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Abstract Bifurcation and quasiperiodic behaviors of ion
acoustic waves in electron-ion magnetoplasmas with non-
thermal electrons featuring Cairns-Tsallis distribution have
been investigated on the frameworks of non-perturbed and
perturbed Kadomtsev-Petviashvili (KP) equations, respec-
tively. Employing the reductive perturbation technique
(RPT), we have derived the KP equation in electron-
ion magnetoplasmas with nonthermal electrons featur-
ing Cairns-Tsallis distribution. Bifurcations of ion acous-
tic traveling waves of the KP equation have been pre-
sented. Using the bifurcation theory of planar dynam-
ical systems, the existence of solitary wave solutions
and periodic traveling wave solutions has been estab-
lished. Three analytical solutions of these waves have been
derived depending on the system parameters. Considering
an external periodic perturbation, we have presented the
quasiperiodic behavior of ion acoustic waves in electron-ion
magnetoplasmas.

Keywords Magnetoplasma · Ion acoustic wave ·
Quasiperiodicity · Bifurcation behavior

A. Saha (�)
Department of Mathematics, Sikkim Manipal Institute
of Technology, Majitar, Rangpo, East-Sikkim 737136, India
e-mail: asit saha123@rediffmail.com

A. Saha · N. Pal · P. Chatterjee
Department of Mathematics, Siksha Bhavana, Visva Bharati
University, Santiniketan, 731235, India

1 Introduction

During the last few decades, the study of nonlinear wave
dynamics, which is referred to as nonlinear science or
chaos theory, is rapidly growing in many areas, and plasma
physics has gained a wild support from the scientific
research community. The investigations on nonlinear wave
propagations in space plasma environments and laboratory
plasmas in the form of solitons and double layers have been
of remarkable interest because of their huge applications in
different areas. It is important to note that the mathematical
formalism of soliton dynamics was initiated by Korteweg-de
Vries [1] (KdV) which has been followed by many profound
advances in finding the salient features of the robust soli-
tons. Washimi and Taniuti [2] derived the KdV equation in
plasma dynamics for the first time using the reductive per-
turbation technique (RPT). During that period, Sagdeev [3]
investigated the nonlinear propagation of waves in plasmas
that helped to highlight many more interesting phenomena
of plasma acoustic modes. These two methods become the
main tool to obtain the formation of solitons of different
types in laboratory plasmas as well as in space plasma envi-
ronments. As a result, there is an uneven competition in
bridging the gap between theory and experiments in labo-
ratory [4, 5] and space plasma environments [6]. Recently,
several investigations have been performed which helped to
develop the subject of evolution of nonlinear solitary waves
[7, 8], shock waves, as well as double layers [9, 10] in
plasmas.

There are some astrophysical and space plasmas envi-
ronments containing particles with distribution functions
which are quasi-Maxwellian up to the mean thermal
velocities and present non-Maxwellian tails when the
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particles gain high velocities and energies [11–13]. These
types of plasmas are known as nonthermal plasmas, which
are observed in Mercury, in the solar wind, Saturn, and in
the magnetosphere of the Earth [13, 14].

The nonextensive nonthermal velocity distribution [15]
function is given by:
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where vte = (Te/me)
1/2 is the electron thermal velocity, Te

is the electron temperature, me is its mass, and Cq,α is the
constant of normalization which is given by the following
expressions:
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Here, α is a parameter determining the number of non-
thermal electrons present in the model, q stands for the
strength of nonextensivity, and � is the standard Gamma
function. For q > 1, the distribution function exhibits a ther-
mal cutoff on the maximum value allowed for the velocity
of the electrons, given by

vmax =
√

2Te

me(q − 1)
,

beyond which no probable states exist.
Integrating the nonthermal velocity distributed function

fe(vx) over all velocity space, one can obtain the electron
density [15] as:
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where M = − 16αq
(5q−3)(3q−1)+12α

and N = 16αq(2q−1)
(5q−3)(3q−1)+12α

.

In the limiting case, when q → 1, the above electron
density reduces to the nonthermal electron density of Cairns
et al. [16] as
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and in the case, when α = 0, the electron density reduces to
the nonextensive electron density [17] as
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2

.

There are some standard nonlinear evolution equations,
for example, Sine-Gordon, KdV and nonlinear Schrodinger
equations, which describe many physical phenomena, and
these evolution equations are Hamiltonian integrable [18,
19]. It is well known that the integrability could be
destroyed due to the effect of external periodic perturbations
occurring in some real physical environments [20–22]. The
type of this external periodic perturbation may be different
depending on different physical situations. A significant
attention is recently paid to the study of nonlinear evolution
equations in the presence of external periodic perturbations
since a completely integrable nonlinear wave equation can
not describe quasi-periodic or chaotic behaviors. But the
presence of an external periodic perturbation to a nonlinear
integrable wave equation may lead to quasi-periodic or
chaotic dynamics. In 2012, Saha [25] investigated the gener-
alized Kadomtsev-Petviashvili modified equal width equa-
tion (KP-MEW) employing the bifurcation theory of planar
dynamical systems and obtained some analytical traveling
wave solutions such as solitary wave solutions, periodic
wave solutions, and compactons. Using bifurcation theory
of planar dynamical systems, some works [26–34] have
been reported on bifurcations of nonlinear traveling waves
in unmagnetized and magnetized plasmas through pertur-
bative and non-perturbative approaches. Recently, Sahu et
al. [35] studied the quasiperiodic behavior in quantum plas-
mas due to the presence of Bohm potential. Very recently,
Zhen et al. [36] studied dynamic behavior of the quantum
Zakharov-Kuznetsov equation (ZK) in dense quantum mag-
netoplasma, and Saha et al. [37] studied dynamic behav-
ior of ion acoustic waves in e-p-i magnetoplasmas with
kappa distributed electrons and positrons. Zhen et al. [38]
also studied soliton solution and chaotic motion of the
extended ZK equations in a magnetized dusty plasma with
Maxwellian hot and cold ions. But there is no attempt to
the study of quasiperiodic behavior of nonlinear traveling
waves in electron-ion plasmas on the frameworks of KdV,
KP, and ZK equations considering external periodic per-
turbation, to the best of our knowledge. Also, there is no
work in literature to study the quasi-periodic and chaotic
behaviors of nonlinear waves in plasmas with nonther-
mal electrons featuring Tsallis distribution. The works on
quasiperiodic and chaotic behaviors [37, 38] which have
been reported are only related to kappa-distributed elec-
trons and positrons and Maxwellian hot and cold ions but
not with nonthermal particles featuring Tsallis distribu-
tion. It is important to note that q-nonextensive distribution
and Maxwellian distribution are special cases of Tsallis
distribution.

So, in this work, our aim is to investigate the bifurca-
tion behavior of ion acoustic traveling waves in electron-
ion magnetoplasmas with nonthermal electrons featur-
ing Cairns-Tsallis distribution on the framework of KP
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equation using bifurcation theory of planar dynamical sys-
tems. We obtain solitary and periodic wave solution of the
KP equation. Considering an external periodic perturbation,
we study the quasiperiodic behavior of the perturbed KP
equation in the mentioned plasmas.

The remaining part of the paper is organized as follows:
In Section 2, we consider model equations. We derive the
KP equation in Section 3. In Section 4, we obtain traveling
wave system of this KP equation. Bifurcations of phase por-
traits are obtained in Section 5. Some exact traveling wave
solutions of the KP equation are derived in Section 6. We
discuss the quasiperiodic behavior of the perturbed system
in Section 7, and Section 8 is kept for conclusions.

2 Model Equations

We consider a plasma model whose constituents are cold
ions and nonthermal electrons featuring Cairns-Tsallis dis-
tribution in the presence of an external static magnetic field
M0 = x̂M0 acting along the x-axis, where x̂ is the unit vec-
tor along the x-axis. The normalized continuity, momentum,
and Poisson’s equations are given by:

∂n

∂t
+ ∇.(nŨ) = 0, (1)

∂Ũ

∂t
+ (Ũ .∇)Ũ = −∇φ + Ũ × x̂, (2)

∇2φ = α1(ne − n). (3)

The normalized electron density [15] is given by
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Here, α1 = r2

λ2 , r = Cs

�
is the ion gyroradius, λ =√

Te/4πe2n0 is the electron Debye length, Cs = (Te/m)1/2

is the ion acoustic velocity, and � = eM0
mc

is the ion gyrofre-
quency, where c is the speed of the light and m is the mass
of ions. φ is the electrostatic potential. n and Ũ denote num-
ber density and velocity of ions, respectively. We assume
that the wave is propagating in the xy-plane. Here, ne0,
and n0 are, respectively, unperturbed number densities of
electrons, and ions. The ion velocity Ũ = (u, v, w) is nor-

malized to ion acoustic speed Cs =
√

Te

m
, and electrostatic

potential φ is normalized to Te/e, where e denotes the elec-
tron’s charge. Space variables and time are normalized to
the ion gyroradius r and inverse of the ion gyrofrequency �,
respectively.

Equations (1)–(3) can be written in components form:
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Fig. 1 Phase portrait of (21) for
l = 0.5, α = 0.3, α1 = 0.2, β =
3, q = −0.6, and U = 2
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Fig. 2 Phase portrait of (21) for
l = 0.1, α = 0.3, α1 = 0.2, β =
3, q = 0.8, and U = 2.
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3 KP Equation

We employ the reductive perturbation technique (RPT) to
derive the KP equation. According to the RPT, the indepen-
dent variables are stretched as:

Y = ε2y, (9)

η = ε(x − V t), (10)

τ = ε3t, (11)

where V denotes the phase velocity of ion acoustic wave
along the x-axis in electron-ion magnetoplasmas with non-
thermal electrons featuring Cairns-Tsallis distribution, and ε

is a small parameter which characterizes the strength of the

nonlinearity. The dependent variables in the above relations
are expanded as:

n = 1 + ε2n1 + ε4n2 + . . . (12)

u = ε2u1 + ε4u2 + . . . (13)

v = ε3v1 + ε5v2 + . . . (14)

w = ε3w1 + ε5w2 + . . . (15)

φ = ε2φ1 + ε4φ2 + . . . (16)

Substituting equations (9)–(16) into the system of (4)–(8)
and equating the coefficient of lowest order of ε, one can
obtain the dispersion relation as

V 2 = 1

(a + M)
, (17)

where a = q+1
2 .

Fig. 3 Phase portrait of (21) for
l = 0.1, α = 0.3, α1 = 0.2, β =
3, q = 1.6, and U = 2
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Fig. 4 Variation of the solitary wave profiles of (18) for different
values of q with α = 0.3, α1 = 0.2, l = 0.5, β = 3, and U = 2

Considering the coefficient of next order of ε, we obtain
the KP equation as

∂

∂η

[
∂φ1

∂τ
+ Aφ1

∂φ1

∂η
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∂3φ1
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]
+ C

∂2φ1
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where A = V
2P

[3P 2 − 2Q], B = V
2Pα1

, C = V
2 ,with

P = a + M , b = (q+1)(3−q)
8 and Q = b + N + aM .

4 Traveling Wave System

To investigate all traveling wave solutions of (18), we trans-
form the KP (18) to the traveling wave system. We introduce
a new variable χ as:

χ = β(lη + mY − Uτ), (19)

Fig. 5 Variation of the periodic wave profiles of (18) for different
values of q with α = 0.3, α1 = 0.2, l = 0.1, β = 3, and U = 2

Fig. 6 Variation of the periodic wave profiles of (18) for different
values of q with α = 0.3, α1 = 0.2, l = 0.1, β = 3, and U = 2

where l and m are the direction cosines of the angles made
by the wave propagation with x-axis and y-axis, respec-
tively. Here, U is the speed of the traveling wave and β is
a constant. Substituting ψ(χ) = φ1(η, Y, τ ) into (18) and
then integrating twice, the KP (18) takes the form

Bβ2l4 d2ψ

dχ2
+ (Cm2 − lU)ψ + Al2

2
ψ2 = 0. (20)

Then (20) can be written as the following dynamical system:

⎧⎨
⎩

dψ
dχ

= z,

dz
dχ

=
(
lU−Cm2− Al2

2 ψ
)
ψ

Bβ2l4
.

(21)

Equation (21) represents a planar Hamiltonian system with
the following Hamiltonian function:

H(ψ, z) = z2

2
− 1

6Bβ2l4

(
3(lU − Cm2) − Al2ψ

)
ψ2 = h, say.

(22)

The system (21) is a planar dynamical system with parame-
ters α, β, α1, q, l, m, and U . It is interesting to note that the
phase orbits defined by the vector fields of (21) determine
all traveling wave solutions of (18). So, we investigate the
bifurcations of phase portraits of (21) in the (ψ, z) phase
plane as the parameters α, β, α1, q, l, m, and U are changed.
In this case, we consider a physical system for which only
bounded traveling wave solutions are meaningful. So, we
need to pay our attention to the bounded traveling wave
solutions of (18). It is known that a solitary wave solution
of (18) corresponds to a homoclinic orbit of (21). A peri-
odic orbit of (21) corresponds to a periodic traveling wave
solution of (18). The bifurcation theory of planar dynamical
systems ([23, 24]) plays an important role in this study.
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Fig. 7 Phase portrait of the perturbed system (27) for l = 0.1, U = 2, β = 3, α1 = 0.2, α = 0.3, f0 = 1.2, ω = 1.3, (a) q = −0.5, and (b)
q = −0.7

5 Bifurcations of Phase Portraits

In this section, we investigate the bifurcations of phase por-
traits of (21). When ABβl �= 0 and lU �= C(1 − l2),
then there are two equilibrium points at E0(ψ0, 0) and

E1(ψ1, 0), where ψ0 = 0 and ψ1 = 2(lU−C(1−l2))

Al2
. Let

M(ψi, 0) be the coefficient matrix of the linearized system
of (21) at an equilibrium point Ei(ψi, 0). Then we have

J = detM(ψi, 0) =
(
C

(
1 − l2

) − lU
)

Bβ2l4
+ A

Bβ2l2
ψi. (23)

By the theory of planar dynamical systems ([23, 24]), we
know that the equilibrium point Ei(ψi, 0) of the planar
dynamical system (21) is a saddle point when J < 0 and the
equilibrium point Ei(ψi, 0) of the planar dynamical system
(21) is a center when J > 0.

We consider 0 < l < 1 and β �= 0. Then we have the
following cases:

Case 1 When 2lU < V (1 − l2), 3P 2 > 2Q, −1 < q < 0,

α > 0, and α1 > 0, then the system (21) has two equilib-
rium points at E0(ψ0, 0) and E1(ψ1, 0), where ψ0 = 0 and
ψ1 > 0. Here, E0(ψ0, 0) is a center and E1(ψ1, 0) is a sad-
dle point. There is a homoclinic orbit to E1(ψ1, 0) enclosing
the center at E0(ψ0, 0) (see Fig. 1).

Case 2 When 2lU > V (1 − l2), 3P 2 < 2Q, 0 < q < 1,

α > 0, and α1 > 0, then the system (21) has two equilib-
rium points at E0(ψ0, 0) and E1(ψ1, 0), where ψ0 = 0 and
ψ1 > 0. Here, E0(ψ0, 0) is a saddle point and E1(ψ1, 0) is
a center. There is a homoclinic orbit to E0(ψ0, 0) enclosing
the center at E1(ψ1, 0) (see Fig. 2).

Case 3 When 2lU < V (1 − l2), 3P 2 > 2Q, q > 1,

α > 0, and α1 > 0, then the system (21) has two equilib-
rium points at E0(ψ0, 0) and E1(ψ1, 0), where ψ0 = 0 and
ψ1 < 0. Here, E0(ψ0, 0) is a center and E1(ψ1, 0) is a sad-
dle point. There is a homoclinic orbit to E1(ψ1, 0) enclosing
the center at E0(ψ0, 0) (see Fig. 3).
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Fig. 8 Phase portrait of the perturbed system (27) for l = 0.1, U = 2, β = 3, α1 = 0.2, α = 0.3, f0 = 0.2, ω = 1.3, (a) q = 0.7, and (b) q = 0.9
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Fig. 9 Phase portrait of the perturbed system (27) for l = 0.1, U = 2, β = 3, α1 = 0.2, α = 0.3, f0 = 1.2, ω = 1.3, (a) q = 1.4, and (b) q = 1.8

Using the above analysis, we have shown different phase
portraits of (21) in Figs. 1, 2, and 3 depending on some
special values of the parameters.

6 Analytical Solutions

In this section, using the planar dynamical system (21) and
the Hamiltonian function (22) with h = 0, we derive the
solitary wave solution and periodic traveling wave solution
of (18) depending on the system parameters.

(1) When 2lU < V (1 − l2), 3P 2 > 2Q, −1 < q < 0,

α > 0, and α1 > 0, (see Figs. 1 and 4), the KP (18) has the
solitary wave solution:

φ1 = 3(lU − C(1 − l2))

Al2
sech2

⎛
⎝ 1

2βl2

√
lU − C(1 − l2)

B
χ

⎞
⎠ .

(24)

(2)When 2lU > V
(
1 − l2

)
, 3P 2 < 2Q, 0 < q < 1,

α > 0, and α1 > 0, (see Figs. 2 and 5), the KP (18) has the
periodic traveling wave solution:

φ1 = 3(lU − C(1 − l2))

Al2
sec2

⎛
⎝ 1

2βl2

√
−[lU − C(1 − l2)]

B
χ

⎞
⎠ . (25)

(3) When 2lU < V
(
1 − l2

)
, 3P 2 > 2Q, q > 1, α > 0,

and α1 > 0, (see Figs. 3 and 6), the KP (18) has the periodic
traveling wave solution:

φ1 = 3(lU − C(1 − l2))

Al2
cosec2

⎛
⎝ 1

2βl2

√
−[lU − C(1 − l2)]

B
χ

⎞
⎠ .

(26)

Using numerical simulations, we obtain some graphs of
these solitary wave solution and periodic traveling wave
solutions of (18) depending on some special values of the
system parameters, shown in Figs. 4, 5, and 6.

In Fig. 3, we have presented the variation of
the solitary wave profiles for different values of
q(−0.5(black dashed curve), −0.6(blue solid curve), −0.7
(red dotted curve)) with fixed values of the other param-
eters. It is important to note that when q increases, the
amplitude of the solitary wave increases and the width
of the solitary wave decreases and it becomes more
spiky.

In Fig. 4, we have presented the variation
of periodic wave profiles for different values of
q(0.8(black dashed curve),0.84(blue solid curve), 0.88(red
dotted curve)) with fixed values of the other parameters. It
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Fig. 10 Plot of z vs. χ for l = 0.1, U = 2, β = 3, α1 = 0.2, α = 0.3, f0 = 1.2, ω = 1.3, (a) q = −0.5, and (b) q = −0.7
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Fig. 11 Plot of z vs. χ for l = 0.1, U = 2, β = 3, α1 = 0.2, α = 0.3, f0 = 0.2, ω = 1.3, (a) q = 0.7, and (b) q = 0.9

is clear that when q increases, the amplitude and width of
the periodic wave decrease.

In Fig. 5, we have presented the variation of
periodic wave profiles for different values of q(1.4
(black dashed curve), 1.6(blue solid curve), 1.8(red dotted
curve)) with fixed values of the other parameters. It is
clear that when q increases, the amplitude and width of the
periodic wave increase.

7 Quasiperiodic Behavior

In this section, we present the quasiperiodic behavior of the
perturbed system given by:⎧⎨
⎩

dψ
dχ

= z,

dz
dχ

=
(
lU−Cm2− Al2

2 ψ
)
ψ

Bβ2l4
+ f0 cos (ωχ),

(27)

where f0cos(ωχ) is the external periodic perturbation,
f0 is the strength of the periodic perturbation and ω

is the frequency. It is to be noted that the difference
between the system (21) and the system (27) is that only
external periodic perturbation is added with the system
(27).

In Figs. 7(a)-7(b), we have presented the phase por-
traits of the perturbed system (27) for different values of
q(−0.5, −0.7) with fixed values of the other parameters
l = 0.1, α = 0.3, α1 = 0.2, β = 3, f0 = 1.2, ω = 1.3, and
U = 2. When q is decreasing with −1 < q < 0, a quasi
periodic motion of the system (27) is found with incom-
mensurable periodic motions and the trajectory in the phase
space winds around a torus filling its surface densely.

In Figs. 8(a)-8(b), we have shown the phase portraits of
the perturbed system (27) for different values of q(0.7, 0.9)
with fixed values of the other parameters l = 0.1, α =
0.3, α1 = 0.2, β = 3, f0 = 0.2, ω = 1.3, and U = 2.
When q is increasing with 0 < q < 1, a quasi periodic
motion of the system (27) is found with incommensurable
periodic motions and the trajectory in the phase space winds
around a torus filling its surface sparsely. Hence, the param-
eter q affects significantly on the quasiperiodic behavior of
the perturbed system (27).

In Figs. 9(a)-9(b), we have presented the phase portraits
of the perturbed system (27) for different values of q(1.4,
1.8) with fixed values of the other parameters l = 0.1, α =
0.3, α1 = 0.2, β = 3, f0 = 1.2, ω = 1.3, and U = 2.
When q is increasing with q > 1, a quasi periodic motion
of the system (27) is found with incommensurable periodic
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Fig. 12 Plot of z vs. χ for l = 0.1, U = 2, β = 3, α1 = 0.2, α = 0.3, f0 = 1.2, ω = 1.3, (a) q = 1.4, and (b) q = 1.8
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motions and the trajectory in the phase space winds around
a torus filling its surface densely.

In Figs. 10(a)-10(b), we have plotted z vs. χ for the per-
turbed system (27) for different values of q(−0.5, −0.7)
with fixed values of the other parameters same as Fig. 7. In
Figs. 11(a)-11(b), we have plotted z vs. χ for the perturbed
system (27) for different values of q(0.7, 0.9) with fixed
values of the other parameters same as Fig. 8. In Figs. 12(a)-
12(b), we have plotted z vs. χ for the perturbed system (27)
for different values of q(1.4, 1.8) with fixed values of the
other parameters same as Fig. 7. It is easily seen that stable
oscillatory behavior is possible in the system (27) for dif-
ferent values of q. The presence of slow and fast frequency
components is visible in the time evolution of the state variable.

8 Conclusions

In this work, we have obtained the KP equation for ion
acoustic waves in magnetoplasmas with nonthermal elec-
trons featuring Cairns-Tsallis distribution. Applying the
bifurcation theory of planar dynamical systems to the KP
equation, we have presented the existence of solitary and
periodic traveling waves. Three exact solutions of the soli-
tary and periodic waves are obtained depending on the
parameters α, β, α1, q, l, m, and U . Considering an exter-
nal periodic perturbation, the quasi-periodic behavior of the
ion acoustic waves is studied with the help of numerical
simulations. The presence of the parameters q, α, α1, and β

affects significantly the bifurcations of traveling wave solu-
tions of the KP equation and the quasi-periodic behavior
of the perturbed KP equation. Our study may be help-
ful to understand the salient features of bifurcation and
the quasi-periodic behaviors of nonlinear traveling waves
observed in Mercury, Saturn, and in the magnetospheres
of the Earth [13, 14] where nonthermal electrons featuring
Cairns-Tsallis distribution are present.
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