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Abstract This paper is focused on the study of the vis-
cous Powell-Eyring liquid thin film flow and heat transfer
driven by an unsteady stretching sheet in the presence of
slip velocity and non-uniform heat generation. A system of
equations for momentum and thermal energy are reduced to
a set of coupled non-linear ordinary differential equations
with the aid of dimensionless transformation. The result-
ing seven-parameter problem has been solved numerically
by using an efficient shooting technique coupled with the
fourth-order Runge-Kutta algorithm over the entire range of
physical parameters. To interpret various physical parame-
ters governing the flow and heat transfer which appear in the
momentum and energy equations, the results are presented
graphically. The present results are compared with some
of the earlier published work in some limiting cases and
are found to be in an excellent agreement. This favorable
comparison lends confidence in the numerical results to be
reported in the present work. Furthermore, the effects of the
parameters governing the thin film flow and heat transfer are
examined and discussed through graphs and tables. Also,
the values of the local skin-friction coefficient and the local
Nusselt number for different values of physical parame-
ters are presented through tables. Additionally, the obtained
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results for some particular cases of the present problem
appear in good agreement with the literature review.

Keywords Non-Newtonian Powell-Eyring fluid · Liquid
thin film · Unsteady stretching sheet · Slip velocity ·
Non-uniform heat generation/absorption

1 Introduction

Of late, the studies of flow and heat transfer for Newto-
nian and non-Newtonian fluids inside thin films associated
with a stretching surface are important for their theoretical
and technical importance in fields of engineering, man-
ufacturing operations, and technology. Some applications
include design of heat exchangers and chemical reaction
equipments, wire and fiber coatings, reactor fluidization,
polymer processes, transpiration cooling, food stuff pro-
cessing, etc. Many metallurgical processes, such as drawing,
annealing, and strips of filaments, are done by drawing them
through a quiescent fluid. So, the study of the fluid flow
and heat transfer characteristics due to stretching surface
has an immense attention from many researchers owing to
its importance in many fields of industrial, technological,
and engineering applications. For example, in a template
of polymer sheet when it is in the case of solutions, at
this case, the sheet is sometimes stretched. During this pro-
cess, the properties of the final product may depend on
both the rate of cooling and the rate of stretching by draw-
ing such sheet through a cooling system. Since the pioneer
study of Crane [1] who was believed to be the first to
examine analytically the problem of flow and heat transfer
characteristics for a steady, two-dimensional semi-infinite
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fluid layer driven by a continuous moving sheet with a
velocity linearly proportional to the distance from a fixed
point. Taking into account the Crane’s problem [1], various
aspects of the accompanying heat transfer characteristics
which occurs in the infinite fluid medium surrounding the
stretching sheet have been studied by Gupta and Gupta [2].
In the same context, Grubka and Bobba [3] have exam-
ined the variable surface temperature effects on a stretching
surface which moving with a linear velocity. Wang [4] ini-
tiated the hydrodynamic flow problem of a finite fluid layer
over an unsteady stretching sheet with a specific type of
velocity that allowed similarity analysis, and his similarity
solution was found to satisfy the full Navier-Stokes equa-
tions as well as the boundary layer equations. Usha and
Sridharan [5] studied the axisymmetric motion for a fluid
which caused due to an unsteady stretching surface. The
hydrodynamic flow problem of Wang [4] was investigated
by Dandapat et al. [6] including the heat transfer and the
thermocapillarity effect, by Wang [7] for viscous fluids, by
Wang and Pop [8] for power-law fluids, by Hayat et al. [9]
for MHD second grade fluids, and by Elgazery and Has-
san [10] for viscous fluids through porous media. Recently,
Santra and Dandapat [11] have examined the problem of
flow and heat transfer which can be observed in a thin
viscous liquid film owing to heated horizontal unsteady
stretching surface. Abel et al. [12, 13] investigated the influ-
ence of viscous dissipation and non-uniform heat source on
MHD fluid film over an unsteady stretching surface. Very
recently, Mahmoud and Megahed [14] studied the effects of
variable thermal conductivity and variable viscosity which
assumed to be a function of temperature on the flow and the
process of heat transfer for an electrically conducting non-
Newtonian power-law fluid within a thin liquid film due to
an unsteady stretching sheet taking into account a transverse
magnetic field. Furthermore, Liu et. al [15] investigated
numerically the effects of thermal radiation on the heat
transfer characteristics of a viscous liquid film flow over
an unsteady stretching sheet subject to variable heat flux.
Until now, little interest can be observed through a literature
review for the flow of non-Newtonian Eyring Powell fluid
within thin liquid film layer in spite of its certain advan-
tages over the other non-Newtonian fluid models. Some of
this advantages may appear for this model in which it can
approach to Newtonian behavior at low and high shear rates.
Regarding the study of Powell-Eyring on fluid flow and
heat transfer, some former attentions have been made in the
studies [16–19]. In the same context, Patel and Timol [20]
numerically examined the flow of Powell-Eyring model
past a wedge. The problem of slider bearing lubricated
with Eyring Powell model is presented numerically using
Homotopy perturbation analysis by Islam et al. [21]. Very
recently, the flow and heat transfer of Powell-Eyring fluid

over a continuously moving surface in the presence of a free
stream velocity is investigated by Hayat et al. [22].

All the studies mentioned above assumed that there is no
effects for the slip velocity and non-uniform heat generation
or absorption on the flow and heat transfer for a non-
Newtonian Powell-Eyring thin film fluid due to an unsteady
stretching sheet, and thus how to find the local skin-friction
coefficient and the heat transfer rate between the stretch-
ing surface and the fluid in which of course an important
issue in engineering applications. It is important to deter-
mine the extent to which the slip velocity will affect the film
thickness response. Motivated by the literature above, the
purpose of the present work is to study the effects of slip
velocity and non-uniform heat generation/absorption on the
flow and heat transfer of a non-Newtonian Powell-Eyring
thin film fluid owing to a stretching sheet. To achieve this
study, we use the well-known numerical technique, shooting
method.

2 Formulation of the Problem

In this section, we will describe the proposed physical prob-
lem by considering a non-Newtonian Powell-Eyring fluid
flow within a thin film with uniform thickness h(t) due to
an unsteady stretching sheet. The x-axis is chosen along the
plane of the sheet and the y-axis is taken normal to the plane.
The continuous surface aligned with the x−axis at y = 0
moves in its own plane with a velocity U(x, t) and tem-
perature distribution Ts(x, t), see Fig. 1. Furthermore, the
expression of stress tensor in the Powell-Eyring fluid can be
expressed as [17]:

τij = μ
∂ui
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)
, (1)

where μ is the viscosity coefficient, β̃ and C are the
characteristics of non-Newtonian Powell-Eyring model
with dimension m s2 kg−1 and s−1 respectively. Here,
it must be mentioned that, to reduce the complex-
ity of the second part of (1), we will consider that
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The basic equations for mass, momentum, and energy for
the proposed model can be written as:
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= 0, (2)
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where u and v are the velocity components along x and
y directions, respectively. ρ is the density for the non-
Newtonian fluid, T is the temperature of the fluid, t is the
time, κ is the thermal conductivity, cp is the specific heat
at constant pressure, and q ′′′ is the rate of the internal heat
generation. The internal heat generation or absorption term
q ′′′ is modeled according to the following equation [13, 23]
and [24]:

q ′′′ = (
κRex

x2
)[a∗(Ts − T0)e

−η + b∗(T − T0)], (5)

where Rex = ρUx
μ

is the local Reynolds number, Ts is the
surface temperature, and T0 is the temperature at the slit.
In (9), we must refer that the first part corresponds to the
dependence of the internal heat generation or absorption on
the space coordinates while the last part of the same equa-
tion represents its dependence on the temperature, so a∗ is
the pace-dependent heat source/sink parameter and b∗ is the
temperatures-dependent heat source/sink parameter. Here,
we must mention that when both a∗ > 0 and b∗ > 0, the
case will be internal heat generation while it will be internal
heat absorption when both a∗ < 0 and b∗ < 0.
The associated boundary conditions for the present problem
are given by:

u = U + γ1

(
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,

v = 0, T = Ts, at y = 0, (6)
(
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6μβ̃C3
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∂u
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)
= 0,

∂T
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= 0, at y = h, (7)

v = dh

dt
, at y = h, (8)

where γ1 is the slip factor which can be assumed as γ1 =
γ
√

1 − at ; here, γ is the slip coefficient having dimension
of length. It is worth reminding that the first part of (7)
satisfy that the viscous shear stress vanish at the free sur-
face. Also, the second part of the same equation reflect the
absence of heat flux at the adiabatic free surface (y = h).
The flow is caused by stretching the elastic surface at y = 0
such that the continuous sheet moves in the x-direction with
the velocity:

U = bx

1 − at
, (9)

where a and b are positive constants with dimension
(time−1), likewise, we must observe that our problem is
valid only for at < 1. The mathematical analysis of the
problem is simplified by introducing the following dimen-
sionless coordinates [13]:

η = (
b

(μ/ρ)
)

1
2 (1 − at)

−1
2 y, (10)

ψ = (
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ρ
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1
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−1
2 xf (η), (11)

T = T0 − Tref (
dx2

(μ/ρ)
)(1 − at)−3/2θ(η), (12)

where ψ is the stream function which automatically assures
continuity (2) with u = ∂ψ

∂y
and v = − ∂ψ

∂x
, d is a constant

having a dimension of t−1, η is the dimensionless variable,
θ is the dimensionless temperature of the fluid, and Tref

can be taken as a constant reference temperature such that
0 ≤ Tref ≤ T0.

Also, the surface temperature Ts of the stretching sheet
which varies with x and t can be written in the following
form:

Ts = T0 − Tref (
dx2

(μ/ρ)
)(1 − at)−3/2. (13)

Using (10)-(13), the mathematical problem defined in (2)–
(7) is then transformed into a set of ordinary differential
equations and their associated boundary conditions:

f ′′′ [1 + α(1 − βf ′′2)
]
− S(f ′ + 1

2
ηf ′′) − f ′2 + ff ′′ = 0,

(14)
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2
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]
+a∗e−η+b∗θ = 0,

(15)
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f (0) = 0, f ′(0) = 1 + λ

[
(1 + α)f ′′(0) − αβ

3
f ′′3(0)

]
,

θ(0) = 1, (16)

[
(1 + α)f ′′(δ) − αβ

3
f ′′3(δ)

]
= 0, θ ′(δ) = 0, (17)

f (δ) = 1

2
δS, (18)

where a prime denotes ordinary differentiation with respect

to η, S = a
b

is the unsteadiness parameter, λ = γ

√
b
ν

is the

slip velocity parameter, Pr = μcp

κ
is the Prandtl number,

and α = 1
Cμβ̃

, β = ρU3

2xμC2 are the dimensionless Powell-

Eyring fluid parameters. Here, it is worth mentioning that
the parameter β is a local parameter which is a function of
x and t , and its value varies locally throughout the thin film
flow motion. On the other hand, the parameter λ depends on
γ1 which is a function of t , so the slip velocity parameter λ

is also a local parameter. Therefore, the provided equation
is valid only for a locally similar solution.

By examining the first part of (17), we can observe that
there exist three different cases for f ′′(δ) as follows:
(i) f ′′(δ) = 0, which means the vanishing for the shear
stress at the free surface y = h, but without effects for the
powell-Eyring parameters α and β.

(ii) f ′′(δ) = +
√

3(1+α)
αβ

, which corresponds to the absence

of the shear stress at the free surface with the influence of
the powell-Eyring parameters α and β. Physically, for the
flow next to a continuous stretching surface, the velocity
gradient must not be positive.

(iii) f ′′(δ) = −
√

3(1+α)
αβ

, which coincide with the demise

for the shear stress at the free surface with the effect of the
powell-Eyring parameters α and β. So, this condition is the
suitable one to satisfy the first part of (17). Then, in our

calculations, we used the condition f ′′(δ) = −
√

3(1+α)
αβ

in

(17).
The actual film thickness can be found from the fact that
η = δ as y = h, then

h(t) = δ(
b

(μ/ρ)
)

−1
2 (1 − at)

1
2 , (19)

since δ is an anonymous constant, which should be calcu-
lated from the present boundary value problem. On the other
hand, the kinematic constraint at y = h(t) which appears in
(8) can be obtained by differentiating (19) with respect to t .

It is worth mentioning that when α = β = 0 (Newto-
nian model) and in the absence of the slip velocity parameter
(λ = 0), our proposed problem reduces to those considered
by Abel et al. [13].

Table 1 Comparison of δ and −f ′′(0) with α = β = λ = 0 using the
previous work and the shooting method

S Abel et al. [13] Present results

δ −f ′′(0) δ −f ′′(0)

0.4 4.981455 1.134098 4.981455 1.134096

0.6 3.131710 1.195128 3.131711 1.195125

0.8 2.151990 1.245805 2.151992 1.245805

1.0 1.543617 1.277769 1.543616 1.277769

1.2 1.127780 1.279171 1.127781 1.279171

1.4 0.821033 1.233545 0.821032 1.233545

1.6 0.576176 1.114941 0.576175 1.114939

1.8 0.356390 0.867416 0.356389 0.867416

For engineering and practical purposes, one is usually
more interested in the values of the skin-friction or heat
transfer than in the shape of the velocity or temperature pro-
files, so our interest lies in the investigation of the important
physical quantities of the flow behavior and heat transfer
characteristics by analyzing the non-dimensional local skin-
friction coefficient (Cfx) or the frictional drag coefficient
and the local Nusselt number (Nux), which are defined,
respectively, by the following relations:

Cfx = 2τw

ρU2
, Nux = xqw

κ(Ts − T0)
, (20)

where τw = −
[
μ∂u

∂y
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)3

]
y=0
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qw = −κ
[

∂T
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]
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.

Using the non-dimensional (10)-(13), the local skin-
friction coefficient and the local Nusselt number can be
written as:

Cfx

2
Re

1
2
x = −

[
(1 + α)f ′′(0) − αβ

3
f ′′3(0)

]
,

NuxRe
−1
2

x = −θ ′(0). (21)

From (21), we must observe that the values of the local skin-
friction coefficient depends only on both the α parameter
and β parameter, while the local Nusselt number is indepen-
dent on them. But, actually from (14) to (15), we noticed
that they are coupled, then we can conclude that α parame-
ter and β parameter also have an indirect effect on the local
Nusselt number. In order to validate the proposed numerical
method, we have compared the values of f ′′(0), θ(δ) and
θ ′(0) (in the absence of α, β, λ and a∗, b∗) in the case of
f ′′(δ) = 0 (17) with those obtained by Abel et al. [13] (in
the absence of M and Ec) and found in good agreement as
shown in the Tables 1 and 2.
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Table 2 Comparison of θ(δ) with a∗ = b∗ = α = λ = 0 using the
previous work and the shooting method

Pr S δ Abel et al.[13] Present results

θ(δ) −θ ′(0) θ(δ) −θ ′(0)

0.01 0.8 2.151990 0.960438 0.042120 0.960440 0.042023

0.1 0.8 2.151990 0.692269 0.351920 0.692268 0.351319

1.0 0.8 2.151990 0.097825 1.671919 0.097825 1.671917

2.0 0.8 2.151990 0.024869 2.443914 0.024868 2.443816

3.0 0.8 2.151990 0.008324 3.034915 0.008325 3.036115

0.01 1.2 1.127780 0.982312 0.033515 0.982311 0.033417

0.1 1.2 1.127780 0.843485 0.305409 0.843485 0.305406

1.0 1.2 1.127780 2.86634 1.773772 2.86635 1.773774

2.0 1.2 1.127780 0.128174 2.638431 0.128174 2.638433

3.0 1.2 1.127780 0.067737 3.280329 0.067738 3.280327

3 Procedure Solution Using Shooting Method

A numerical procedure is used to solve the differential
system (14)–(15). This system along with the boundary
conditions (16)–(17) is integrated numerically by means of
Runge-Kutta method with systematic estimate of f ′′(0) and
θ ′(0) with Newton-Raphson shooting technique until the
boundary condition at adiabatic free surface θ ′(δ) vanish to

zero, while f ′′(δ) = −
√

3(1+α)
αβ

. The following first-order

system is set:

y1 = f, y2 = y′
1, y3 = y′

2, y4 = θ, y5 = y′
4.

(22)

Equations 14–15 with the boundary conditions (16) and
(18) are then reduced to a system of first-order ordinary
differential equations, i.e.,

y′
1 = y2, y1(0) = 0,

y′
2 = y3, y2(0) = 1 + λ

[
(1 + α)y3(0) − αβ

3
y3

3(0)

]
,

y′
3 = 1[

1 + α(1 − βy2
3)

]
(

S(y2+ 1

2
ηy3) + y2

2 − y1y3

)
,

y3(0) = ε1, (23)

y′
4 = y5, y4(0) = 1,

y′
5 = Pr

[
2y2y4 − y1y5 + S(

3

2
y4 + 1

2
ηy5)

]

−a∗e−η − b∗y4, y5(0) = ε2.
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Fig. 2 The velocity profile for various values of S

The shooting method is used to guess ε1 and ε2 by
iteration until the outer boundary conditions (17) are satis-
fied. Therefore, the estimated value of δ is systematically
adjusted until (18) is satisfied to within 10−7. Once the con-
vergence is achieved, the resulting differential equations can
be integrated using a fourth-order Runge-Kutta integration
scheme. The above procedure is repeated until we get the
results up to the desired degree of accuracy, 10−5.

4 Results and Discussion

In this section, we concentrate on the variations of the
parameters governing the slip flow and heat transfer for
Powell-Eyring viscous liquid film over an unsteady stretch-
ing sheet subject to non-uniform heat generation/aborbtion.
In particular, the variations of the dimensionless Powell-
Eyring fluid parameters α and β, the unsteadiness parameter
S, slip velocity parameter λ, the space-dependent heat gen-
eration/absorption parameter a∗, the temperature-dependent
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Fig. 3 The temperature profile for various values of S
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Fig. 4 The velocity profile for various values of α

heat generation/absorption parameter b∗, and the Prandtl
number Pr are emphasized. The typical dimensionless
velocity profiles f ′(η) for selected values of unsteadiness
parameter S are plotted in Fig. 2. It is apparent from this
figure that due to the presence of slip velocity at the sheet,
the fluid velocity along the sheet f ′(0) is an increasing func-
tion of S but the film thickness δ is a decreasing function of
the same parameter and therefore the free surface velocity
f ′(δ) enlarges as S increases.

The effects of the same parameter S on the temperature
profile θ(η) are presented in Fig. 3. From this figure, it
can be seen that both the temperature distribution and the
free surface temperature θ(δ) increases as the unsteadiness
parameter increases.

The effect of the non-Newtonian fluid parameter α on
the dimensionless velocity profiles may be analyzed from
Fig. 4. This graph reveal that the increase of α param-
eter results in the decrease of the fluid velocity along
the sheet f ′(0). Also, from this figure, we observe that
the increase of α parameter leads to an increase for both
the film thickness δ and the free surface velocity f ′(δ).

Variations of temperature profiles as a function of η
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Fig. 5 The temperature profile for various values of α

0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.60

0.65

0.70

0.75

0.80

0.85

0.90

f '

2.5, S 1.5, 0.2

5.0, 6.5, 8.5

Fig. 6 The velocity profile for various values of β

for various values of the same parameter α are shown
in Fig. 5. It is interesting to note that an increase in the value
of α leads to a decrease in both the temperature distribution
and the free surface temperature θ(δ).

Figure 6 represents the graph of velocity profile for dif-
ferent values of β parameter. It is seen that the effect of
increasing β parameter is to increase both the film thickness
δ and the free surface velocity f ′(δ).

Figure 7 demonstrates that at any point the dimension-
less temperature θ(η) decreases with the increasing value
of β parameter. Also, the free surface temperature θ(δ) is
observed to decrease with an increase in β parameter.

The variation of dimensionless temperature against η

for various values of the Prandtl number Pr are dis-
played in Fig. 8. From this figure, it is seen that the
effect of increasing Prandtl number Pr is to decrease
the temperature distribution throughout the liquid film
which results in decrease in the free surface temper-
ature θ(δ). Based on the physical point of view, the
increase of Prandtl number coincides with slow rate of ther-
mal diffusivity. The effects of the space-dependent heat
source/sink parameter a∗ and the temperature-dependent
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Fig. 7 The temperature profile for various values of β
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Fig. 8 The temperature profile for various values of Pr

heat source/sink parameter b∗ could be apparently seen
in Fig. 9. Before discussing the results, we recollect the fact
that the case a∗ > 0, b∗ > 0 correspond to internal heat
generation and that a∗ < 0, b∗ < 0 correspond to inter-
nal heat absorption. It is interesting to note that the stronger
heat source parameters a∗ > 0 and b∗ > 0, coincides
with the stronger heat generation and the increasing for the
temperature distribution throughout the liquid film and free
surface temperature θ(δ), but the influence of a∗ < 0 and
b∗ < 0 resulting in temperature dropping throughout the
liquid film.

Figure 10 explains the variation of the slip velocity
parameter λ on the velocity profiles when all other param-
eter are fixed. From here, we see that the velocity profiles
decrease very rapidly throughout the liquid film with the
increase of slip velocity parameter λ. Likewise, this figure
shows that the effect of increasing the slip velocity param-
eter λ is to decrease the film thickness δ but the opposite
effect is observed for the free surface velocity f ′(δ). For
various values of the slip velocity parameter λ, the profiles
of the temperature distribution across the liquid film are
shown in Fig. 11. It is obvious that an increase in the slip
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Fig. 9 The temperature profile for various values of a∗, b∗
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Fig. 10 The velocity profile for various values of λ

velocity parameter λ results in an increasing in both the tem-
perature distribution throughout the thermal liquid film and
the free surface temperature θ(δ).

Now at this step, we reached to analyze Table 3 which is
very interesting in evaluating the frictional drag or the local

skin-friction coefficient (Cfx/2)Re
1
2
x and the rate of heat

transfer or the local Nusselt number NuxRe
−1
2

x in which
they can be affected by the unsteadiness parameter S, slip
velocity parameter λ, the dimensionless Powell-Eyring fluid
parameters α, β, space-dependent heat source/sink param-
eter a∗, temperature-dependent heat source/sink parameter
b∗, and the Prandtl number Pr . From this table, one sees
that both the local skin-friction coefficient and the local
Nusselt number increases as both the α parameter and β

parameter increases. Also, results show that increasing the
unsteadiness parameter tends to decrease both the local
skin-friction coefficient and the local Nusselt number. Fur-
thermore, it is analyzed from Table 3 that the effect of
slip velocity parameter is to decrease both the local Nus-
selt number and the local skin-friction coefficient. Likewise,
from the same table, it can be noted that the local Nusselt
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Fig. 11 The temperature profile for various values of λ
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Table 3 Values of

(Cfx/2)Re
1
2
x and NuxRe

−1
2

x

for various values of α, β,
Pr , a∗, b∗, λ, and S

S α β P r a∗ b∗ λ (Cfx/2)Re
1
2
x NuxRe

−1
2

x

1.2 2.5 8.5 1.5 0.1 0.1 0.2 0.846195 1.97708

1.5 2.5 8.5 1.5 0.1 0.1 0.2 0.647216 1.66758

1.7 2.5 8.5 1.5 0.1 0.1 0.2 0.426478 1.12731

1.5 1.5 8.5 1.5 0.1 0.1 0.2 0.632616 1.64353

1.5 2.5 8.5 1.5 0.1 0.1 0.2 0.647216 1.66758

1.5 3.5 8.5 1.5 0.1 0.1 0.2 0.653023 1.67688

1.5 2.5 5.0 1.5 0.1 0.1 0.2 0.551609 1.49766

1.5 2.5 6.5 1.5 0.1 0.1 0.2 0.597548 1.58307

1.5 2.5 8.5 1.5 0.1 0.1 0.2 0.647216 1.66758

1.5 2.5 8.5 1.2 0.1 0.1 0.2 0.647216 1.37564

1.5 2.5 8.5 1.5 0.1 0.1 0.2 0.647216 1.66758

1.5 2.5 8.5 1.8 0.1 0.1 0.2 0.647216 1.93932

1.5 2.5 8.5 1.5 -0.5 -0.5 0.2 0.647216 1.96432

1.5 2.5 8.5 1.5 -0.2 -0.2 0.2 0.647216 1.81740

1.5 2.5 8.5 1.5 0.0 0.0 0.2 0.647216 1.71785

1.5 2.5 8.5 1.5 0.2 0.2 0.2 0.647216 1.61698

1.5 2.5 8.5 1.5 0.5 0.5 0.2 0.647216 1.46311

1.5 2.5 8.5 1.5 0.1 0.1 0.0 0.796398 2.32484

1.5 2.5 8.5 1.5 0.1 0.1 0.2 0.647216 1.66758

1.5 2.5 8.5 1.5 0.1 0.1 0.5 0.358634 1.06776

number enhances with the increase of the heat absorption
parameter. This phenomenon reflect the fact that the pres-
ence of the heat absorption may be creates a thin layer
of cold fluid adjacent to the heated surface and therefore
the rate of heat transfer boost. Additionally, it is observed
that increases in the values of the heat generation param-
eter has the effect of decreasing the local Nusselt number.
This is because the heat generation mechanism will increase
the fluid temperature near the surface of the sheet and
thus temperature gradient at the surface decreases, thereby
decreasing the heat transfer at the sheet. Finally, the heat
loss to sheet or the local Nusselt number increases when the
values of Prandtl number rise.

5 Conclusions

This present investigation is a worthwhile attempt to study
the problem which involves flow and heat transfer for non-
Newtonian Powell-Eyring viscous liquid film flow past an
unsteady stretching surface with slip velocity and non-
uniform heat generation/absorption. Owing to the compli-
cated nature of the governing equations, we employed a suit-
able dimensionless transformations to change the governing
partial differential equations into ordinary ones. These equa-
tions were solved numerically by using shooting method.

The results are presented graphically and the effects of the
emerging flow parameters on the momentum and thermal
thin films are discussed in detail with physical interpreta-
tions. It is found that both the α parameter and β parameter
increases the thin film thickness, whereas the unsteadiness
parameter has an opposite effect on the momentum thin film
thickness. Likewise, along the sheet, the velocity decreases
with increase in the α parameter, whereas it increases away
from the sheet. Moreover, it is interesting to find that as the
slip parameter increases in magnitude, permitting more fluid
to slip past the sheet, the skin-friction coefficient decreases
in magnitude and approaches to zero for higher values of
the slip parameter, i.e., the flow behaves as though it were
viscid. On the other hand, it was observed that the presence
of heat generation or absorption parameters has prominent
effects on the free surface temperature. Finally, it was found
that an increase of Prandtl number results in decreasing the
temperature distribution across the thin film. The reason
is that smaller values of Prandtl number are equivalent to
increasing the thermal conductivities, and therefore heat is
able to diffuse away from the heated surface more rapidly
than for higher values of Prandtl number.

Acknowledgments The authors wishes to express their sincere
thanks to the honorable editor and referees for their valuable comments
and suggestions which led to definite improvement of the paper.



Braz J Phys (2016) 46:299–307 307

References

1. L.J. Crane, Flow past a stretching plate. Z. Angew Math. Phys 21,
645–647 (1970)

2. P.S. Gupta, A.S. Gupta, Heat and mass transfer on a stretching
sheet with suction or blowing. Can. J. Chem. Eng 55, 744–746
(1977)

3. L.J. Grubka, K.M. Bobba, Heat transfer characteristics of a con-
tinuous stretching surface with variable temperature. AME J. Heat
Transf. 107, 248–260 (1985)

4. C.Y. Wang, Liquid film on an unsteady stretching surface. Quart.
Appl. Math 48, 601–610 (1990)

5. R. Usha, R. Sridharan, The axisymmetric motion of a liquid film
on an unsteady stretching surface. ASME Fluids Eng. 117, 81–85
(1995)

6. B.S. Dandapat, B.S. Santra, H.I. Andersson, Thermocapillarity in
a liquid film on an unsteady stretching surface. Int. J. Heat Mass
Transf. 46, 3009–3015 (2003)

7. C. Wang, Analytic solutions for a liquid film on an unsteady
stretching surface. Heat Mass Transf. 42, 759–766 (2006)

8. C. Wang, I. Pop, Analysis of the flow of a power-law fluid film
on an unsteady stretching surface by means of homotopy analysis
method. J. Non-Newtonian Fluid Mech 138, 161–172 (2006)

9. T. Hayat, S. Saif, Z. Abbas, The influence of heat transfer in an
MHD second grade fluid film over an unsteady stretching sheet.
Phys. Letters A 372, 5037–5045 (2008)

10. N.S. Elgazery, M.A. Hassan, The effects of variable fluid proper-
ties and magnetic field on the flow of non-Newtonian fluid film
on an unsteady stretching sheet through a porous medium. Comm.
Numer. Methods Eng 24, 2113–2129 (2008)

11. B. Santra, B.S. Dandapat, Unsteady thin-film flow over a heated
stretching sheet. Int. J. Heat Mass Transf 52, 1965–1970 (2009)

12. M.S. Abel, M. Mahesha, J. Tawade, Heat transfer in a liquid film
over an unsteady stretching surface with viscous dissipation in the
presence of external magnetic field. Appl. Math. Modelling 33,
3430–3441 (2009)

13. M.S. Abel, J. Tawade, M.M. Nandeppanavar, Effect of non-

uniform heat source on MHD heat transfer in a liquid film over an
unsteady stretching sheet. Int. J. Non-Linear Mech 44, 990–998
(2009)

14. M.A.A. Mahmoud, A.M. Megahed, MHD Flow and heat trans-
fer in a non-Newtonian liquid film over an unsteady stretching
sheet with variable fluid properties. Can. J. of Phys. 87, 1065–
1071 (2009)

15. I.-C. Liu, A.M. Megahed, H.-H. Wang, Heat transfer in a liquid
film due to an unsteady stretching surface with variable heat flux.
ASME J. Appl. Mech. 80, 041003 (2013)

16. V. Sirohi, M.G. Timol, N.L. Kalathia, Numerical treatment of
Powell-Eyring fluid flow past a 90 degree wedge. Reg. J. Energy
Heat Mass Tran 6(3), 219–228 (1984)

17. R.E. Powell, H. Eyring, Mechanism for relaxation theory of
viscosity. Nature 154, 427–428 (1944)

18. M.G. Timol, N.L. Kalathia, Similarity solutions of three-
dimensional boundary layer equations of non-Newtonian fluids.
Int. J. Non-Linear Mech 21(6), 475–481 (1986)

19. N.T.M. Eldabe, A.A. Hassan, M.A.A. Mohamed, Effect of couple
stresses on the MHD of a non-Newtonian unsteady flow between
two parallel porous plates. Z. Naturforsch 58a, 204–210 (2003)

20. M. Patel, M.G. Timol, Numerical treatment of Powell-Eyring
fluid flow using method of asymptotic boundary conditions. Appl.
Numer. Math 59, 2584–2592 (2009)

21. S. Islam, A. Shah, C.Y. Zhou, I. Ali, Homotopy perturbation anal-
ysis of slider bearing with Powell-Eyring fluid. Z. Angew. Math.
Phys 60, 1178–1193 (2009)

22. T. Hayat, Z. Iqbal, M. Qasim, S. Obaidat, Steady flow of an
Eyring-Powell fluid over a moving surface with convective bound-
ary conditions. Int. J. Heat Mass Transf. 55, 1817–1822 (2012)

23. A.J. Chamkha, A.A. Khaled, Similarity solutions for hydromag-
netic simultaneous heat and mass transfer by natural convection
from an inclined plate with internal heat generation or absorption.
Heat Mass Transf. 37, 117–123 (2001)

24. M.A.A. Mahmoud, A.M. Megahed, Non-uniform heat genera-
tion effects on heat transfer of a non-Newtonian fluid over a
non-linearly stretching sheet. Meccanica 47, 1131–1139 (2012)


	Slip Flow of Powell-Eyring Liquid Film Due to an Unsteady Stretching Sheet with Heat Generation
	Abstract
	Introduction
	Formulation of the Problem
	Procedure Solution Using Shooting Method
	Results and Discussion
	Conclusions
	Acknowledgments
	References


