the solitary and shock waves seen in
various physical and astrophysical plasma systems.

Keywords Gardner equation · (G′
G

)-expansion and direct
integration · Electron-positron-ion plasma · Soliton and
shock waves

1 Introduction

Real physical systems show nonlinear and chaotic behav-
iors. Mathematical solutions of the differential equations for
these systems are sometimes unmanageable and some spe-
cial methods or techniques needed to be applied to reach the
analytic solutions. One of these types of equations is called
Gardner equation which can be written in the following
form [1–5]

Ut + aUUx + bU2Ux + pUxxx = 0, (1)

where U = U(x, t), Ut = ∂U
∂t

, Ux = ∂U
∂x

, and a, b and
p are arbitrary constants. These parameters will be defined
later depending on plasma parameters. Equation 1 con-
tains U and U2 which are related with well known K-dV
(Korteweg-de Vries) and modified K-dV (mK-dV) equa-
tions. To study nonlinear properties of solitary waves, we
focus on the derivation of the higher order nonlinear equa-
tion called Gardner equation for different physical plasmas
[6–12].

There are so many effective methods defined in litera-
ture and some of them are really applicable to nonlinear
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differential equations to find the solitary type solutions in
real physical systems. In this paper, we use the two-variable
(1/G′)- expansion and (G′/G, 1/G)-expansion methods,
and direct integration to find the analytic solutions of the
Gardner equation. The original (G′/G)-expansion method
is generalized to find (G′/G, 1/G)-expansion method [13].
Some applications of (G′/G)-expansion method can be
seen in [14–18]. As a pioneer work [19] has applied the
two-variable (G′/G, 1/G)-expansion method and found the
exact solutions of Zakharov equations. Some applications
of (G′/G, 1/G)-expansion method can be seen in [16, 20–
22]. The (1/G′)-expansion method was firstly introduced
by Ref. [23]. Then, [24] obtained some exact solutions by
using the (1/G′)-expansion method for the Boussinesq type
equations. The direct integration is applied to some nonlin-
ear differential equations to find the exact solutions. It is
very effective and coincide with a method which is handled
by doing some straightforward integrations [15].

The physical plasma is getting great deal of interest, and
many efforts have been made during the last few decades
to study the linear and nonlinear systems to find out the
properties of shock waves and solitons in electron-acoustic
and dusty plasmas [25–27]. They are very common cases
in astrophysical and laboratory plasma environments. The
linear properties of these cases are very well understood
from theoretical and experimental points of view [28, 29].
During the last few years, there are many great efforts put
forward in nonlinear systems to understand the dynamics
of solitons, and shock waves and their strong correlation
in dusty plasma for different plasma parameters, such as
electron and proton number densities, electron, proton and
ion temperatures, and the strength of the nonextensivity
[30–32].

There are number of papers dealing with dynamical
changes of the Gardner solitary and shock waves in unmag-
netized plasma containing ions, negatively charged immo-
bile dust, hot electrons and protons, as Refs. [6, 31, 33, 34]
which investigated the electron-acoustic Gardner solitons in
a nonextensive electron-positron-ion plasma system. They
used the reductive perturbation method to derive the Gard-
ner equation. The basic properties of the electron-acoustic
Gardner solitons were studied depending on plasma param-
eters. The solitons which produce negative and positive
hump were characterized depending on the critical values
of nonextensive parameter q in [31]. The nonextensivities
of the positrons and electrons play an important role in the
modification of the behavior of the solitary structure. The
theoretical determination of the nonextensivity on solitons
was studied by taking nonextensive electrons and positrons
in plasma system by [33]. In this paper, we will give the
exact solutions of the Gardner equations by using the differ-
ent methods and then apply these analytic solutions not only

to find dynamical behavior of the solitons and shock waves
in a wide range of plasma parameters but also to explain the
traveling wave solutions of solitons.

The structure of the paper is as follows: Section 2
presents the main steps of (G′/G, 1/G)-expansion and
(1/G′)-expansion method to find the traveling wave solu-
tion of nonlinear differential equations. The traveling
wave solutions of the Gardner equation by using the two
dependent (G′/G, 1/G)-expansion and (1/G′)-expansion
methods and direct integration are given in Section 3.
Section 4 covers applications of our analytic solutions to
two different plasma systems. The dynamical behavior of
the solitons and shock waves observed in these systems are
analyzed using a wide range of plasma parameters. The
numerical results are discussed and compared with the litera-
ture. Finally, our main conclusions are given in Section 5.

2 (G′/G, 1/G) and (1/G′)-expansion Methods

2.1 (G′/G, 1/G)-expansion Method

The main steps of the (G′/G, 1/G)-expansion method are
described for finding the traveling wave solutions of the
nonlinear evolution equations. First of all, we consider the
following second-order ordinary linear differential equation,

G′′(η) + λG(η) = μ, (2)

where G = G(η), ′ = d
dη

and we let

φ = G′/G, ψ = 1/G, (3)

Using (2) and (3), it yields

φ′ = −φ2 + μψ − λ, ψ ′ = −φψ, (4)

From (2), we have the three cases of the general solu-
tions which are,

Case I: When λ < 0,

The general solutions of the (2) is

G(η) = c1sinh(
√−λη) + c2cosh(

√−λη) + μ

λ
, (5)

and we have

ψ2 = − λ

λ2ν + μ2
(φ2 − 2μψ + λ),

where ν = c2
1 − c2

2, and c1 and c2 are arbitrary integration
constants.
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Case II: When λ > 0,

The general solutions of the (2) is

G(η) = c1sin(
√

λη) + c2cos(
√

λη) + μ

λ
, (6)

and we have

ψ2 = λ

λ2ν − μ2
(φ2 − 2μψ + λ),

where ν = c2
1 + c2

2, and c1 and c2 are arbitrary integration
constants.

Case III: When λ = 0,

The general solutions of the (2) is

G(η) = μ

2
η2 + c1η + c2, (7)

and we have

ψ2 = 1

c2
1 − 2μc2

(φ2 − 2μψ),

where c1 and c2 are arbitrary constants.

The main steps of the (G′/G, 1/G)-expansion method
are summarized as follows. The general form of the partial
differential equation (PDE) is given as

P(u, ut , ux, utt , uxt , uxx, ...) = 0, (8)

where u = u(x, t) is an unknown function, P is a poly-
nomial depending on u. By using transformation u(x, t) =
u(η), η = x − Vpt in (8), we obtain an ordinary differential
equation (ODE) which is

P(u,−Vpu′, u′, V 2
pu′′, −Vpu′′, u′′, ...) = 0, (9)

where u′ = du
dη

. Suppose that the solution of (9) can be
expressed in terms of φ and ψ and it is given as

u(η) =
N∑

i=0

aiφ
i +

N∑
i=1

biφ
i−1ψ, (10)

where G = G(η) satisfies the (2), ai(i = 1, ..., N), bi(i =
1, ..., N), and the constants Vp, λ and μ will be deter-
mined later. The positive integer N is determined by using
homogeneous balance between the highest order derivatives
and the nonlinear terms appearing in (9). Substituting (10)
into (9), using (4) and (5) (or using (4), (6), and (4), (7))
the left-hand side of (9) can be converted into a polyno-
mial in φ and ψ , in which the degree of ψ is not larger
than 1. Equating each coefficient of the polynomial to zero
yields a system of algebraic equations in ai(i = 1, ..., N),
bi(i = 1, ..., N), Vp, λ(λ < 0), μ, c1 and c2. Solving

the algebraic solutions and then substituting the values of
ai(i = 1, ..., N), bi(i = 1, ..., N), λ(λ < 0), μ, c1 and c2

obtained into (10), one can obtain the traveling wave solu-
tions expressed by the hyperbolic, trigonometric, or rational
functions of (9).

2.2 (1/G′)-expansion Method

In this subsection, we identify the main steps of the (1/G′)-
expansion method to find the traveling wave solutions
of nonlinear differential equations. The partial differential
equation (PDE) given in (8) can be converted into the ordi-
nary ones, same as given in (9). Suppose that the solution of
(9) can be expressed in term of the polynomial (1/G′),

u(η) =
N∑

i=0

ai

(
1

G′

)i

, (11)

where G = G(η) and satisfies the following linear ordinary
differential equation which is

G′′(η) + λG′(η) + μ = 0, (12)

where ai(i = 1, ..., N), λ and μ are constants to be deter-
mined. The positive integer N can be obtained by using the
homogeneous balance between the highest order derivatives
and the nonlinear terms appearing in (9). Additionally, the
solution of the differential equation given in (12) is

G(η) = c1e
−λη − μ

λ
η + c2, (13)

where c1 and c2 arbitrary integration constants. (1/G′) can
be expressed as(

1

G′

)
= λ

−μ + λc1[cosh(λη) − sinh(λη)] . (14)

By substituting (11) into (9) and using (12), the left-
hand side of (9) can be converted into a polynomial in term
of (1/G′). Equating each coefficient of the polynomial to
zero yields a system of algebraic equations. By solving the
algebraic equations with symbolic computation, we define
ai(i = 1, ..., N), λ and μ.

3 Traveling Wave Solution of Gardner Equation

3.1 Application of (G′/G, 1/G)-expansion Method

Gardner equation given in (1) can be converted into the
following ordinary differential equation by using the trans-
formation of η = x − Vpt , U = U(η),

pU ′′′ − VpU ′ + aUU ′ + bU2U ′ = 0, (15)
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where U ′ = dU
dη

. (15) is integrated and we find,

pU ′′ − VpU + a

2
U2 + b

3
U3 + c = 0, (16)

where c is an arbitrary integration constant. Balancing the
terms U3 and U ′′ in (16), we have the following form of the
solution

U(η) = a1φ + a0 + b1ψ. (17)

Substituting (17) and its derivatives into (16) and using
the (4) and (5), we have the set of algebraic equations for
a1, a0, b0, p, a, b, c, Vp, λ, μ, and ν and then by solving the
algebraic equations, we get

Case I: λ < 0

a1 = ±
√

−3p

2b
, a0 = − a

2b
,

b1 = ± 1

2b

√
3a4ν + 24a2bVpν + 12b2p2μ2 + 48b2V 2

p ν

a2 + 4bVp

,

λ = a2 + 4bVp

2bp
, c = −a(a2 + 6bVp)

12b2
.

Substituting (18) into (17), we have the solution of the
(16) which is

U = ±
√

−3p

2b
φ ± 1

2b√
3a4ν + 24a2bVpν + 12b2p2μ2 + 48b2V 2

p ν

a2 + 4bVp

ψ − a

2b
.

(18)

Similarly, substituting the (17) and its derivatives in (16)
and using the (4) and (6) yield a set of simultaneous alge-
braic equations for a1, a0, b0, k, a, b, c, e, λ, μ and ν and
then by solving the algebraic equations, we have,

Case II: λ > 0

a1 = ±
√

−3p

2b
, a0 = − a

2b
,

b1 = ± 1

2b

√
−3a4ν − 24a2bVpν + 12b2p2μ2 − 48b2V 2

p ν

a2 + 4bVp

,

λ = a2 + 4bVp

2bp
, c = −a(a2 + 6bVp)

12b2
.

Substituting (19) into (17), we have the following solu-
tion for the (16)

U = ±
√

−3p

2b
φ ± 1

2b√
−3a4ν − 24a2bVpν + 12b2p2μ2 − 48b2V 2

p ν

a2 + 4bVp

ψ − a

2b
.

(19)

Finally, substituting the (17) and its derivatives in (16)
and using the (4) and (7), we get algebraic equations for
a1, a0, b0, k, a, b, c, e, μ, c1 and c2, and then by solving the
algebraic equations we reach the following solution

Case III: λ = 0

a1 = ±
√

−3p

2b
, b1 = ±

√
6c2pμ − 3c2

1p

2b
, a0 = ∓

√−bVp

b
,

a = ±2
√−bVP c = ∓

√−bVpVp

3b
λ = 0. (20)

Substituting (20) into (17), we have the solution of the
(16) which is

U = ±
√

−3p

2b
φ ±

√
6c2pμ − 3c2

1p

2b
ψ ∓

√−bVp

b
. (21)

where a = ±2
√−bVp, c = ∓

√−bVpVp

3b
, λ = 0.

3.2 Application of (1/G′)-expansion Method

We use the balance N = 1 for the solution of the (16) and
then we get the following type solution

U = a0 + a1

(
1

G′

)
. (22)

Substituting (22) in (16) then collecting all the coeffi-
cients with respect to (1/G′) and equating to zero, we get
the following system of equations

(
1

G′

)0

: 2a3
0b + 3a2

0a − 6a0Vp + 6c,

(
1

G′

)1

: a1

(
a2

0b + a0a + pλ2 − Vp

)
,

(
1

G′

)2

: a1 (2a1a0b + a1a + 6pλμ) ,

(
1

G′

)3

: a1

(
a2

1b + 6pμ2
)

.

Solving the system of equations given above, we get

a1 = ±
√

−6p

b
μ, a0 =

−a ±
√−a2−4bVp

2bp

√
− 6p

b
b

2b
,

λ =
√

−a2 + 4bVp

2bp
, c = −a(a2 + 6bVp)

12b2
.



Braz J Phys (2016) 46:321–333 325

Substituting these solutions into (22), we obtain the
following solution

U = ±
√

−6p

b
μ

(
1

G′

)
+

−a ±
√−a2−4bVp

2bp

√
− 6p

b
b

2b
(23)

where
(

1
G′

)
= λ

−μ+λc1[cosh(λη)−sinh(λη)] ,

λ =
√

− a2+4bVp

2bp
, c = − a(a2+6bVp)

12b2 and c1 is the arbitrary
integration constant.

3.3 Exact Solutions of the Gardner Equation by using
the Direct Integration

The exact solution of Gardner equation is obtained by taking
the direct integral of (16). For this purpose, let us multiply
the right hand side of (16) with U ′. Hence, we have

pU ′U ′′ − VpUU ′ + a

2
U2U ′ + b

3
U3U ′ + cU ′ = 0. (24)

Equation 24 is an integrable equation. We have obtained
the following first-order equation after integrating it once.

U ′ = ±
√

−(
b

6p
)U4 − (

a

3p
)U3 + (

Vp

p
)U2 − (

2c

p
)U − (

2d

p
), (25)

where d is an arbitrary integration constant. Equation (25)
can be written as
± ∫

dU√
−( b

6p
)U4−( a

3p
)U3+(

Vp
p

)U2−( 2c
p

)U−( 2d
p

)
= ∫

dη.

By integration of the right side of this equation, we get

±
∫

dU√
−( b

6p
)U4 − ( a

3p
)U3 + (

Vp

p
)U2 − ( 2c

p
)U − ( 2d

p
)

= η + e,

(26)

where e is a new arbitrary integration constant.
By integrating the left side of this equation and choosing

the integration constants c = d = e = 0 (otherwise it can
not be integrable), (26) is written as

±
∫

dU

|U |
√

−( b
6p

)U2 − ( a
3p

)U + (
Vp

p
)

= η. (27)

Choosing U > 0 (similar calculation can be also done
for U < 0). After using the transformation U = 1

S
and

rearrangement, we get,

∓
√

p

Vp

∫
dS√

S2 − ( a
3Vp

)S − ( b
6Vp

)
= η.

This equation can be written as

∓
√

p

Vp

∫
dS√(

S − a
6Vp

)2 −
(

a2+6bVp

36V 2
p

) = η.

Integrating this equation, we have

∓
√

p

Vp

ln

⎡
⎣(S − a

6Vp

) +
√√√√(

S − a

6Vp

)2

−
(

a2 + 6bVp

36V 2
p

)⎤
⎦ = η.

(28)

Solving the (28) for S and then using the transformation
given above, we obtain the exact solutions of the Gardner
equation as follows,

U(η) = 2A

Ae
∓

√
Vp
p

η + Be
±

√
Vp
p

η + C

, (29)

where A = 36V 2
p , B = a2 + 6bVp, C = 12aVp and η =

x − Vpt .
Equation 29 can be written in terms of the hyperbolic and

trigonometric functions for the case of Vp

p
> 0 and Vp

p
<

0, respectively. Hence, the general solutions of Gardner
equations are

U1(η) = 2A

(A + B) cosh
√

Vp

p
η ± (B − A) sinh

√
Vp

p
η + C

,

(30)

U2(η) = 2A

(A + B) cos
√

Vp

p
η ± i(B − A) sin

√
Vp

p
η + C

,

(31)

where A = 36V 2
p , B = a2 + 6bVp, C = 12aVp and η =

x − Vpt .

4 Numerical Analysis

In this paper, we apply our analytic solutions to two dif-
ferent plasmas to understand the parameter dependencies of
the solitary waves and to explain the dynamical behavior of
the solitons and shock waves observed in these systems. The
detailed study of the analytical solution can often tell us a
great detail about dynamical features of the shock wave and
the soliton.
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4.1 The Electron Acoustic Waves in a Nonextensive
Positron-electron-ion

The four-component plasma system which consists of cold
electrons, nonextensive hot protons and electrons, and
immobile positive ions has been studied, and the well known
KdV and Gardner equations have been derived, depend-
ing on the the plasma parameters [34]. In this section,
the analytic solutions of Gardner equation found by using
the (G′/G, 1/G)-expansion method and direct integration
are applied to the physical plasma which consists of elec-
tron acoustic waves in a nonextensive positron-electron-ion.
These analytic solutions are given in Subsections 3.1 and
3.3, and they are very important to understand the dynamical
behavior of solitons and shock waves in various astrophys-
ical plasma systems. The analytic solutions of the Gard-
ner equations introduced in this paper give more detailed
knowledge about the electron-acoustic solitons.

4.1.1 Model Equation and Definition of Corresponding
Parameters

The Gardner equation given in (1) was derived by [34] for
unmagnetized plasma system, and they have found the cor-
responding parameters a, b and p depending on plasma
parameters. The plasma parameters are the strength of q,
the ratio of hot and cold electrons normalized densities at
their equilibrium μ1, the temperature ratio of hot electron
and ion σ , the ratio of hot and cold protons normalized den-
sities at their equilibrium μ2, and phase velocity Vp. q can
vary and clarify the properties of the plasma. q > 1 and
q < 1 identify the cases of subextensivity and superexten-
sivity, respectively [35]. μ1 represents the ratio of hot and

cold electrons normalized densities at their equilibrium and
is given as μ1 = nh0/nc0. Here, nh0 and nc0 are the hot
and cold electron number densities in the equilibrium case,
respectively. The temperature ratio is σ = Th/Tp, where Th

and Tp are the hot electron and ion temperatures.
The constant parameters given in (1) for this plasma can

be defined as [34]

a = sX1Y (32)

b = X2Y

p = Y

where s can be equal to 1 or −1, X1 = (q+1)(q−3)
4 ,

X2 = 15
2V 6

p
− (q+1)(q−3)(3q−5)(μ1−μ2σ)

16 , Y = V 3
p

2 . The phase

velocity is given as

Vp =
√

2

(q + 1)(μ1 + σμ2)
. (33)

4.1.2 Numerical Results from the (G′/G, 1/G)-expansion
Method

We have used the analytic solution of Gardner equation
given in (18), (19), and (21) to understand the properties
of the unmagnetized four-component electron-proton-ion
plasma system consisting of inertial cold electron, immobile
positive ions, and nonextensive hot electrons and positrons.
We have found the behavior of the solitary shock waves
depending on plasma parameters, and they are given in
Figs. 1, 2, 3, and 4. All the range of parameters seen in
the analytic solutions have been used to search for solitons,
but they could not be found. We have only found the shock
waves, and the variation of amplitudes totally depend not

Fig. 1 The variations of the
shock waves along the
η = x − Vpτ are given for
different values of the strength
of nonextensivity q. The plasma
parameters s = 1, μ1 = 0.1,
μ2 = 0.4, and σ = 1, integration
constants c1 = 1 and c2 = 0,
and the source variable μ = 1
are used in the each case of q
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Fig. 2 Same as Fig. 1 but it is
plotted for different values of
plasma parameter μ1 which
refers to the ratio of the hot and
cold electron number density

-20 -10 0 10 20
η

-20

-10

0

U
(η

)

μ1=0.1
μ1=0.3
μ1=0.5
μ1=0.7

q=0.1, s=1, c
1
=1, c

2
=0, f{Symbo

only on the plasma parameters, but also on the integration
constants (c1, c2, c) and on the source term μ given in (2).

The strength of nonextensivity parameter q plays an
important role to define the amplitude of the solitary shock
waves. It is seen in Fig. 1 that the increase in q increases the
amplitude of solitary shock waves for fixed plasma param-
eters s = 1, μ1 = 0.1, μ2 = 0.4, σ = 1, integration
constants c1 = 1 and c2 = 0, and the source term μ = 1.
But it is observed in Fig. 2 that we find the opposite behavior
for the values of μ1. The ratio of hot and cold electrons nor-
malized densities at their equilibrium can cause decreasing
in amplitude when it is increasing.

On the other hand, the dynamic of solitary shock waves
is depending not only on the plasma parameters, but also
on the integration constants (c1, c2, c) and source term (μ)

defined in the general definition of (G′/G, 1/G)-expansion
method. It is noted in Fig. 3 that the source term μ plays
a role in the shifting of the discontinuity location of the
shock wave. Higher source term can cause the solitary wave
to shift along the negative η. But the amplitude of shock
wave and its basic features, which are amplitude, width, and
polarity, do not change with changing μ. Furthermore, it
is worth stressing that the results from different integration
constants (c1, c2) are helpful to investigate the nonlinear

Fig. 3 Same as Figs. 1 and 2
but it is for different values of
source term identified in Eq. 2
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Fig. 4 Variation of the solution,
produced from analytic solution
of Gardner equation derived
from (G′/G, 1/G)-expansion
method, depending on the
integration constants which are
given. Integration constants play
an important role to identify the
type of solutions given in
Section 3.1
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features and different types of solutions of the Gardner
equation in dusty and space plasmas. It is seen in Fig. 4 that,
depending on the integration constants, the analytic solution
of Gardner equations can go from the finite amplitude shock
wave to the infinite one. The polarity, amplitude, and width
of these shocks strongly depend on plasma parameters and
the source term, as seen in Figs. 1, 2, and 3.

4.1.3 Numerical Results from the Direct Integration

The unmagnetized four-components plasma system is
numerically analyzed by using the analytic solution of Gard-
ner equation derived by using the direct integration. The
analytic solutions are given in (30) and (31). We have

observed and found that the constants A and B given in
solutions play a significant role to define parametric limita-
tions. The Gardner equation produces a solitary wave type
solution when |A + B| > |B − A|. The variation of the
amplitude of the soliton also changes for the different val-
ues of |(A + B) − (B − A)| = 2A = 72V 2

p . The amplitude

of soliton increases with increasing of 72V 2
p . On the other

hand, the amplitude of solitary wave decreases with increas-
ing the ratio of hot and cold electrons normalized densities
at their equilibrium called μ1 (Fig 5).

The variation of maximum amplitudes of solitons and
their locations on η are extensively studied for μ1 and μ2,
and numerical results are given in Figs. 6 and 7. Reference
[34] found the solitary waves from Gardner equation only

Fig. 5 Variation of amplitude,
width and position of maximum
amplitude of the soliton as a
function of η with μ1. The other
plasma parameters are q = 0.8,
s = −1, μ2 = 0.5, and σ = 1
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Fig. 6 The maximum values of
the solitary wave amplitudes and
their location at η are plotted
with respect to plasma parameter
μ1 for different values of q with
σ = 1, s = −1, and μ2 = 0.5.
The left part of the plot indicates
that the maximum amplitude
occurs while μ1 is less than 1,
and gets higher as μ1 gets close
to the critical value for the
strength of nonextensivity. The
location of the maximum
amplitude oscillates depending
on μ1, as seen in the panel at the
right of the figure.
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if μ1 � μc. In contrast to results obtained from [34], it is
found that Gardner equation gives the solitons when μ1 ≥
μc with different values of the strength of nonextensivity
parameter q. For q = 0.5 and μc = 0.0176, the variation of
maximum amplitude of the soliton is given in Fig. 6 and it
gets the biggest value U(η) = 1.581 at μ1 = 0.17455. For
every data sets, the magnitude of soliton increases initially,
produces a peak value, and starts to decrease exponentially
with μ1. It is also noted in the right part of the Fig. 6 that the
location of the maximum amplitude moves back and forth
between η = −2 and η = 2.

In Fig. 7, we explore the effect of the ratio of hot and cold
protons normalized densities at their equilibrium, called μ2,
on the maximum amplitude of the solitons as a function

of μ1. It is seen that the amplitudes of solitary waves are
strongly affected by plasma parameters, and that the ampli-
tude decreases with increasing μ2. The highest peak values
1.3, 1.41, 1.6, and 1.86 are produced for μ1 = −0.54,
μ1 = −0.2, μ1 = 0.129, and μ1 = 0.37, respectively, with
the different sets of plasma parameters given in left part of
Fig. 7. The right part of Fig. 7 indicates that the locations of
the highest amplitudes also show the same type of behavior.
It is deduced from the Figs. 6 and 7 that q (μ2) has posi-
tive (negative) effect on the amplitude of the solitons found
from Gardner solutions.

The solitons propagate without changing dynamics
(amplitude and width). One of the reason for this impor-
tant conclusion may be a result of self-attraction of the

Fig. 7 Same as Fig. 6 but it is
for different values of μ2
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Fig. 8 The propagating solitary
wave with constant velocity
along η, at time
t = 0, 3.6, 7.2, 10.8, and 14.4
with q = 0.8, μ2 = 0.5, σ = 1,
and s = 1
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wave itself [36]. We numerically investigate the time varia-
tions of the solitary waves of the Gardner solitons given in
(30). Figure 8 shows propagation of solitary waves for given
plasma parameters q = 0.8, μ2 = 0.5, σ = 1, and s = 1.
We note that the solitons move along the positive η axis with
positive phase velocity and a constant period. The amplitude
and phase of the solitons do not change during the evolution.

4.2 Investigating the Effect of Two-temperature
Thermal Electrons on Dust-ion Acoustic Solitary Waves

Dust-ion acoustic waves are studied numerically and ana-
lytically for an unmagnetized plasma which consists of neg-
atively charged immobile dust, inertial ions, and superther-
mal electrons [32]. This type of system may be seen in

Fig. 9 Showing the variation of
soliton dynamics for different
values of plasma parameters.
Group 1: μ1 = 0.1,
μ2 = 0.1 → 0.5,
K1 = 18 → 21, K2 = 1 → 3,
σ1 = 1, and σ2 = 1 → 3. Group
2: Same variables as in group 1,
except σ1 = 3. Group 3: Same
variables as in group 1, except
μ1 = 0.5. Group 4: Same
variables as in group 1, except
μ1 = 0.5 and σ1 = 0.3
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some of the astrophysical environments. Hence, we apply
the exact solution of Gardner equation, found by using
the direct integration and given in (30), to understand the
dynamical behavior of the solitons in various parametric
regimes.

The Gardner equation given in (1) is solved analytically
and the constants which appear in the nonlinear terms can
be defined as [32],

a = sX3Z, (34)

b = X4Z,

p = Z.

The parameters X3, X4, and Z are defined depending on
plasma parameters and given as [32]

X3 = 6P 2
2 μe1σ

2
1

P 2
3

+ 6P2P5μe2σ1σ2

P3P6
− P1P2σ

2
1

P 2
3

, (35)

X4 = 15

2V 6
p

+ μe1
P1P2P3σ

3
1

2P 3
3

+ μe2
P4P5P6σ

3
2

2P 3
6

,

Z = V 3
p

2
,

where P1 = − 1
2 − κe1, P2 = 1

2 − κe1, P3 = − 3
2 + κe1,

P4 = − 1
2 − κe2, P5 = 1

2 − κe2 and P6 = − 3
2 + κe2 [32].

The phase velocity is given as [32]

Vp =
√√√√√ 1

μe1(κe1− 1
2 )σ1

κe1− 3
2

+ μe2(κe2− 1
2 )σ2

κe2− 3
2

(36)

So the Gardner equation is represented depending on the
plasma parameters. These parameters are σ1 = Tef /Te1,
σ2 = Tef /Te2, μ1e = ne10/ni0, μ2e = ne20/ni0. κe1 and
κe2 are the spectral index parameters which measure the
slope of the thermal particles. T1e and T2e are the lower
and higher electron temperatures, and Tef is the effective
temperature of two electrons [32].

It is important to understand the space and laboratory
dust plasmas by using the wide variety of plasma parame-
ters [37]. It is found that the amplitudes of the solitary waves
strongly depend on the plasma parameters, μ1 and σ1. The
various values of these parameters increase or decrease the
amplitude and width of the solitons seen in Fig. 9. It is
deduced from this figure that the smaller or higher values
of both parameters μ1 and σ1 create solitons with smaller
amplitudes. On the other hand, the higher or smaller values
of one of these parameters can cause the bigger amplitude
solitons.

Now, we can compute the maximum value of amplitude
of each soliton with its position at η. As it is seen in Fig. 10,
the maximum amplitudes of the solitary waves and their
positions along η increase for different plasma parameters,
but create three different arms depending on the lower elec-
tron temperature and initial ratio of electron particle density
to ion particle density. We note that, depending on the val-
ues of μ1 and σ1, four different regions are observed and
the analytic solution of Gardner equation produces soli-
tary waves in similar amplitudes, polarity, and widths in the
same region. But these properties of solitary waves change
at different regions defined in Fig. 10. As a final word, it is

Fig. 10 Variation of maximum
amplitude of the solitons,
U(η)max versus η for different
values of plasma parameters, as
given in Fig.9. The maximum
amplitudes of the solitons and
their locations increase with
different plasma parameters, but
are divided into three paths
depending on the lower electron
temperature and the initial ratio
of electron density to ion density
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numerically proved that every value of μ1 or σ1, with the
other sets of plasma parameters, creates a region where the
solutions have similar physical properties.

5 Conclusion

Gardner equation is analytically solved by using the two
dependent (G′/G, 1/G)-expansion and (1/G′)-expansion
methods, and direct integration. The exact solutions are
obtained, and they are used to find the solitary waves and
understand their nonlinear behavior and their parametric
dependences, observed in two different plasmas. We have
considered two types of plasmas: one includes the electron
acoustic waves in a nonextensive positron-electron-ion sys-
tem, and the other has dust-ion acoustic waves produced by
two-temperature thermal electrons.

First of all, we have obtained that the analytic solutions of
the Gardner equation found from (G′/G, 1/G)-expansion
and (1/G′)-expansion methods do not produce the soli-
tons. We observe only shock waves and the amplitudes
of these shock waves not only change with the plasma
parameters but also depend on the integration constants
and source terms derived in analytic solutions. The strength
of nonextensivity parameter q has a positive effect on
the strength of the shock wave while it is reduced by
increasing μ1. The source term μ defined in (G′/G, 1/G)-
expansion method slightly shifts the location of the shock
wave but the amplitude of the shock wave keeps the same
with increasing μ. Depending on values of c1 and c2,
the analytic solutions go from one type of solution to
the other.

Later, we derive the analytic solutions of the Gardner
equation by using the direct integration. We have found
the solitary waves for two different plasma systems and
defined the deep internal structure of solitons, their maxi-
mum amplitudes and locations along η depending on plasma
parameters. It is found that many solitons are produced in
different parameter ranges. These ranges are more exten-
sive than the one obtained from the analysis given in [32,
34]. The amplitudes, widths, and the locations of solitons
along η vary significantly with the plasma parameters μ1, q,
the critical value of μ1, μ2, and σ1. On the other hand, the
maximum amplitudes of the solitary waves and their posi-
tion along η separate into three different arms depending on
the lower electron temperature and initial ratio of electron
particle density to ion particle density. The time-dependent
behavior of the soliton is also studied and a periodic motion
of soliton along η is found during theevaluation.

Finally, it is important to mention here that the analytic
solutions found from (G′/G, 1/G)-expansion and (1/G′)-
expansion methods and direct integration can be used to
understand the dynamics of the solitary waves and their

nonlinear features produced in different physical and astro-
physical plasmas, such as hadronic matter, quark gluon
plasma, neutron stars, and interstellar medium [38–40].
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