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Abstract Structural, elastic, and mechanical properties of
blende-type zinc sulfide (bt-ZnS) were investigated under
pressures up to 20 GPa. Unlike previous theoretical calcula-
tions, an existing mixed-type interatomic potential was ap-
plied with geometry optimization calculations. B3→B1 phase
transition pressure was obtained as 17 GPa under zero pres-
sure and temperature. Pressure dependence of typical cubic
elastic constants, bulk, shear and Young moduli, elastic wave
velocities, Kleinman parameter, static and high-frequency di-
electric constants of bt-ZnS were also obtained. Overall, our
results for the considered parameters of bt-ZnS are in good
agreement with experiments and better than those of several
available theoretical data.
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1 Introduction

Recently, wide-bandgap II–VI semiconductor compounds
(ZnS, ZnO, ZnSe, ZnTe, CdS, CdSe, and CdTe) are the most
significant materials for high-performance optoelectronic de-
vices such as light-emitting diodes (LEDs) and laser diodes
(LDs) operating in the blue or ultraviolet spectral range. The
high ionic character of these compounds also makes them

ideal candidates for high electro-optical and electromechani-
cal coupling [1].

Among these compounds, blende-type zinc sulfide (bt-
ZnS) has been focus of current researches [2–5] due to its
prevalent technological applications. Besides, numerous the-
oretical efforts have also been devoted to clarify the structural,
elastic, optical, and relevant properties of bt-ZnS during the
last decade [6–14]. Chen et al. employed [8] plane-wave (PW)
pseudo potential scheme of density functional theory (DFT)
for phase transition and elastic constants of ZnS. In addition,
Kheneta et al. [9] computed some structural, electronic, and
optical properties of bt-ZnX (X=Se, S, and Te) by using full-
potential linear augmented plane-wave method plus local or-
bitals (FP-APW+lo). As well, Rong et al. [10] applied gener-
alized gradient approximation (GGA) of DFT to their work for
investigating the pressure dependence elastic properties of bt-
ZnS and wurtzite ZnS (w-ZnS). Further, Yang et al. [12] uti-
lized local density approximation (LDA) of DFT to study the
pressure dependence of elastic and dynamical properties of bt-
ZnS and ZnSe.

Recent and progressive theoretical attempts on bt-ZnS
[6–14] inspired us to perform this work by addressing the
high-pressure structural, elastic, mechanical, and other related
properties of bt-ZnS with a different method. Unlike the the-
oretical approaches used in literature, this work has been car-
ried out by applying a mixed-type interatomic potential with
geometry optimization calculations to elucidate the mentioned
properties of bt-ZnS under pressures up to 20 GPa. The next
part of the paper gives the details of our theoretical calcula-
tions with the employed interatomic potential and structure
optimization in BSection II^. We also compare our results with
the experimental data and other theoretical findings through
the results and discussion part of the paper in BSection III^.
Finally, BSection IV^ summarizes the main findings of this
work in the conclusions.
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2 Details of Theoretical Calculations

Simple empirical potential models are the main modeling in-
termediaries for various materials since they can produce suc-
cessful computing results. These potentials can well describe
the defect energies, lattice constants, and elastic properties of
oxides [15], fluorides [16], and other compounds [17, 18].
Most of these potentials are composed of Coulomb interac-
tions, short-range pair interactions, and ionic polarization
treated by the shell model of Dick and Overhauser [19]. The
sum of the Coulomb terms, short-range interactions, and ionic
polarization expresses the total energy for these potentials. If
we assume the electron cloud of an ion is simulated by a
massless shell of charge Y and the nucleus by a core of charge
X, then the total charge becomes q=X+Y. In shell model, a
harmonic force with spring constant K couples the core and
the shell of the ion. So, for modeling the short-range pair
interaction acting between the shells, we can use a typical
Buckingham potential, as presented in Eq. (1):

VBuckingham
i j ¼ Aexp �ri j

ρ

� �
� Cr−6i j : ð1Þ

The first part of the Eq. (1) represents the Born–Mayer
term, whereas the second part stands for Van der Waals ener-
gies. Beyond, in our work, we applied the original form of a
mixed-type interatomic potential of Hamad et al. [20] for
short-range interactions, which includes the Buckingham
and Lennard–Jones 9–6 potentials form as in Eq. (2):

V short
i j ¼ Aexp �ri j

ρ

� �
þ Br−9i j � Cr−6i j : ð2Þ

We also considered the semi-covalent nature of ZnS by
using a three-body potential for S-Zn-S angel as in its original
form [20] and defined by Eq. (3):

V i jk ¼ 1

2

� �
KTB θi jk � θ0

� �2
: ð3Þ

In Eq. (3), θ0 and KTB indicate the equilibrium constant
angle between S-Zn-S and fitting constant of Hamad et al.
[20], respectively. Finally, sulfur anion polarizability treated
by the shell model of ref. [19] can be written as in the Eq. (4):

V core�shell
i j ¼ 1

2

� �
Kri j

2: ð4Þ

In Eq. (4), rij accounts for the core-shell separation, and K
denotes the spring constant. Although extra details of present-
ly employed potential and its parameterization procedure can
be found in ref. [20], Table 1 lists the original potential param-
eters of ref. [20] used in our calculations.

All theoretical calculations were carried out with the Gen-
eral Utility Lattice Program (GULP) 4.0.1 molecular dynam-
ics code [21]. This useful code allows optimizing the struc-
tures at constant pressure (all internal and cell variables are
included) or at constant volume (unit cell remains frozen). To
avoid the constraints, constant pressure optimization was ap-
plied to the geometry of bt-ZnS cell with the Newton–
Raphson method based on the Hessian matrix calculated from
the second derivatives. The cell geometry of bt-ZnS was
assigned as the same as with the experimental data of ref.
[22] as a=b=c=5.40 Å and α=β=γ=90° with space group
F−43m and its corresponding experimental X-Ray diffraction
pattern [22] is also given in Fig. 1.

During our geometry optimization calculations, the Hes-
sian matrix was recursively updated using the BFGS
[23–26] algorithm. After setting the necessities for the geom-
etry optimization of bt-ZnS, we devised multiple runs at zero
Kelvin temperature and checked the pressure ranges between
0 and 20 GPa in the steps of 5 GPa.

3 Results and Discussion

As is well emphasized, pressure can cause a change in the
volume of an examined crystal and triggers the phase

Table 1 Mixed-type theoretical
interatomic potential used in this
work. Parameters of the potential
were taken from its original ref.
[20]

Mixed potential parameters used in the present work retrieved from its original ref.[20]

General potential A (eV) ρ (Å) B (ev.Å9) C (ev.Å6)

Zn-S 213.20 0.475 664.35 10.54

S-S 11413.09 0.153 0.0 129.18

Spring potential K (ev.Å−2)

S core–S shell 27.690

Three-body potential θ0 (degree) KTB (ev.rad−2)

Zn core–S shell–S shell 109.47° 0.778

Ion charges Charge (e)

Zn core 2.000

S core 1.357

S shell −3.357
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transition in this crystal. In general, at a particular pressure
value, II–VI compounds undergo a first-order phase transition
from the stable blende-type (bt) B3 phase to B1 (rocksalt)

phase at a critical phase transition pressure (PT) [7–9, 11,
14]. Figure 2 depicts the present pressure–volume (P–V) dia-
gram of bt-ZnS for the entire pressure range. As it is clear from

Fig. 1 Experimental X-Ray
diffraction data [22] of presently
investigated bt-ZnS crystal

Table 2 Comparing the previous
and present results of the
considered parameters of bt-ZnS

Parameter Present Experiments Other theoretical calculations

a (Å) 5.40 5.41c 5.34a, 5.39b, 5.40c, 5.38e, 5.33f

PT (GPa) 17 14.7–18.1c 17.5c, 18.5d

C11 (GPa) 105.1 104.0c 118.0a, 99.6c, 97.2d, 110.0e, 122.0f, 107.7g, 150.1i

C12 (GPa) 67.2 65.0c 72.0a, 57.0c, 56.4d, 63.7e, 68.0f, 59.4g, 51.4i

C44 (GPa) 42.7 46.2c 75.0a, 50.5c, 64.1d, 60.4e, 57.0f, 33.2g, 62.2i

B (GPa) 79.8 76.9, 78.0c 89.6a, 80.9b, 71.2c, 70.0d, 82.3e, 81.2f, 84.3i

G (GPa) 30.8 40.5d

E (GPa) 52.6 108.0j 102.1d, 105.2e

ν 0.39 0.27j 0.25d, 0.27e

VL (km/s) 5.44

VS (km/s) 2.74

ζ 0.73 0.72k 0.71a, 0.69d, 0.68e, 0.62f, 0.63h

ε0 6.2 8.6j 6.1a, 6.4g

ε∞ 3.3 5.2j 4.7g

a Ref. [9]
b Ref. [6]
c Ref. [8]
d Ref. [11]
e Ref. [14]
f Ref. [12]
g Ref. [27]
h Ref. [28]
i Ref. [13]
j Ref. [1]
k Ref. [29]

298 Braz J Phys (2015) 45:296–301



Fig. 2, the volume of bt-ZnS shows its first discontinuity at
17 GPa. This discontinuity in the volume of bt-ZnS at 17 GPa
originates from the structural B3→B1 the phase transition.
When compared with the former results (Table 2), our PT

value with 17 GPa agrees well with both earlier experimental
and theoretical data.

The typical cubic elastic constants namely C11, C12, and
C44 describe the mechanical hardness of a material and desir-
able for evaluating the stability of the material. These elastic
constants derived from the total energy calculations represent
the single crystal elastic properties. However, Voigt–Reuss–
Hill average values afford confident results for the elastic con-
stants of polycrystal materials [23–26]. To capture correct
values of elastic constants and other connected parameters of
bt-ZnS, we considered the Voigt–Reuss–Hill values. Figure 3
outlines the pressure dependency of the typical cubic elastic
constants between the 0 and 20 GPa. It is easy to see from
Fig. 3 that the calculated values of elastic constants C11, C12,
and C44 are positive where C11 and C12 have smooth incre-
ments as a function of increasing pressure. Additionally, the

increment of the elastic constant C11 is higher than both elastic
constants C12 and C44. Physically, C11 explains the longitudi-
nal elastic behavior, whereas C12 and C44 represent the off-
diagonal and shear elastic characteristics of cubic crystals be-
cause of shearing, respectively. Therefore, a longitudinal
strain produces a change in volume without a change in shape.
This volume change substantially related to pressure causes a
larger change in C11. In contrast, a transverse strain or shearing
causes a change in shape without a change in volume. For this
reason, C12 and C44 are less sensitive to pressure than C11. It
should be also noted that C11 and C12 coincide at PT=17 GPa.
Apart from the increment of elastic constants C11, C12, and
C44 that exposes a sluggish decrease (shear instability) under
pressure, their magnitudes never fall to zero even at PT due to
first-order phase transition. Our results for the pressure behav-
ior and magnitudes of C11, C12, and C44 are also compatible
with the former findings of refs. [7, 28, 30].

According to the Born structural stability, the magnitudes
of typical cubic elastic constants must satisfy the criteria C11–
C12>0, C11>0, C44>0, C11+2C12>0, and cubic stability, i.e.,
C12>B>C11 condition [15, 23–26]. As another result,

Fig. 2 P–V diagram of bt-ZnS up to 30 GPa

Fig. 3 Typical cubic elastic constants of bt-ZnS under pressure

Fig. 4 Pressure dependence of bulk, shear, and Young moduli of bt-ZnS

Fig. 5 B/G ratio behavior of bt-ZnS under pressure
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calculated values of C11, C12, and C44 elastic constants of bt-
ZnS satisfy both the structural and cubic stability conditions
meaning that the crystal structure of bt-ZnS is stable under
zero pressure and temperature.

Figure 4 displays the pressure behavior of bulk modulus
(B), shear modulus (G), and Young modulus (E) of bt-ZnS for
the investigated pressure range. These three elastic moduli (B,
G, and E) are essential parameters for controlling the mechan-
ical properties of materials [15, 23–26]. Among them, bulk
modulus (B) is the only elastic modulus of matter that conveys
much information about the bonding strength. It is also a mea-
sure of the matter’s resistance to external deformation and
occurs in many formulas describing diverse mechanical–
physical properties [15, 23–26]. The shear modulus (G), how-
ever, defines the resistance to shape change caused by a shear-
ing force and Young’s modulus (E) is the resistance to uniaxial
tensions. From the standard physical definition of bulk mod-
ulus with B=ΔP/ΔV, one can expect an increment for B due
to its direct proportion to the applied pressure. In Fig. 4, the
bulk modulus of bt-ZnS demonstrates uniform increment up
to 20 GPa as expected. Further, G has a sharp decrease under
pressure due its strict correlation with C44.

Ductility and brittleness play a key role during materials
manufacturing. Thus, we also evaluated the ductile (brittle)
nature of bt-ZnS crystal under pressure. The terms brittle
and ductile signify the two discrete mechanical properties of
solids when they subjected to external stress. In general, brittle
materials are not deformable or less deformable before frac-
ture. Contrarily, ductile materials are deformable a lot before
fracture. For a separation, Pugh ratio is a determinative limit
for ductile (brittle) behavior of materials and has a common
use in literature. If the B/G ratio of a material is about 1.75 and
higher, the material is ductile; otherwise, the material becomes
brittle [15]. Another reliable assessment criterion for ductility
and brittleness is Cauchy pressure, which is expressed with
CP=C12–C44. The negative (positive) values of the Cauchy
pressure reflect the brittle (ductile) nature of the compounds
[15]. Hence, we cross-checked our results with Pugh ratio and
Cauchy pressure norms. Under zero pressure and temperature,
our numerical value for B/G is 2.59 and has a positive Cauchy
pressure, which manifests the ductile nature of bt-ZnS crystal
similar to w-ZnS [31]. As well, in Fig. 5, B/G ratio has a linear
increment under pressure and reaches its maximum value at
20 GPa.

Fig. 6 Pressure dependence of Poisson ratio of bt-ZnS

Fig. 7 Elastic wave velocities of bt-ZnS versus pressure Fig. 9 Behavior of Kleinman parameter of bt-ZnS under pressure

Fig. 8 Static and high-frequency dielectric constants of bt-ZnS against
pressure
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Poisson ratio (ν) is the ratio between the transverse strain
and longitudinal strain in the elastic loading direction. It can
provide details about the bonding force behavior in solids
[26]. The values of ν=0.25 and ν=0.5 portray the lower limit
and upper limit of central forces, respectively. The present
Poisson ratio value for bt-ZnSwith 0.39 slightly overestimates
the experimental value of 0.27 (Table 2) and increases with
increasing pressure as in Fig. 6. This result for ν suggests that
interatomic forces in bt-ZnS crystals are mainly central forces.

In solids, low-temperature acoustic modes initiate the vi-
brational excitations. Because of this case, two typical elastic
waves namely the longitudinal wave and shear wave arise [15,
23–26], where VP and VS symbolize these wave velocities,
respectively. Table 2 gives the numerical values of both ve-
locities, and Fig. 7 illustrates the pressure behavior of VP and
VS of bt-ZnS. In Fig. 7, VP displays a gradual increment,
whereas VS has an apparent decrease under pressure.

The static (ε0) and high-frequency (ε∞) dielectric constants
of materials are essential parameters for the device fabrication
of modern electronics. These constants are responsible for the
behavior of charge carriers, dopants, defects, and impurities
[23]. Figure 8 depicts the plots of both dielectric constants (ε0
and ε∞) behavior of bt-ZnS under surveyed pressure range.
The dielectric constant ε0 indicates an evident decrease under
pressure. On the other hand, ε∞ has a slow increment under
increasing pressure. A quantitative assessment from Table 2
implies that our numerical values of both dielectric constants
underestimate the experiments and are of about previous the-
oretical results of ref. [27].

The Kleinman parameter (ζ) for cubic materials describes
the relative ease of bond bending to the bond stretching. Min-
imizing bond bending leads to ζ=0, minimizing bond
stretching leads to ζ=1 [15, 24], and ζ links to typical cubic
elastic constants [29] as in Eq. (5):

ζ ¼ C11 þ 8C12ð Þ= 7C11 þ 2C12ð Þ ð5Þ

Figure 9 displays the Kleinman parameter of bt-ZnS upon
the pressure increment. Under pressure, ζ increases with in-
creasing pressure. Our obtained numerical value for ζ is 0.73
and reveals the bond-stretching character in bt-ZnS under zero
pressure and temperature. This result for ζ of bt-ZnS is highly
consistent with the experimental measurements and better
than other existing theoretical results (Table 2).

4 Conclusion

In summary, a different theoretical calculation was reported by
employing an existing mixed-type interatomic potential to ob-
tain the structural, elastic, and mechanical behavior of bt-ZnS
under pressure. This applied potential mainly developed for

the surface energies of bt-ZnS well reproduces the investigat-
ed high-pressure characteristics of this compound. Presently
obtained values of phase transition pressure, typical cubic
elastic constants, Kleinman parameter, and both dielectric
constants are in good agreement with the experiments and
better than those of several early theoretical data. We hope
that our results may contribute to both current and future
works regarding the pressure dependence elastic and relevant
properties of bt-ZnS.
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