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Abstract The generation of pseudo-random discrete prob-
ability distributions is of paramount importance for a wide
range of stochastic simulations spanning from Monte Carlo
methods to the random sampling of quantum states for
investigations in quantum information science. In spite of
its significance, a thorough exposition of such a procedure
is lacking in the literature. In this article, we present rele-
vant details concerning the numerical implementation and
applicability of what we call the iid, normalization, and
trigonometric methods for generating an unbiased proba-
bility vector p = (p1, · · · , pd). An immediate application
of these results regarding the generation of pseudo-random
pure quantum states is also described.

Keywords Discrete probability distributions · Quantum
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1 Introduction

Roughly speaking, randomness is the fact that, even using
all the information that we have about a physical system,
in some situations it is impossible, or unfeasible, for us to
predict exactly what will be the future state of that system.
Randomness is a facet of nature that is ubiquitous and very
influential in our society and in others [1–3]. As a con-
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sequence, it is also an essential aspect of our science and
technology. The related research theme, that was motivated
initially mainly by gambling and led eventually to probabil-
ity theory [4, 5], is nowadays a crucial part of many different
fields of study such as computational simulations, infor-
mation theory, cryptography, statistical estimation, system
identification, and many others [6–12].

One rapid-growing area of research for which random-
ness is a key concept is the maturing field of quantum
information science (QIS). Our main aim in this interdisci-
plinary field is understanding how quantum systems can be
harnessed in order to use all Nature’s potentialities for infor-
mation storage, processing, transmission, and protection
[13–15].

Quantum mechanics [16, 17] is at present one of the
fundamental theories of Nature. The essential mathemati-
cal object in this theory is the density operator (or density
matrix) ρ. It embodies all our knowledge about the prepa-
ration of the system, i.e., about its state. From the mathe-
matical point of view, a density matrix is simply a positive
semi-definite matrix (notation: ρ ≥ 0) with trace equal to
one (Tr(ρ) = 1). Such kind of matrix can be written as
ρ = ∑

jrj�j, which is known as the spectral decomposition
of ρ. In the last equation, �j is the projector (�j�k = δjk�j

and
∑

j �j = Id, where Id is the d−dimensional iden-
tity matrix). From the positivity of ρ follows that, besides
it being Hermitian and hence having real eigenvalues, its
eigenvalues are also non-negative, rj ≥ 0. Since the trace
function is base independent, the eigenvalues of ρ must sum
up to one, Tr(ρ) = ∑

j rj = 1. Thus, we see that the
set {rj} possesses all the features that define a probability
distribution (see, e.g., Ref. [4]).

The generation of pseudo-random quantum states is an
essential tool for inquires in QIS (see, e.g., Refs. [18–30])
and involves two parts. The first one is the generation of
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pseudo-random sets of projectors {�j}, that can be cast in
terms of the creation of pseudo-random unitary matrices.
There are several methods for accomplishing this last task
[31–34], whose details shall not be discussed here. Here,
we will address the second part, which is the generation of
pseudo-random discrete probability distributions [35–37],
dubbed here as pseudo-random probability vectors (pRPV).

In this article, we go into the details of three methods
for generating numerically pRPV. We present the problem
details in Section 2. The Section 3 is devoted to present a
simple method, the iid method, and to show that it is not
useful for the task regarded in this article. In Section 4,
the standard normalization method is discussed. The bias
of the pRPV appearing in its naive-direct implementation
is highlighted. A simple solution to this problem via ran-
dom shuffling of the pRPV components is then presented.
In Section 5, we consider the trigonometric method. After
discussing some issues regarding its biasing and numeri-
cal implementation, we study and compare the probability
distribution generated and the computer time required by
the last two methods when the dimension of the pRPV
is varied. The conclusions and prospects are presented in
Section 6.

2 The Problem

By definition, a discrete probability distribution [4] is a set
of non-negative real numbers,

pj ≥ 0, (1)

that sum up to one,
∑d

j=1
pj = 1. (2)

In this article, we will utilize the numbers pj as the compo-
nents of a probability vector

p = (p1, · · · , pd). (3)

Despite the lack of consensus regarding the meaning of
probabilities [4], here we can consider pj simply as the rela-
tive frequency with which a particular value xj of a physical
observable modeled by a random variable X is obtained in
measurements of that observable under appropriate condi-
tions.

We would like to generate numerically a pseudo-random
probability vector p whose components {pj}dj=1 form a prob-
ability distribution, i.e., respect (1) and (2). In addition, we
would like the pRPV to be unbiased, i.e., the components of
p must have similar probability distributions. A necessary
condition for fulfilling this last requisite is that the average
value of pj (notation: 〈pj〉) becomes closer to 1/d as the
number of pRPV generated becomes large.

At the outset, we will need a pseudo-random number
generator (pRNG). In this article, we use the Mersenne
Twister pRNG [38], that yields pseudo-random numbers
(pRN) with uniform distribution in the interval [0, 1]. We
observe however that the results reported in this article can
also be applied when dealing with true random numbers [39,
40].

3 The iid Method

A simple way to generate an unbiased pseudo-random prob-
ability vector p = (p1, · · · , pd) is as follows. If we create
d independent pseudo-random numbers xj with identical
probability distributions in the interval [0, 1] (so the name
of the method) and set

pj := xj
∑d

k=1xk

, (4)

we will obtain a well-defined discrete probability distribu-
tion, i.e., pj ≥ 0 and

∑d
j=1 pj = 1. Besides, as p is unbiased,

the mean value of pj approaches 1/d as the number of
samples grows.

Nevertheless, we should note that the sum
∑d

k=1 xk shall
be typically greater than one. This in turn will lead to the
impossibility for the occurrence of pRPVs with one of its
components equal (or even close) to one. As can be seen in
Fig. 1, this problem becomes more and more important as d

increases. Therefore, this kind of drawback totally precludes
the applicability of the iid method for the task regarded in
this article.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r(

p
1
)

p1

d = 2
d = 3
d = 4
d = 5
d = 6
d = 7
d = 8

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.2 0.4 0.6 0.8 1

P
r(

p
j)

pj

Pr(p1)

Pr(p2)

Pr(p3)

Pr(p4)

Fig. 1 (color online) Probability distribution for the first component
of the unbiased probability vector p = (p1, · · · , pd) for one million
random samples generated using the iid method. The inset shows the
probability distribution for the components of the probability vector
p = (p1, p2, p3, p4)
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4 The Normalization Method

Lets us begin our discussion of this method by considering a
probability vector with dimension d = 2, i.e., p = (p1, p2).
If the pRNG is used to obtain p1 ∈ [0, 1] and we impose
the normalization to get p2 = 1 − p1, we are guaranteed
to generate an uniform distribution for pj ∈ [0, 1] for both
j = 1 and j = 2.

If d = 3 then p = (p1, p2, p3) and the pRNG is used
again (two times) to obtain p1 ∈ [0, 1] and p2 ∈ [0, 1−p1].
Note that the interval for p2 was changed because of the
normalization of the probability distribution, which is also
used to write p3 = 1 − (p1 + p2). As p1 is equiprobable in
[0, 1], for a large number of samples of the pRPV, its mean
value will be 1/2. This shall restrict the values of the other
components of p, shifting the “center” of their probability
distributions to 1/4, thus biasing the pRPV. Of course, if
one increases the dimension of the pRPV, the same effect
continues to be observed, as is illustrated in the table below
for 106 pRPV generated for each value of d .

d 〈p1〉 〈p2〉 〈p3〉 〈p4〉 〈p5〉
2 0.5001 0.4999
3 0.5000 0.2499 0.2501
4 0.4999 0.2503 0.1248 0.1250
5 0.4998 0.2501 0.1252 0.0625 0.0624

The probability distributions for the four components of
the probability vector p = (p1, p2, p3, p4) are shown in
Fig. 2. For the sake of illustration, the spaces for the pRPV
are sketched geometrically in Fig. 3 for the cases d = 2
and d = 3. We observe that the procedure for generating
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Fig. 2 (color online) Probability distribution for the components of
the biased probability vector p = (p1, p2, p3, p4) for one million ran-
dom samples of it. The inset shows the probability distribution for the
components of the unbiased probability vector q = (q1, q2, q3, q4)

0
0.2

0.4
0.6

0.8
1 0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

p2

p
1

p1

p2

p3

Fig. 3 (color online) Set of possible values for the components of the
probability vector in the cases of d = 2 (figure on the top) and for
d = 3 (figure on the bottom). For higher dimensions, the probability
space is a hyperplane

p as explained above is the motivation for the name of the
method, the normalization method.

A simple solution for the biasing problem just discussed
is shuffling the components of the pRPV in each run of the
numerical experiment. This can be done, for example, by
generating a random permutation of {1, 2, · · · , d − 1, d},
let us call it {k1, k2, · · · , kd−1, kd}, and defining a new
pRPV as

q = (q1, q2, · · · , qd−1, qd)

:= (pk1 , pk2 , · · · , pkd−1 , pkd). (5)

In the table below, the mean value of the components of q is
presented, for 106 pRPV generated.

d 〈q1〉 〈q2〉 〈q3〉 〈q4〉 〈q5〉
2 0.5005 0.4995
3 0.3332 0.3331 0.3337
4 0.2494 0.2503 0.2499 0.2504
5 0.2001 0.1997 0.2006 0.1999 0.1997

In the inset of Fig. 2, an example with the resulting
probability distributions for the four components of q =
(q1, q2, q3, q4) is presented.

From the discussion above we see that in addition to the
d −1 pRN needed for the biased pRPV, we have to generate
another d−1 pRN for the shuffling used in order to obtain an
unbiased pRPV (because

∑d
j=1 j = d(d + 1)/2), resulting

in a total of 2(d − 1) pRN per pRPV.
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5 The Trigonometric Method

As the name indicates, this method uses a trigonometric
parametrization [35, 37] for the components of the proba-
bility vector �p = (p1, · · · , pd):

pj := sin2 θj−1

d−1∏

k=j

cos2 θk, (6)

with θ0 = π/2 (so the name trigonometric method). More
explicitly,

p1 = sin2 θ0 cos2 θ1 cos2 θ2 cos2 θ3 · · · cos2 θd−1

p2 = sin2 θ1 cos2 θ2 cos2 θ3 · · · cos2 θd−1

p3 = sin2 θ2 cos2 θ3 cos2 θ4 · · · cos2 θd−1

...

pd−1 = sin2 θd−2 cos2 θd−1

pd = sin2 θd−1. (7)

A simple application of the equality cos2 θj + sin2 θj = 1
to this last equation shows that pj ≥ 0 and

∑d
j=1 pj =

1. Therefore, this parametrization, which utilizes d − 1
angles θj, leads to a well-defined probability distribution
{pj}dj=1.

Let us regard the numerical generation of an unbi-
ased pseudo-random probability vector by starting with the
parametrization in (6). Of course, this task is accomplished
if the components of the pRPV are created with uniform
probability distributions. Thus, we can proceed as follows.
We begin with pd and go all the way to p1 imposing that
each pj must be uniformly distributed in [0, 1]. Thus, we
must have

θd−1 = arcsin
√

td−1 (8)

and the other angles θj, with j = 1, · · · , d − 2, should be
generated as shown in the next equation:

θj = arcsin

√
tj

∏d−1
k=j+1 cos2 θk

, (9)

where tj, with j = 1, · · · , d − 1, are pseudo-random
numbers with uniform distribution in the interval [0, 1].
For obvious reasons, this manner of generating a pRPV is
very unstable, and therefore inappropriate, for numerical
implementations.

A possible way out of this nuisance is simply to ignore
the squared cosines in the denominator of (9). That is to say,
we may generate the angles using, e.g.,

θj = arccos
√

tj (10)

for all j = 1, · · · , d − 1. This procedure will give us an
uniform distribution for cos2 θj and sin2 θj, but will also
increase the chance for the components pj with more terms
to have values closer to zero. Thus, there is the issue of a
biased pRPV again. A possible solution for this problem is,
once more, shuffling. The next two tables show the aver-
age value of the components of 106 pRPV generated via the
trigonometric method before, 〈pj〉, and after, 〈qj〉, shuffling.

d 〈p1〉 〈p2〉 〈p3〉 〈p4〉 〈p5〉
2 0.4999 0.5001
3 0.2502 0.2498 0.4999
4 0.1250 0.1251 0.2497 0.5003
5 0.0625 0.0624 0.1250 0.2496 0.5006

d 〈q1〉 〈q2〉 〈q3〉 〈q4〉 〈q5〉
2 0.5006 0.4994
3 0.3331 0.3334 0.3337
4 0.2502 0.2497 0.2501 0.2450
5 0.2005 0.1998 0.1999 0.2001 0.1997

As was the case with the normalization method, for the
trigonometric method, we need to generate 2(d − 1) pRN
per pRPV, d − 1 for the angles and d − 1 for the random
permutation. Nevertheless, because of the additional multi-
plications in (6), the computation time for the last method
is in general a little greater than that for the former, as is
shown in Fig. 4.

One may wonder if the normalization and trigonomet-
ric methods, that are at first sight distinct, lead to the same
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Fig. 4 (color online) Log-log plot of the computation time required
by the trigonometric method (blue squares) and by the normalization
method (red circles) to generate a pseudo-random probability vector
with dimension equal to d. The calculations were realized using a
Processor 1.3 GHz Intel Core i5.
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Fig. 5 (color online) Semi-log plot of the probability distributions for
a component of the unbiased probability vectors generated using the
trigonometric (lines) and normalization (points) methods for some val-
ues of d. We see that the two methods yield, for all practical purposes,
the same probability distributions for the components of the pRPV

probability distributions for the pRPV’s components and
also if they produce an uniform distribution for the gener-
ated points in the probability hyperplane. We provide some
evidences for positive answers to both questions in Figs. 5
and 6, respectively.

Fig. 6 (color online) Sample with five thousand pRPV generated
using the indicated method. We see that in this case, for which d = 3,
with exception of the slight overpopulated corners, we get a fairly
uniform distribution of points in the probability space

6 Concluding Remarks

In this article, we discussed thoroughly the three methods
for generating pseudo-random discrete probability distribu-
tions. We showed that the iid method is not a suitable choice
for the problem studied here and identified some difficul-
ties for the numerical implementation of the trigonometric
method. The fact that in a direct application of both the nor-
malization and trigonometric methods, one shall generate
biased probability vectors was emphasized. Then the shuf-
fling of the pseudo-random probability vector components
was shown to solve this problem at the cost of the generation
of additional d −1 pseudo-random numbers for each pRPV.

It is worthwhile recalling that pure quantum states in C
d

can be written in terms of the computational basis {|cj 〉}dj=1
as follows:

|ψ〉 =
∑

j
cj |cj〉 =

∑

j
|cj|eφj |cj〉 =

∑

j

√
pje

φj |cj〉, (11)

where cj ∈ C and φj ∈ R. The normalization of |ψ〉 implies
that the set {pj} is a probability distribution. Thus, the results
reported in this article are seen to have a rather direct appli-
cation for the generation of unbiased pseudo-random state
vectors.

We observe however that the content presented in this
article can be useful not only for the generation of pseudo-
random quantum states in quantum information science, but
also for stochastic numerical simulations in other areas of
science. An interesting problem for future investigations is
with regard to the possibility of decreasing the number of
pRN, and thus the computer time required for generating an
unbiased pRPV.
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