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Abstract We analyze ordinary differential equations mod-
eling systems of biological interest. We focus on analytical
properties of delayed equations that simulate the dynamics
between cells of the immune system and a target population.
We present the basic features of the linear stability analysis
in delayed equations. New analytical results in a four-
dimensional system are presented, as well as an analysis of
a two-dimensional model.

Keywords Dynamical systems · Mathematical biology ·
Delayed systems

1 Introduction

In this work. we consider models of ordinary differential
equations (ODE) that simulate the dynamics of infectious
diseases. The interactions between populations of viruses
and the immune system cells are highly non-linear and the
details are often unknown. Due introduce to this fact, sev-
eral ODE models have been proposed, focusing on different
aspects of such interactions, aiming the description of the
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essential features of the problem. Usually, the focus is on
the time evolution of the populations of infected and non-
infected cells, viruses (sometimes bacteria or other foreign
pathogens), and cells of the immune system such as cyto-
toxic T lymphocytes cells (CTLs), killer cells, antibodies,
etc. [1]. If the objective is to replicate empirical data, the
use of complex and high-dimensional nonlinear models is
mandatory [3]. Unfortunately, there are strong difficulties
concerning the estimation of the (several) parameters intro-
duced and the meaning of all the nonlinear interactions
proposed. A good alternative is to analyze low-dimensional
models and search for those capable of describe the main
properties of the immunological system with as few param-
eters as possible.

Regular one- and two-dimensional systems of ODEs can-
not display complex behavior such as chaotic orbits, which
are often observed in empirical data [5]. This is the rea-
son why most authors consider models with at least three
dimensions. However, even one- and two-dimensional sys-
tems may present chaotic behavior through the introduction
of time delays. Delayed equations appears in several kinds
of problems. To cite a few, in [6], the authors describe
continuous deformations in periodic solutions of the one-
dimensional Mackey–Glass equation, a standard model for
delayed feedback systems [7]. In [8], it is analyzed self-
pulsations in laser beams with feedback. Reference [9]
considers sigmoid maps, which display a locking behav-
ior observed in several systems, and its relation with the
Stern-Brocot tree, a binary tree whose vertices correspond
to the positive rational numbers [10, 11]. In [12], some of
the authors analyzed the emergence of modulation insta-
bility in a lossless fiber with a finite (non-instantaneous)
nonlinear response time. In [13], some of the authors ana-
lyzed a two-dimensional delayed model for the dynamics of
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immune cells and a foreign pathogen. The model is based
on a previous one proposed in [14, 15] and is given by:

Ṫ = rT − bT 2 − kT E,

Ė = pT (t − τ1)

1 + T (t − τ1)a
+ sE(t − τ2)

1 + E(t − τ2)
− E, a = 1, 2, (1)

where E denotes the concentration of immune cells and T

is the population of virus or bacteria. In the first equation,
the term r > 0 is the reproduction rate and k > 0 the effi-
ciency of the immune system in eliminating the virus. The
last term is a death rate term b. For the dynamics of E, the
first term represents the speed of the processes triggered by
T leading to their elimination. The second term represents
the auto catalytic effect of immune responses and −E rep-
resents a death rate term. In [13], we presented analytical
results for b = 0, a = 1, and several numeric simulations
for the case for a = 2, b �= 0, which presents a series of
bifurcations evolving to a chaotic regime.

In [16], we analyze a four-dimensional model based in
a previous one introduced by Nowak et al. [1], aiming to
simulate HIV and SIV (the simian counterpart of HIV) epi-
demics, and which also apply to hepatitis B (HBV). The
Nowak et al. model considers the dynamics of non-infected
cells x, infected cells y, and virus load v as follows:

ẋ = λ∗ − dx − βxy,

ẏ = βxy − ay,

v̇ = ky − uv. (2)

Several three-dimensional models related to (2) are found
in literature. We cite as example [2] in which the authors
analyze the global stability of three-dimensional models
of within-host viral infections of target cells, focusing in
the models provided by Nowak and May [1] and Perelson
and Nelson [4]. In [17], they analyzed an HIV infection
model with time delay due to the CTL immune response.
In [18], they also analyzed an HIV-1 infection model and
the CTL immune response is investigated. They considered
an eclipse stage for the infected cells such that a portion of
these cells is reverted to uninfected cells. Ref. [19] studied
a viral infection model with delayed immune response.
He determined the global stability of the infection-free
equilibrium and the local stability of the chronic infec-
tion equilibrium. Ref. [20] analyzed oscillations and chaotic
behavior triggered by delayed immune response and [21]
the dynamics of a model with delayed CTL response and
immune circadian rhythm was considered.

Delayed responses are essential for a good description of
the immune system as the stimulation generating CTLs need
a delay τ , such that the response in time t is a function of
the concentration of antigens in time t −τ . We used this fact

in [16] to generalize (2), where some of the authors analyzed
the following four-dimensional model:

ẋ = λ∗ − dx − βxy,

ẏ = = βxv − ay − pyz,

v̇ = ky − βxv − μv,

ż(t) = cy(t − τ1)z(t − τ2) − bz(t).

(3)

with z the population of the immune competence. In [16],
we analyzed (3) numerically, observing a series of bifur-
cations leading to chaotic behavior that depends upon the
value of τ1 = τ2 ≡ τ , evolving towards a chaotic behavior.

In this paper, we propose an analytical analysis of some
ODE models. We consider a two-dimensional model and
revisit (3), focusing in analytical properties concerning the
stability of its fixed points. Analytical properties of delayed
ODEs are hard to determine, and most of the literature focus
on numeric solutions, obtained with the help of well-known
procedures such as the Runge–Kutta method. The numeric
approach is also useful when considering models with par-
tial derivatives, see for example [22] where the authors
considered a spatial epidemic model with noise and pat-
tern formation. When we consider time delays, even a linear
stability analysis may be cumbersome to implement, as we
show in next section. However, many useful informations
are obtained from analytical methods; we cite for example
the extensive analysis of Nowak [1] and Perelson and May
[3].

The objective of this paper is twofold: present novel ana-
lytical results in previously studied models and introduce
the reader to the difficulties arising in the analysis of ODEs
when we consider delayed responses.

The rest of this paper is organized as follows: Section (2)
presents a delayed nonlinear two dimensional model and a
brief overview of stability analysis in the presence of delays.
Section (3) presents novel analytical results for (3). Section
(4) concludes.

2 Two-Dimensional Model

Let us propose simple model where the virus population is
controlled by the immune system:

ẋ = rx − ρxz,

ż(t) = cx(t − τ)z − bz, (4)

with x the concentration of virus and z the concentration of
the cells of the immune response. The immune system is
stimulated by a delayed term proportional to the abundance
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of virus cx(t − τ)z. In the absence of the immune compe-
tence (ρ = 0), the virus populations grows exponentially
with rate r . The immune system removes the virus with rate
ρxz and they die with rate bz. The system (4) with τ = 0
was originally proposed by [1]. Typical parameter values are
r ≈ 50, ρ ≈ 0.005, b ≈ 0.01, c ≈ 0.005 [1, 16]. With these
values the time unit becomes roughly one day.

Before analyzing this system, let us first consider a gen-
eral linear system with delays. Denote y a n dimensional
vector and consider the dynamics of the following linear
system:

ẏ(t) =
m∑

j=1

Ajy(t − τj ), (5)

where each Aj is a n × n matrix and there are m matrices.
Let us suppose a solution of the form y(t) = eλtχ , with
constant χ :
⎛

⎝λI −
m∑

j=1

Aje
−λτj

⎞

⎠ χ = 0. (6)

Non trivial solutions χ �= 0 exist if

det

⎛

⎝λI −
m∑

j=1

Aje
−λτj

⎞

⎠ = 0. (7)

The value of λ thus determine the stability of the solu-
tions. If all solutions have negative real part, the solution
is asymptotically stable, being unstable if there is at least
one solution with positive real part. It is not an easy task
to determine such conditions when τ �= 0. This happens
because (4) has infinity complex solutions when τ �= 0, a
consequence of the Picard theorem, which states that, in the
neighborhood of an essential singularity z = a, the complex
function f (z) assumes infinite times any given complex
value, except, maybe, some particular value [23]. In spite
of the infinity number of solutions, the stability is always
determined by a finite number of them. This follows from
the following theorem:

Theorem Given a real number ρ, (7) has a finite number
of solutions λ such that Reλ ≥ ρ.

Bifurcations take place whenever the solution λ crosses the
imaginary axis or one or more parameters are altered. Often
a turning point, bifurcation occur if λ is real and a Hopf
bifurcation if we have a pair of complex conjugated solu-
tions. The Hopf bifurcation theorem was not demonstrated
for retarded systems but it is considered as a valid conjecture
[24].

Given a non-linear n dimensional system with m delays
its stability can be analyzed through the usual linearization
procedure around the equilibrium point. Let:

ẋ1 =
m∑

j=1

f 1
j

(
x1(t − τj ), x2(t − τj ), · · ·

)
,

...

ẋn =
m∑

j=1

f n
j

(
x1(t − τj ), x2(t − τj ), · · ·

)
. (8)

We linearize the system around its fixed point x∗ =
(x∗

1 , x∗
2 , · · · ) and obtain the Jacobian:

ẋ1 ≈
m∑

j=1

(
f 1

j (x1, · · · )|x∗ + ∂f 1
j

∂x1
|x∗(x1(t − τj ) − x∗

1 )

+∂f 1
j

∂x2
|x∗(x2(t − τj ) − x∗

2 ) + · · ·
)

,

...

ẋn ≈
m∑

j=1

(
f n

j (x1, · · · )|x∗ + ∂f n
j

∂x1
|x∗(x1(t − τj ) − x∗

1 )

+∂f n
j

∂x2
|x∗(x2(t − τj ) − x∗

2 ) + · · ·
)

. (9)

This is a linear system in the variables yi ≡ xi − x∗
i with m

Jacobian matrices evaluated at the fixed point:

Aj =

⎡

⎢⎢⎢⎣

∂f 1
j

∂x1

∂f 1
j

∂x2
· · ·

...
...

...
∂f n

j

∂x1

∂f n
j

∂x2
· · ·

⎤

⎥⎥⎥⎦ . (10)

Let us return to our proposed model (4). The fixed points are

(1)x∗ = = br

cρ
, z∗ = r

ρ
,

(2)x∗ = z∗ = 0. (11)

Let us consider fixed point (1). We have terms with a delay
τ1 = 0 and others with delay τ2 = τ :

J ≡
2∑

j=1

Aje
−λτj =

[
0 −br

c

ce−λτ −b

]
, (12)

which leads to the following characteristic equation det (J −
λI) = 0 ⇒ λ(λ + b) + bre−λτ = 0. If τ = 0 it is straight-

forward to obtain λ =
(
−b ± √

b2 − 4br
)

/2. It is easy to

show that if b > 4r , we have two real negative solutions and
the equilibrium is a stable node, being unstable if b < 4r .
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For b = 4r , we have an improper node (non hyperbolic
fixed point). When τ �= 0, we must analyze the behavior of

λ2 + λb + bre−λτ . (13)

Writing λ = p + Iq, with I = √−1, we first observe
that: if q �= 0 then (13) has no roots for p > 0. Non-
oscillatory solutions, if present, are thus always stable. If
q �= 0, substituting λ = p + Iq in (13) leads to:

Im
(
λ2 + λb + bre−λτ

)
/q = 0,

⇒ (
2pq + qb − bre−λτ sin qτ

)
/q = 0, (14)

which implies

2p + b

τbr
= e−λτ sin qτ

qτ
⇒ 2p + b

τbr
≤ e−λτ ≤ 1,

⇒ p ≤ b
τr − 1

2
.

From the above equation, we see that if τ < 1/r ⇒ p < 0
and the equilibrium will be stable. Note that, if τ > 1/r , we
may or may not observe solutions with p > 0.

It is worth to note that the trivial equilibrium (2) is always
unstable, for any τ . In fact, its Jacobian matrix is given by:

J =
[

r 0
ce−λτ −b

]
, (15)

whose eigenvalues are r > 0, −b. Thus, with null delay,
the system converges with damped oscillations for the inte-
rior equilibrium, that is, the immune system will not be
able to deplete the infection, with a steady solution with
a finite population of viruses. When a delayed response is
considered, the same behavior takes place if τ < 1/r . For
larger delays, we may (or may not) observe the outbreak of
sustainable oscillations and chaos.

System (4) has the drawback to present a null equilib-
rium, meaning no immune cell in the absence of virus. We
can fix this by introduction of a term d as follows:

ẋ = rx − ρxz,

ż(t) = d + cx(t − τ) − bz, (16)

which leads to two equilibrium points:

(1)x∗ = = 0, z∗ = d

b
,

(2)x∗ = br/ρ − d

c
, z∗ = r

ρ
. (17)

The fixed point (1) has a finite concentration of immune
cells even in the the absence of virus. The Jacobian matrix
is:

J =
[

r − ρs/b 0
ce−λτ −b

]
, (18)

with eigenvalues λ = −b, r − ρd/b, ∀τ . Thus, the equi-
librium is stable provided r/ρ < d/b. Note that d/b is the
equilibrium concentration of immune cells in the absence of
virus, and r/ρ is the equilibrium in the presence of virus. In
real cases, the condition r/ρ < d/b is thus very reasonable.
For the second fixed point, the Jacobian is:

J =
[

0 −ρ(
br/ρ−d

c
)

ce−λτ −b

]
, (19)

whose characteristic equation is λ2 + λb + cρe−λτ

(
br/ρ−d

c
).For null delay, the solution is λ =(

−b ±
√

b2 − 4ρc(
br/ρ−d

c
)

)
/2 which always have nega-

tive real parts, guaranteeing the stability of the fixed point.
Note that for null delays, the system presents two stable
equilibria if r/ρ < d/b. Depending on the initial virus
load, the system oscillates for the null virus equilibrium,
otherwise there will be a persistent infection. For τ �= 0,
a similar procedure as in the previous case led to the con-
clusion that, if τ < b/(br − ρd), λ will have negative real
parts. In (4), the critical delay was τ < 1/r , therefore the
introduction of d leads to an increase in the delay value that
guarantees stability.

3 Four-Dimensional Model

Here, we consider the model (3) which was numerically
analyzed in [16] for the case τ1 = τ2. In this model, free
virus v attack uninfected cells x at a rate β. λ∗ is the pro-
duction rate of cells and d its death rate. Once infected, the
cell becomes an infected cell y, which dies at rate a and
are eliminated by the immune response at rate p. Immune
cells are produced at rate c, proportional to the abundance
of infected cells, and dies at rate b. Typical numeric val-
ues are λ∗ = 105, d = 0.1, a = 0.5, β = 2 × 10−7,
k = 100, u = 5, c = 0.2, b = 0.05, and ρ = 1 (con-
sidering one day as the time unit). As observed in [16], the
delayed response induced sustainable oscillations, in which
the virus load reaches a minimum value orders of magnitude
smaller than those obtained from an instantaneous response.
A sequence of bifurcations occurs with increasing response
times which can evolve towards a chaotic behavior. To visu-
alize typical chaotic orbits obtained from numeric solutions
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of this system, we refer the reader to [16]. Here, we focus on
some analytical properties not presented in this reference.

We analyze the local stability of system (3), whose fixed
points are:

(1)x∗ = λ∗/d, y∗ = 0, v∗ = 0, z∗ = 0, (20)

(2)x∗ = = −μa

β(a − k)
, y∗ = λ∗β(a − k) + daμ

β(a − k)a
, v∗ = −λ∗β(a − k) + daμ

aμλ∗ , z∗ = 0,

(3)x∗ = R, y∗ = b/c, v∗ = −−λ∗ + dR

βR
, z∗ = −−cλ∗ + cdR + ab

ρb
,

R = 1

2

(−kdβ − dcμ + βcλ∗ ± √
((−kdβ − dcμ + βcλ∗)2 + 4βdc2μλ∗)

βdc

)
.

Fixed point (1) corresponds to a system with no virus, no
infected cells, and no lymphocytes. There are terms with no
delay and terms with delay τ in the Jacobian matrices. The
terms f i

j are:

f 1
1 = λ∗ − dx − βxv; f 2

1 = βxv − ay − ρyz,

f 3
1 = ky − uv − βxv; f 4

1 = −bz,

f 1
2 = f 2

2 = f 3
2 = 0; f 4

2 = cy(t − τ)z(t − τ), (21)

and the Jacobian is:

2∑

j=1

Aje
−λτj =

⎡

⎢⎢⎣

−d 0 −βλ∗/d 0
0 −a βλ∗/d 0
0 k −u − βλ∗/d 0
0 0 0 −b

⎤

⎥⎥⎦ . (22)

From the characteristic equation det (J − λI) = 0, we
obtain:

(λ2d+(du+λ∗β+ad)λ−λ∗β(k−a)+dau)(b+λ)(1+λ/d) = 0,

which leads to λ = −d, −b. Since d, b > 0 the stability is
determined by the roots of:

−du + λ∗β + ad

2d

±
√

(du + λ∗β + ad)2 − 4d(−λ∗β(k − a) + dau).

2d

Let λ1 = p + iq, λ2 = p − iq solutions of this equation.
λ1λ2 leads to p2+q2 = −λ∗β(k−a)+dau

d
. Therefore, λ∗β(a−

k) + dau > 0 is a necessary condition for complex roots.
In this case, the real part of both λ1, λ2 are negative since
λ1 + λ2 = −(du + λ∗β + ad) < 0.

Let us now consider real solutions. It is easy to see that it
is not possible to obtain both solutions as positive numbers.
Then we have two situations: if λ1λ2 > 0 both solutions
are negative, and the fixed point is stable, which happens
when λ∗β(a − k) + dau > 0. Note that λ∗β(a − k) +
dau < 0 is sufficient for real solutions, the fixed point being
unstable in this case. Stability can be obtained, for example,
diminishing k, the growth rate of virus, increasing a or v, the
mortality rate of infected cells and virus, respectively, etc.

For the fixed point (2), the following Jacobian matrix is
obtained:

2∑

j=1

Aje
−λτj =

⎡

⎢⎢⎢⎢⎣

βλ∗
ua

0 ua
a−k

0

−λ∗β(a−k)+dau
ua

−a − ua
a−k

−ρ
λ∗β(a−k)+dau

βa(a−k)
λ∗β(a−k)+dau

ua
k uk

a−k
0

0 0 0 −b + ce−λτ λ∗β(a−k)+dau
βa(a−k)

⎤

⎥⎥⎥⎥⎦
, (23)

whose characteristic equation is:

(λ3A + Bλ2 + Cλ + D)(Ece−λτ − F(λ + b)

ua2(a − k)2β
= 0, (24)

where:

A = au(k − a); B =
(
βλ∗(a − k)2 + uak(a + u) − ua3

)
;

C = u2a2d + λ∗β(u + a)(a − k)2; D = u2a2d(a − k) + uaλ∗β(a − k)2;
E = (

λ∗β(k − a) − dau
) ; F = βa(k − a)
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We consider a �= k to avoid singularities. Before we proceed
with the analysis of (24), let us consider the equation λ3A+
Bλ2 + Cλ + D with solutions λi; i = 1, 2, 3. The well-
known Girard formulas states that:

λ1λ2λ3 = λ∗β(a − k) + aud,(25)

λ1λ2 + λ2λ3 + λ1λ3 = (k − a)2(a + u)βλ∗ + u2a2d

ua(k − a)
,

λ1 + λ2 + λ3 = βλ∗(k − a)2 + ua(a2 − k(a + u))

ua(k − a)
.

Note that we consider λ∗β(a − k)+aud < 0 to avoid nega-
tive fixed points (the variables denote concentrations, and a
negative concentration is meaningless). So λ1λ2λ3 < 0 and
a < k leads to λ1+λ2+λ3 < 0 and λ1λ2+λ2λ3+λ1λ3 > 0.
Then, either the three roots are negative or there are two
positive roots and one negative. This last case leads to a
contradiction: let λ2, λ3 > 0 and λ1 < 0. Then since
λ1λ2+λ2λ3+λ1λ3 > 0 we have λ2λ3 > −λ1(λ2+λ3) > 0.
On the other side, from λ1 + λ2 + λ3 < 0 we obtain
−λ2λ3 > λ2

2 + λ2
3 which is a contradiction.

Let us now analyze the term

Ece−λτ − F(λ + b). (26)

If τ = 0 the solution is:

λ = c(λ∗β(a − k + adu)) + βab(k − a)

βa(a − k)
,

which is negative if c <
βab(a−k)

λ∗β(a−k)+adu
. It is possible to show

that this condition is sufficient to guarantee stability even
with a non null retard. To see this, write this solutions as

c < bF/E; F, E > 0,

Let λ = p + iq a solution of (26). Therefore:

Ece−pτ cos(qτ) − Fp − bF = 0,

−qF − e−pτ cEsin(qτ) = 0. (27)

Consider c < bF/E and a slightly minor value c = bF/E−
ε, ε > 0. Substituting in (27):

p = e−pτ cos(qτ)

(
b − εE

F

)
− b. (28)

It is easy to see that, if q = 0 then p < 0. Two cases must
be considered: (i) (b − εE

F
) < 0 and (ii) (b − εE

F
) > 0. In

case (i) p < 0 follows from (28). In case (ii), let (28) be
rewritten as:

p = (e−pτ − 1)b − εE

F
e−pτ . (29)

Consider p > 0. The right side of (29) is positive iff e−pτ >

1, which implies p < 0, a contradiction. Therefore p <

0, ∀τ .
Now let q �= 0. Isolating sin and cos in (27) and using

cos2 qτ + sin2 qτ = 1:

(
pF + bF

e−pτE

)2

+
( −qF

e−pτ cE

)2

= 1 ⇒, (30)

p2 + 2pb + q2 + b2 = e−2pτ c2E2

F 2
,

which is of the type f (p) = g(p). Consider the cases

(i)q2 + b2 >
c2E2

F 2
,

(ii)q2 + b2 <
c2E2

F 2
.

Note that, f (p = 0) = q2 + b2 and g(p = 0) = c2E2

F 2 with
f (p) a second order equation and g(p) an exponential. In
the first case, we have f (p) = g(p) in a value p < 0. This
is the same restriction c < bF/E. In fact this implies

b2 >
c2F 2

E2
⇒ q2 + b2 − c2E2/F 2 > 0.

In case (ii), it is easy to see that it is possible f (p) = g(p)

for some p > 0.
In short: λ∗β(a − k) + aud < 0 and a − k < 0

guarantees a positive fixed point and these conditions plus
c <

βab(a−k)
λ∗β(a−k)+aud

implies in the stability of fixed points

(1) and (2) ∀τ . If c >
βab(a−k)

λ∗β(a−k)+aud
depending on the

value of q, we may have p > 0 and the fixed point
loses its stability for some τ . These results are consistent
with [16], where we observed, for instantaneous immune
response, damped oscillations towards the stationary solu-
tion. Retarded response makes stationary solution unstable
and sustained outbreaks of the virus load were observed. In
fact, with the chosen parameter values of [16] the condi-
tion c <

βab(a−k)
λ∗β(a−k)+aud

implies c < 2.6610−7, which is not
satisfied with the choice c = 0.2.

Let us consider the fixed point (3):

x∗ = R, y∗ = b/c, v∗ = −−λ∗ + dR

βR
, z∗ = −−cλ∗ + cdR + ab

ρb
, (31)

R = 1

2

(−kdβ − dcμ + βcλ∗ ± √
((−kdβ − dcμ + βcλ∗)2 + 4βdc2μλ∗)

βdc

)
.
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We consider R > 0. We also consider:

v∗ = −−λ∗ + dR

βR
> 0 ⇒ λ∗ > dR,

z∗ = −−cλ∗ + cdR + ab

ρb
> 0 ⇒ cλ∗ − cdR − ab > 0.

After some algebra, it is possible to show that the above
condition is equivalent to c >

βab(a−k)
λ∗β(a−k)+aud

, which are the
conditions upon which the fixed point 2) loses its stability. It
is also possible to show that the restriction v∗ > 0 leads to:

du − βλ∗ − √
(du + βλ∗)2 + 4dukbβ

du
< c <

du − βλ∗ + √
(du + βλ∗)2 + 4dukbβ

du
.

An analytical analysis of this equation falls beyond the
scope of this paper, as the resulting characteristic equa-
tion is a transcendental equation involving a fourth order
polynomial. This shows the limitations of a purely analyti-
cal approach to analyze delayed ODEs with three or more
dimensions. The results presented here are in accord with
the numeric analysis performed in [16].

4 Concluding remarks

In this paper, we considered analytical tools to analyze
delayed ODEs of biological interest. We studied a two-
dimensional system that simulates the dynamics of the
immune system cells and a target population of viruses. New
analytical results in a four-dimensional system considered
in [16] were presented.

Low dimensional ODE models are often used to model
biological systems, the focus being on the search for those
that describe the main features of the proposed system with
as few parameters as possible. As chaotic orbits are often
observed in empirical data, most authors consider mod-
els with at least three dimensions. However, even one-
and two-dimensional models may present chaotic behav-
ior through the introduction of time delays. In this work,
we presented some of the difficulties arising in the analyt-
ical analysis of delayed equations, focusing in the stability
conditions of the equilibrium points. We showed how the
conditions for the real part of the eigenvalues be negative,
necessary to stability, may be cumbersome to determine

when τ �= 0, even in relatively low-dimensional mod-
els. This happens because the corresponding characteristic
equation has infinity complex solutions. However, even with
an infinity number of solutions, the stability is determined
by a finite number of them. Analytical tools are useful to
complement numeric solutions such as the ones obtained
via Runge-Kutta methods, and may reveal features such as
which parameters are fundamental for bifurcations that lead
to complex behavior.
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15. N. Burić, N. Vasović, Chaos Solitons and Fractals 13, 1771 (2002)
16. A.A. Canabarro, I.ram. Gleria, M. Lyra, Phys. A 342, 234 (2004)
17. X. Tian, R. Xu, Appl. Math. Comput. 237, 146 (2014)
18. L. Cuifang, L. Huang, Z. Yuan, Commun. Nonlinear Sci. Numer.

Simul. 19(1), 121 (2014)
19. Z. Wang, R. Xu, Commun. Nonlinear Sci. Numer. Simul. 17(2),

964 (2012)
20. H. Shu, L. Wang, J. Watmough, J. Math. Biol. 68(1–2), 477 (2014)
21. Z. Baia, Y. Zhou, Chaos Solitons Fractals 45(9–10), 1133 (2012)
22. Y.-J. Liu, L.-M. Zhu, A.-L. Wang, B. Wang, Braz. J. Phys. 41, 304

(2011)
23. J.B. Conway, Functions of One Complex Variable I 2nd edition

(Springer-Verlag, New York, 1978)
24. H. Smith, An Introduction to Delay Differential Equations with

Applications to the Life Sciences (Springer-Verlag, New York,
2011)


	Nonlinear Models for the Delayed Immune Response to a Viral Infection
	Abstract
	Introduction
	Two-Dimensional Model
	Four-Dimensional Model
	Concluding remarks
	Acknowledgments
	References


