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Abstract The numerical generation of random quantum
states (RQS) is an important procedure for investigations in
quantum information science. Here, we review some meth-
ods that may be used for performing that task. We start
by presenting a simple procedure for generating random
state vectors, for which the main tool is the random sam-
pling of unbiased discrete probability distributions (DPD).
Afterwards, the creation of random density matrices is
addressed. In this context, we first present the standard
method, which consists in using the spectral decomposition
of a quantum state for getting RQS from random DPDs and
random unitary matrices. In the sequence, the Bloch vector
parametrization method is described. This approach, despite
being useful in several instances, is not in general conve-
nient for RQS generation. In the last part of the article, we
regard the overparametrized method (OPM) and the related
Ginibre and Bures techniques. The OPM can be used to cre-
ate random positive semidefinite matrices with unit trace
from randomly produced general complex matrices in a sim-
ple way that is friendly for numerical implementations. We
consider a physically relevant issue related to the possible
domains that may be used for the real and imaginary parts
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of the elements of such general complex matrices. Subse-
quently, a too fast concentration of measure in the quantum
state space that appears in this parametrization is noticed.
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1 Introduction

About three decades ago, Paul Benioff [1, 2] and Richard
Feynman [3, 4] envisaged a computer whose basic con-
stituents could be in a complex quantum superposition state.
In the last few years, we have been witnessing astonish-
ing theoretical and experimental developments in quantum
computing and quantum simulation [5–7], and also in oth-
ers sub-areas of quantum information science [8–11], with
experimental implementations already going beyond the
best present classical capabilities [12]. These are the first
sights of what will turn out to be a revolution in our science
and technology [13, 14].

Nevertheless, before that can in fact become a reality,
we still have much to understand concerning quantum sys-
tems with many degrees of freedom. One important tool
for accomplishing this task is the generation and analy-
sis of RQS [15–31], which will have an analogous role to
that that random numbers have in classical stochastic the-
ories [32–35]. The parametrization of quantum states [15,
36, 37] is the initial step towards generating them numeri-
cally and is one of the main topics of this survey, which is
organized in the following manner. In Section 2, we con-
sider the generation of random pure states, for which the
availability of unbiased random discrete probability distri-
butions is indispensable and is hence also recapitulated. The
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remainder of the article is dedicated to the creation of gen-
eral random density matrices. In Section 3, the standard
method is described together with the Hurwitz parametriza-
tion for unitary matrices, which used in its implementation.
Subsequently, in Section 4, the Bloch vector parametriza-
tion, though impractical for random quantum states (RQS)
generation, is regarded for completeness. The last part of
the article, the Section 5, is dedicated to present and investi-
gate some issues regarding the overparametrized and related
methods. In Section 5.1, we discuss unwanted physical con-
sequences of the ranges usually used in the literature for
the real and imaginary parts of the elements of the general
complex matrices involved in this method and present a sim-
ple solution for the problem. In Section 5.2, we report an
important possible drawback of the OPM regarding its use
for random sampling in the quantum state space: its too fast
concentration of measure. We discuss the Ginibre and Bures
methods in Section 5.3. A brief summary of the article is
presented in Section 6.

2 Pure States

When there is no classical uncertainty about the state of a
quantum system, it is represented by a vector in a Hilbert
space H. For discrete systems, H is simply Cd with the
inner product between any two of its vectors defined as
〈ψ |φ〉 := |ψ〉†|φ〉 = ∑d

j=1 ψ∗
j φj , where z∗ is the complex

conjugate of z and d is the system dimension. Here, we use
the standard notation of Dirac for vectors and, for a generic
matrix A, we denote A† as its adjoint (conjugate transpose).
Any state |ψ〉 ∈ H can be written as a linear combina-
tion of the vectors of any basis. One base of special interest
is the computational or standard basis: |c1〉 = [10 · · · 0]T ,
|c2〉 = [01 · · · 0]T , · · · , |cd〉 = [00 · · · 1]T , in terms of
which

|ψ〉 = ∑d
j=1ψj |cj 〉, (1)

with ψj = 〈cj |ψ〉. Above, XT denotes the transpose of the
matrix X.

The Born’s probabilistic interpretation of the state vector
|ψ〉 requires its normalization:

|| �ψ || := √〈ψ |ψ〉 =
√∑d

j=1|ψj |2 = 1. (2)

Thus, as the numbers |ψj |2 are non-negative and sum up
to one, they form a probability distribution pj := |ψj |2.
Using ψj = |ψj | exp(iθj ) one can write

|ψ〉 = ∑d
j=1

√
pj exp(iθj )|cj 〉, (3)

with the phases θj ∈ [0, 2π ].

Now, we recall that if we have access to a random number
generator yielding random numbers with uniform distri-
bution in [0, 1], an unbiased random discrete probability
distribution (RDPD) [37, 38] can be generated as follows
[39]. First, we create a biased RDPD generating q1 in the
interval [0, 1] and qj in [0, 1 −∑j−1

k=1 pk] for j = 2, · · · , d .
Then we use a random permutation of {1, · · · , d}, let us call
it {k1, · · · , kd}, and define the unbiased RDPD as

{p1, · · · , pd} := {qk1 , · · · , qkd
}. (4)

The unbiased RDPD generated in this way and d inde-
pendent random phases θj are then applied to generate a
random pure state. It is worth observing that there will be
no privileged direction in H only because the RDPD is
unbiased. This pure state generation procedure gives |ψ〉
distributed with a Haar measure. Another manner of obtain-
ing samples with similar properties is by using the rows or
columns of random unitary matrices, which we shall discuss
in the next section.

3 Standard Method

The states of a d−level quantum system are described, in
the most general scenario, by a density matrix ρ [40, 41],
which is a Hermitian positive semidefinite matrix (notation:
ρ ≥ 0) with unit trace (Tr(ρ) = 1). Any such matrix can be
written in the form of a spectral decomposition:

ρ = ∑d
j=1rj |rj 〉〈rj |, (5)

with the real eigenvalues of ρ being nonnegative (rj ≥ 0 for
all j = 1, · · · , d) and summing up to one (

∑d
j=1 rj = 1).

That is to say, {rj }dj=1 is a probability distribution [32,

35]. The eigenvectors of ρ, {|rj 〉}dj=1, form an orthonor-

mal basis for the vector space C
d , i.e., 〈rj |rk〉 = δjk and

∑d
j=1 |rj 〉〈rj | = Id , where Id is the dxd identity matrix.
Let us briefly look over the number of real parameters

needed for a complete description of an arbitrary density
matrix. In order to describe the probability distribution
{rj }dj=1, the eigenvalues of ρ, we need d − 1 real numbers.

Besides, as any two bases for the vector space C
d are con-

nected by an unitary matrix U (i.e., UU† = Id ), one can
write

|rj 〉 = U |cj 〉, (6)

for j = 1, · · · , d , with {|cj 〉}dj=1 being the computational

basis, as shown in Section 2. Therefore, the bases {|rj 〉}dj=1

is completely determined by U . Once d2 − d real parame-
ters are sufficient to specify completely an arbitrary unitary
matrix U with dimensions dxd [36], it follows that d2 − 1
independent real parameters are sufficient for a thorough
description of any density matrix.
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From the last two paragraphs, we see that the numerical
generation of a RQS (using the density matrix as written in
(5)) can be cast in terms of the creation of a RDPD and of
a random unitary matrix (RU) [36, 42–44]. We call it the
standard method because it would be a natural first choice
giving the defining properties of a density matrix. Moreover,
it utilizes as few real parameters as possible. This is a nice
characteristic in the view that for doing some statistics with
RQS, one in general needs to generate many of them, what
can be a very time-consuming task for large values of the
system dimension d.

From the several possibilities available [36], in this arti-
cle, we choose the Hurwitz parametrization for generating
RUs [43]. In this parametrization, one writes any dxd

unitary matrix U in terms of unitaries

U(i,j)(φij , ψij , χij ) (7)

in bi-dimensional sub-spaces. The non-null elements of
such elementary transformations are:

U
(i,j)
k,k = 1 for k = 1, · · · , d and k 	= i, j ;

U
(i,j)
i,i = cos(φij ) exp(iψij ); U

(i,j)
i,j = sin(φij ) exp(iχij );

U
(i,j)
j,i = −(U

(i,j)
i,j )∗; U

(i,j)
j,j = cos(φij ) exp(−iψij ). (8)

A general unitary transformation, for a d-level quantum
system, can then be written as

U = exp(iα)U1U2U3 · · · Ud−1, (9)

with the sub-matrices being

U1 = U(1,2)(φ12, ψ12, χ12),

U2 = U(2,3)(φ23, ψ23, 0)U(1,3)(φ13, ψ13, χ13),

U3 = U(3,4)(φ34, ψ34, 0)U(2,4)(φ24, ψ24, 0)

U(1,4)(φ14, ψ14, χ14),

...

Ud−1 = U(d−1,d)(φd−1,d , ψd−1,d , 0)

U(d−2,d)(φd−2,d , ψd−2,d , 0) · · ·
U(1,d)(φ1,d , ψ1,d , χ1,d ). (10)

The random numbers appearing in the last equations are
distributed uniformly in the following ranges of values:

0 ≤ α < 2π ; 0 ≤ ψij < 2π ; 0 ≤ χij < 2π ; (11)

φij = arcsin(ξ
1/2i
ij ), 0 ≤ ξij < 1, i = 1, 2, · · · , d − 1.

It is worthwhile mentioning that, although not advanta-
geous, it is possible to use the rows or columns of such a
random unitary matrix as random state vector.

4 Bloch Vector Parametrization Method

The Hermitian-traceless-orthonormal generators of the spe-
cial unitary group SU(d), �j (j = 1, · · · , d2 − 1), and
Id can be used as a basis in terms of which we can
write any dxd density matrix in the so called Bloch vector
parametrization [36]:

ρ =
d2−1∑

j=0

γj�j , (12)

where �γ = (γ1, · · · , γd2−1) is the Bloch’s vector. One can
use Tr(ρ) = 1 to see that γ0 = 1/d and Tr(�j�k) = 2δjk to
show that the coefficients in (12) are half of the mean val-
ues of the aforementioned generators of SU(d), i.e., γj =
2−1〈�j 〉 ∈ R.

For producing random quantum states using the Bloch
vector parametrization, d2−1 real random numbers γj must
be generated. The main difficultly here is that for d ≥ 3,
there is no known explicit determination of the range of val-
ues for the parameters γj that will lead to a physical state.
Thus, given a basis for SU(d), we may use the spectrum of
each �j to determine the range from which we shall sam-
ple the corresponding γj . In the context of RQS generation,
one attractive choice for the generators of SU(d) are the
generalized Gell Mann matrices:

|cj 〉〈ck| + |ck〉〈cj | for 1 ≤ j < k ≤ d, (13)

−i|cj 〉〈ck| + i|ck〉〈cj | for 1 ≤ j < k ≤ d, (14)
∑l

j=1 |cj 〉〈cj | − l|cl+1〉〈cl+1|√
l(l + 1)/2

for 1 ≤ l ≤ d − 1. (15)

A simple analysis shows that for the generators in (13)
and (14) we have γj ∈ [−1/2, 1/2] while for those in (15)
γj ∈ [−√

l/(2(l + 1)), 1/
√

2l(l + 1)].
Although the condition Tr(ρ) = 1 is promptly satis-

fied, after generating the entire Bloch’s vector, we must yet
do a positivity test. This task requires much computational
time, what makes this method impractical for the task under
scrutiny here.

5 Overparametrized Method

The basic motivational idea for this method comes from the
simple observation that, for any complex matrix A = (Ajk),
we have: 〈ψ |A†A|ψ〉 = ||A|ψ〉||2 = |||φ〉||2 ≥ 0, where
|ψ〉 is any vector of C

d and |||φ〉|| := √〈φ|φ〉 is the
Euclidean norm of the vector |φ〉 ∈ C

d . That is to say,
for a general complex matrix A, the matrix A†A is guaran-
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teed to be positive semidefinite (A†A ≥ 0). Thus, if A is
normalized, i.e., if we define

A := A

||A||2 , (16)

it is possible to write a valid density operator as:

ρ = A†A. (17)

Above ||A||2 := √〈A|A〉 is the Hilbert-Schmidt norm of
A, with 〈A|B〉 := Tr(A†B) being the Hilbert-Schmidt inner
product between the matrices A and B [41].

The simple formula for ρ in (17) has found appli-
cations in quantum information science [15, 23, 37, 45,
46]. Once the complete description of a general complex
dxd matrix A requires 2d2 real parameters, one notes that
this parametrization, despite being simple and friendly for
numerical implementations, uses more real numbers than
necessary, as discussed above. Thus, it is dubbed as the over-
parametrized method. The numerical generation of RQS via
this method is further explained in the next sub-section.

5.1 An Issue on the Domains of Re(Ajk) and Im(Ajk)

Let us start our analysis of the production of RQS via the
overparametrized method by considering the simplest quan-
tum system, a two-level system also known as quantum bit,
or qubit for short. The advantage of using this system as our
starting point is that it can be visualized straightforwardly
in the R

3. For that purpose, we simply need to write a den-
sity operator ρ using the 2x2 identity matrix I2 and the Pauli
matrices σj (j = 1, 2, 3) as a basis (the case d = 2 in the
Bloch method):

ρ = 2−1
I2 + ∑3

j=12−1xjσj , (18)

where xj = Tr(ρσj ) is the value of the component of
the system’s “polarization” in the direction j = 1, 2, 3 ≡
x, y, z. The real numbers (x1, x2, x3) ≡ (x, y, z) are used as
the Cartesian coordinates in R

3. Enforcing the ρ in (18) to
be a density matrix leads to the following restrictions [40]:
−1 ≤ xj ≤ 1 and

∑3
j=1 x2

j ≤ 1. Therefore, the points
(x1, x2, x3) must lie within a ball with radius equal to one
and centered at (0, 0, 0), known as the Bloch’s ball (BB).

There are several functions one may be interested in
when working in quantum information science. Some rel-
evant examples are quantifiers for total correlation [47],
quantum entanglement [48], quantum discord [49], quantum
coherence [50, 51], and quantum channel capacities [52].
All of these quantities can, in general, be defined using dis-
tance measures in the quantum state space. For our purposes
in this article, the Hilbert-Schmidt distance (HSD) fits well.
The HSD between two density matrices ρ and ζ is defined
as the Hilbert-Schmidt norm of their subtraction [40, 41]:

dhs(ρ, ζ ) := ||ρ − ζ ||2. (19)

If λj are the real eigenvalues of the Hermitian matrix ρ −
ζ , then

dhs(ρ, ζ ) =
√

Tr
(
(ρ − ζ )†(ρ − ζ )

) =
√∑d

j=1λ
2
j . (20)

For the calculations involved in this article, the so called
Mersenne Twister method [53] is used as the pseudo-
random number generator (pRNG) and the LAPACK sub-
routines [54] are utilized for computing eigenvalues. With
these tools at hand, when the standard method described
in Section 3 is applied for generating one-qubit pseudo-
random quantum states, the distribution of such states in
the Bloch’s ball and the histogram for the probability of the
possible values of HSD are those shown in the upper green
panel of Fig. 1. It is worth mentioning that the higher den-
sity of states observed closer to the center of this figure can
be understood by noticing that the direction in R

3 defined
by U is random and that r1 and r2 = 1 − r1 are uniformly
distributed in the interval [0, 1].

Let us consider the same kind of computation, but apply-
ing now the overparametrized method for generating the
pseudo-RQS. For that purpose, the pRNG can be utilized for
the sake of obtaining pseudo-random numbers for generat-
ing the real,

Re(Ajk) =: Ar
jk, (21)

and imaginary,

Im(Ajk) =: Ai
jk, (22)

parts of the matrix elements of A = (Ajk). The first issue
we want to deal with here is with regard to the domains that
one may use for those numbers. For instance, we can fol-
low Refs. [15, 37, 55] and generate the matrix elements Ajk

using uniformly distributed random numbers and setting

Ar
jk ,Ai

jk ∈ [0, 1]. (23)

As shown at the right hand side of the gray panel at the
middle of Fig. 1, the probability distribution for the HSD
obtained in this way is, to some extent, qualitatively similar
to that obtained using the standard method. This may lead to
the impression that our choice for the domain of the matrix
elements is fine. However, a rapid inspection of the distri-
bution of states in the Bloch’s ball obtained using the OPM
with Ar

jk ,Ai
jk ∈ [0, 1] reveals a misfortune. Even though the

polarization in the y and z directions have approximately
equal chance to be positive or negative, only positive values
for the polarization in the x direction are generated. There is
no need to say that such a restriction over the possible val-
ues of physical observables of the system is not a desirable
feature for a method supposed to generate random quantum
states.

We notice that a simple solution for this problem is
generating the matrix elements Ajk with

Ar
jk ,Ai

jk ∈ [−1, 1]. (24)
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Fig. 1 On the left is presented the distribution in the Bloch’s ball
of 2000 pseudo-random one-qubit states generated using standard
method (upper green panel) and using the overparametrized method
with the ranges for the matrices elements as utilized in Refs. [15,
37], i.e., Ar

jk ,Ai
jk ∈ [0, 1] (gray panel in the middle) and with

Ar
jk ,Ai

jk ∈ [−1, 1] (pink panel at the bottom). One the right-hand
side is shown the probability distribution for the Hilbert-Schmidt dis-
tance of one million pseudo-random quantum states generated using
the corresponding method (see the text for more details)

With this change, for this case, the distribution of states
in the BB becomes even more uniform than that that we get
using the standard method, as shown in the pink panel at the
bottom of Fig. 1. We want to emphasize already at this point
that increasing the range of values for Ar

jk and Ai
jk does not

causes any significant modification neither of these results
nor of those that shall be reported in the next sub-section.

5.2 A Too Fast Concentration of Measure for the OPM

In the previous sub-section, we showed that the appli-
cation of the overparametrized method with the real and
imaginary parts of Ajk drawn randomly and uniformly
from the interval [−1, 1] yields an uniform distribution of
one-qubit pseudo-random density matrices. This encour-
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aging result leads naturally to the question of if such a
scheme can be applied appropriately for random sampling
in high-dimensional quantum systems. In this section, we
investigate this question and present strong evidences for
answering it in the negative.

It is known for some time now that in high dimensional
spaces, random variables tend to concentrate around their
mean values [56]. In the last few years, this phenomenon
of concentration of measure, that is formalized in Levy’s
Lemma, has gained great importance and utility in quan-

tum information science (see for instance Ref. [57] and the
references therein).

Notwithstanding, as shown in the gray panel on the right
hand side of Fig. 2, the OPM leads to a too fast concen-
tration of measure for the Hilbert-Schmidt distance in the
quantum state space as the system’s dimension d increases.
We note that such a concentration of measure is much more
slow in our benchmarking method: the standard method
with the Hurwitz’s parametrization for unitary matrices. It
is worth observing that, in part, the shift in the probability

Fig. 2 Probability distribution
for the different possible values
of the Hilbert-Schmidt distance
for one million pairs of quantum
states generated using the
standard method (green panel
on the left) or generated via the
overparametrized method with
Ar

jk ,Ai
jk ∈ [−1, 1] (gray panel

on the right). We see that, in
contrast to what happens in the
standard method, there is a too
fast concentration of measure in
the OPM as the system’s
dimension d increases. We
observe that although only some
values of d are shown in this
figure (1, 2, 3, and 4 qubits), the
mentioned effect is smooth and
gradual
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Table 1 Mean value (〈dhs〉) and standard deviation (�dhs ) of the
Hilbert-Schmidt distance for one million pairs of d-dimensional quan-
tum states randomly generated using the overparametrized method

with uniformly or normally distributed random numbers or generated
using the standard method

Uniform Normal Standard

d 〈dhs〉 �dhs 〈dhs〉 �dhs 〈dhs〉 �dhs

2 0.697 0.267 0.728 0.267 0.524 0.243

4 0.626 0.111 0.655 0.113 0.702 0.213

6 0.538 0.063 0.558 0.065 0.794 0.204

8 0.476 0.042 0.490 0.043 0.844 0.195

10 0.431 0.034 0.442 0.031 0.874 0.190

12 0.396 0.023 0.405 0.024 0.894 0.185

14 0.369 0.019 0.376 0.019 0.908 0.182

16 0.346 0.015 0.352 0.016 0.918 0.179

distribution for the HSD observed with the standard method
(green panel on the left hand side of Fig. 2) can be under-
stood as being due to the fact that as d increases, the same
number of points will be spread in a “bigger” space, dimin-
ishing thus the chance for closer pairs of configurations to
be generated.

It is important mentioning that if instead of generating
A as described above, we draw it from the Ginibre ensem-
ble [58, 59], i.e., if we produce Ar

jk and Ai
jk using random

numbers normally distributed (and with average equal to
zero and variance equal to one), very similar results are
obtained, as is shown in Table 1. Thus the effect seems to be
a characteristic trait of the overparametrized method, being
independent on how it is applied.

We also see in Table 1 that, even though the concentration
of measure is ubiquitous, while the width of the probability
distribution for the HSD obtained via the OPM applied to
four qubits is less than 6 % of that obtained in the one-qubit
case, for the standard method the corresponding percentage
is almost 74 %. We notice another bold difference between
the two methods: as d increases, they shift 〈dhs〉, the “typ-
ical” value of the HSD, in opposite directions (see also
Fig. 2).

5.3 Ginibre and Bures Methods

For completeness, in this sub-section, we briefly describe
two other methods for RQS generation whose starting point
is also the sampling of matrices from the Ginibre ensem-
ble. Let us begin with a generalization of the OPM, that will
be named here as the Ginibre method. If the d ′xd Ginibre
matrix A is a square matrix as the ones considered in Section
5.2, i.e., if d ′ = d, the RQS are generated with a Hilbert-
Schmidt measure. On the other hand, in the general case
where the number of lines and columns of A need not to

coincide, the RQS are said to be generated with an induced
measure [58]. Using the Ginibre method to generate a sam-
ple with one million pairs of states for each pair (d ′, d),
we show in Fig. 3 the dependence with d ′ of the average
and standard deviation of the Hilbert-Schmidt distance for
some values of d. We see a strong dependence of both quan-
tities with d ′. This raises an additional practical question
about this method. Which value of the Ginibre matrix left
dimension d ′ should be used and how to justify the choice?

Now we describe the other method, which shall be
dubbed as the Bures’ method because it leads to RQS with
a Bures measure. This is accomplished by defining [60]

ρ = (Id + U)AA†(Id + U†)

Tr((Id + U)AA†(Id + U†))
, (25)

Fig. 3 Average of the Hilbert-Schmidt distance, 〈dhs〉, and the asso-
ciated standard deviation, �dhs , as a function of the Ginibre matrix
left dimension d ′ for some values of its right dimension d. A sample
with one million pairs of dxd density matrices was created using the
Ginibre method for each pair (d ′, d). We see that both 〈dhs〉 and �dhs

decrease with d ′ for a specified value of d
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Fig. 4 Average Hilbert-Schmidt distance 〈dhs〉 (black points) as a
function of the system dimension d. A sample with one million pairs of
density matrices was generated, for each value of d, using the Bures’
method. In the shadowed cyan area are shown values of the HSD
standing between 〈dhs〉 − �dhs and 〈dhs〉 + �dhs

with A being a dxd Ginibre matrix and U is dxd a random
unitary matrix. It is note worthy that 3d2 − d real param-
eters are necessary to create a RQS via this method. For
one million pairs of states generated in this way, we show
in Fig. 4 the center and width of the probability distribution
for the Hilbert-Schmidt distance as a function of the sys-
tem dimension d. A behavior similar to that observed for the
overparametrized and Ginibre methods, discussed respec-
tively in the last sub-section and in the last paragraph, is
seem here. However, the rate of concentration of measure
is a little less pronounced when compared with that for the
OPM. For the Bures’ method, the width of the probability
distribution for four qubits is approximately 8 % of that for
one qubit.

6 Final Remarks

In this article, we presented a brief survey of some methods
that may be used for the numerical generation of random
quantum states. We gave particular emphasis to the over-
parametrized method, which is frequently used in quantum
information science. After utilizing a qubit system to iden-
tify and solve a physically relevant problem related to the
domains of the matrix elements used so far in the literature
in implementations of the OPM, we considered its possi-
ble application for random sampling in high-dimensional
quantum systems. In this last scenario, we showed that the
overparametrized and related methods lead to a too rapid
concentration of measure that may prevent any fair random
sampling of quantum states, even for quantum systems with
moderate dimension.
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