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Abstract Different families of generalized coherent states
(CS) for one-dimensional systems with general time-
dependent quadratic Hamiltonian are constructed. In prin-
ciple, all known CS of systems with quadratic Hamiltonian
are members of these families. Some of the constructed
generalized CS are close enough to the well-known due to
Schrödinger and Glauber CS of a harmonic oscillator; we
call them simply CS. However, even among these CS, there
exist different families of complete sets of CS. These fam-
ilies differ by values of standard deviations at the initial
time instant. According to the values of these initial stan-
dard deviations, one can identify some of the families with
semiclassical CS. We discuss properties of the constructed
CS, in particular, completeness relations, minimization of
uncertainty relations and so on. As a unknown application
of the general construction, we consider different CS of an
oscillator with a time dependent frequency.
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1 Introduction

1.1 General

Coherent states (CS) play an important role in modern
quantum theory as states that provide a natural relation
between quantum mechanical and classical descriptions.
They have a number of useful properties and, as a conse-
quence, a wide range of applications, e.g., in semiclassical
description of quantum systems, in quantization theory, in
condensed matter physics, in radiation theory, in quan-
tum computations, in loop quantum gravity, and so on,
see, e.g., refs. [1–9]. Despite the fact that there exist a
great number of publications devoted to constructing CS of
different systems, a universal definition of CS and a con-
structive scheme of their constructing for arbitrary physical
system is not known. However, it seems that for systems
with quadratic Hamiltonians, there exist, at present, a com-
mon point of view on this problem.1 Starting the works
[7, 8, 14, 15], CS are defined as eigenvectors of some
annihilation operators that are at the same time integrals
of motion, see also [16–21, 27]. Of course, such defined
CS have to satisfy the corresponding Schrödinger equa-
tion. In the frame of such a definition, one can, in prin-
ciple, construct CS for a general quadratic system. This
construction is based on solutions of some classical equa-
tions, their analysis represent a nontrivial part of the CS
construction.

In this article, we, following, the integral of motion
method, construct different families of generalized CS
for one-dimensional systems with general time-dependent
quadratic Hamiltonian. Analyzing these families, we see
that some of them are more close to the well known

1In this article, we do not discuss the so-called generalized CS [10–13].
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due to Schrödinger and Glauber CS (see [24, 25]) of a
harmonic oscillator, we call them simply CS. However,
among the latter CS, there exist still different families of
complete sets of CS. These families differ by values of
standard deviations at the initial time instant. According
to the values of these initial standard deviations, one can
identify some of the families with semiclassical CS, as
was demonstrated by us in the free-particle case [25]. We
discuss properties of the constructed CS, in particular, com-
pleteness relations, minimization of uncertainty relations,
and so on. As an application of the general construction,
we consider CS of an oscillator with a time dependent
frequency.

1.2 Basic Equations

Consider quantum motion of a one-dimensional system with
the generalized coordinate x on the whole real axis, x ∈
R = (−∞, ∞), supposing that the corresponding quantum
Hamiltonian Ĥx is given by a quadratic form of the operator
x and the momentum operator p̂x = −i�∂x ,

Ĥx = r1p̂
2
x + r2x

2 + r3(xp̂x + p̂xx)+ r4x + r5p̂x + r6, (1)

where rs = rs (t), s = 1, ..., 6 are some given functions
of the time t . We suppose that these functions are real and
both Ĥx and p̂x are self-adjoint on their natural domains
DHx and Dpx respectively, see, e.g., [28, 29].

Quantum states of the system under consideration are
described by a wave function � (x, t) which satisfies the
Schrödinger equation

i�∂t� (x, t) = Ĥx� (x, t) . (2)

In what follows, we restrict ourselves by a physically
reasonable case r1 (t) > 0. In this case, we introduce
dimensionless variables, a coordinate q and a time τ as
follows

q = xl−1, τ =
∫ t

0

ds

T (s)
= 2�

l2

∫ t

0
r1 (s) ds,

T (t) = l2

2�r1 (t)
, (3)

where l is an arbitrary constant of the dimension of the
length. The new momentum operator p̂ and the new wave
function ψ (q, τ) read

p̂ = l

�
p̂x = −i∂q, ψ (q, τ ) = √

l�

(
lq,

ml2

�
τ

)
, (4)

so that |� (x, t)|2dx = |ψ (q, τ)|2dq.
In the new variables, (2) takes the form

Ŝψ (q, τ ) = 0, Ŝ = i∂τ − Ĥ , (5)

where the new Hamiltonian reads

Ĥ = p̂2

2
+ αq̂2 + β

(
q̂p̂ + p̂q̂

) + �q̂ + νp̂ + ε . (6)

Here, α = α (τ), β = β (τ), � = � (τ), ν = ν (τ) and
ε = ε (τ ) ,

α (τ) = l4

2�2

r2 (t)

r1 (t)
, β (τ ) = l2

2�

r3 (t)

r1 (t)
, � (τ ) = l3

2�2

r4 (t)

r1 (t)
,

ν (τ ) = l

2�

r5 (t)

r1 (t)
, ε(τ ) = l2

2�2

r6 (t)

r1 (t)
, (7)

are dimensionless real functions on τ if t is expressed via τ

by the help of (3). In what follows, we call Ŝ the equation
operator.

2 Constructing Time-Dependent Generalized CS

2.1 Integrals of Motion Linear in Canonical Operators
q̂ and p̂

First, we construct an integral of motion Â (τ ) linear in q̂

and p̂. The general form of such an integral of motion reads

Â (τ ) = f (τ) q̂ + ig (τ ) p̂ + ϕ (τ) , (8)

where f (τ), g (τ), and ϕ (τ) are some complex functions
on τ . The operator Â (τ ) is an integral of motion if it
commutes with equation operator (5),
[
Ŝ, Â (τ )

]
= 0. (9)

In the case if the Hamiltonian is self-adjoint, the adjoint
operator Â† (τ ) is also an integral of motion, i.e.,
[
Ŝ, Â† (τ )

]
= 0. (10)

The commutator
[
Â (τ ) , Â† (τ )

]
reads

[
Â (τ ) , Â† (τ )

]
= δ = 2 Re

[
g∗ (τ ) f (τ)

]
. (11)

Substituting representation (8) into (9), we obtain the
following equations for the functions f (τ), g (τ), and
ϕ (τ):

ḟ (τ ) + 2β (τ) f (τ) − 2iα (τ ) g (τ ) = 0,

ġ (τ ) − if (τ ) − 2β (τ) g (τ) = 0,

ϕ̇ (τ ) + ν (τ) f (τ) − i� (τ ) g (τ ) = 0. (12)

It is enough to find the functions f (τ) and g (τ), then
the function ϕ (τ) can be found by a simple integration.
In addition, without loss of the generality, we can set
ϕ (0) = 0.
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Equations (12) imply that δ is a real integral of motion,
δ = const. In what follows, we suppose that δ = 1, which
means

Re
[
g∗ (τ ) f (τ)

] = Re
[
g∗ (0) f (0)

] = 1/2. (13)

Any nontrivial solution of the two first equations (12)
consists of two nonzero functions f (τ) and g (τ). That is
why we can chose arbitrary integration constants in these
equations as

f (0) = c1 = |c1| eiμ1 ,

g (0) = c2 = |c2| eiμ2 , |c2| �= 0, |c1| �= 0. (14)

In terms of the introduced constants, condition (13) yields

|c2| |c1| cos (μ1 − μ2) = 1/2. (15)

Under the choice δ = 1, operators Â (τ ) and Â† (τ )

become annihilation and creation operators,[
Â (τ ) , Â† (τ )

]
= 1. (16)

It follows from (8) and (13) that

q̂ = g∗ (τ )
[
Â (τ ) − ϕ (τ)

]
+ g (τ)

[
Â† (τ ) − ϕ∗ (τ )

]
,

ip̂ = f ∗ (τ )
[
Â (τ ) − ϕ (τ)

]
− f (τ)

[
Â† (τ ) − ϕ∗ (τ )

]
.

(17)

I We note that the two first (12) can be reduced to a one
second-order differential equation for the function g (τ),
such an equation has the form of the oscillator equation with
a time-dependent frequency ω2 (τ ),

g̈ (τ ) + ω2 (τ ) g (τ ) = 0, ω2 (τ ) = 2α − 4β2 − 2β̇. (18)

If we have an exact solution g (τ) for a given function
ω2 (τ ), then the function f (τ) can be found via the function
g (τ) as

f (τ) = 2iβ (τ ) g (τ ) − iġ (τ ) . (19)

One can chose the functions α (τ) and β (τ) such that

ω2 (τ ) = 2α (τ) − 4β2 (τ ) − 2β̇ (τ ) . (20)

For example, if we chose

α (τ) = 1

2
ω2 (τ ) , β = � = ν = ε = 0, (21)

then we are dealing with Hamiltonian of the form

Ĥ = p̂2

2
+ ω2 (τ )

2
q2. (22)

II. In addition, the one-dimensional Schrödinger equation

−d2
q� (q) + V (q)� (q) = E� (q) , (23)

can be identified with (18) if q → τ, � (q) → g (τ) ,

V (q) − E → ω2 (τ ).

III. It should be also noted that the two first equations
(12) can be identified with a particular form of the so-called
spin equation, see [28],

iV̇ = (σF) V , V =
(

f

g

)
, (24)

with

F (τ ) = − 1

2
(2α + 1, i (2α − 1) , 4iβ) .

2.2 Time-Dependent Generalized CS

Let us consider eigenvectors |z, τ 〉 of the annihilation oper-
ator Â (τ ) corresponding to the eigenvalue z,

Â (τ ) |z, τ 〉 = z |z, τ 〉 . (25)

In the general case, z is a complex number.
It follows from (17) and (25) that

q (τ) ≡ 〈
z, τ

∣∣q̂∣∣ z, τ 〉 = g∗ (τ ) [z − ϕ (τ)] + g (τ)
[
z∗ − ϕ∗ (τ )

]
,

ip (τ ) ≡ 〈
z, τ

∣∣p̂∣∣ z, τ 〉 = f ∗ (τ ) [z − ϕ (τ)] − f (τ)
[
z∗ − ϕ∗ (τ )

]
,

z = f (τ) q (τ ) + ig (τ ) p (τ) + ϕ (τ) . (26)

Using (12), one can easily verify that the functions q (τ)

and p (τ) satisfy the Hamilton equations

q̇ (τ ) = ∂H

∂p
, ṗ (τ ) = −∂H

∂q
,

where H = H (q, p) is the classical Hamiltonian that
corresponds to the quantum Hamiltonian (6). Thus, the pair
q (τ) and p (τ) represents a classical trajectory in the phase
space of the system under consideration. All such trajecto-
ries can be parameterized by the initial data, q0 = q (0)

and p0 = p (0).
Being written in the q representation, (25) reads[

f (τ) q + g (τ) ∂q + ϕ (τ)
] 〈q |z, τ 〉 = z〈q |z, τ 〉 . (27)

General solution of this equation has the form

〈q |z, τ 〉 = �c1c2
z (q, τ ) = exp

[
−f (τ)

g (τ)

q2

2
+ z − ϕ (τ)

g (τ)
q + χ (τ)

]
,

(28)

where χ (τ) is an arbitrary function on τ .
One can see that the functions �

c1c2
z (q, τ ) can be written

in terms of the mean values q (τ) and p (τ) given by (26),

�c1c2
z (q, τ ) = exp

{
ip (τ) q − f (τ)

2g (τ)
[q − q (τ)]2 + χ̃ (τ )

}
. (29)

where χ̃ (τ ) is again an arbitrary function on τ .
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The functions �
c1c2
z satisfy the following equation

Ŝ�c1c2
z (q, τ ) = λ (τ) �c1c2

z (q, τ ) , (30)

where

λ (τ) = i∂τ χ̃ (τ ) + αq2 (τ ) − 1

2

[
p2 (τ ) + f

g

]
− iνp (τ)

−β − iε. (31)

If we wish the functions (29) satisfies the Schrödinger
equation (5), we have to fix χ̃ (τ ) from the condition
λ (τ) = 0. Thus, we obtain for the function χ̃ (τ ) the
following result:

χ̃ (τ ) = φ (τ) + ln N,

φ (τ) =
∫ τ

0

{
iαq2 (τ ) − i

2

[
p2 (τ )

+ f

g

]
− iνp (τ) − β − iε

}
dτ, (32)

were N is a normalization constant, which we suppose to be
real.

The probability densities generated by the wave functions
(29) have the form

ρc1c2
z (q, τ ) = ∣∣�c1c2

z (q, τ )
∣∣2

= N2 exp

{
− [q − q (τ)]2

2 |g (τ)|2 + 2 Re φ (τ)

}
.(33)

Considering the normalization integral, we find the constant
N ,
∫ ∞

−∞
ρc1c2

z (q, τ ) dq = 1 ⇒ N = exp (− Re φ (τ))√√
2π |g (τ)|

. (34)

Thus, normalized solutions of the Schrödinger equation
that at the same time are eigenfunctions of the annihilation
operator Â (τ ) have the form

�c1c2
z (q, τ ) = 1√√

2π |g (τ)|

exp

{
ip (τ ) q − f (τ)

g (τ )

[q − q (τ)]2

2
+ i Im φ (τ)

}

(35)

and the corresponding probability densities read

ρc1c2
z (q, τ ) = 1√

2π |g (τ)| exp

{
− [q − q (τ)]2

2 |g (τ)|2
}

. (36)

In what follows, we call the solutions (35) the time-
dependent generalized CS.

3 Time-Dependent CS of Quadratic Systems

Using (17) and (25) we can calculate standard deviations
σq (τ ), σp (τ), and the quantity σqp (τ), in the generalized
CS,

σq (τ ) =
√

〈(q̂ − 〈q〉)2〉 =
√〈

q2
〉 − 〈q〉2 = |g (τ)| ,

σp (τ ) =
√

〈(p̂ − 〈p〉)2〉 =
√〈

p2
〉 − 〈p〉2 = |f (τ)| ,

σqp (τ ) = 1

2

〈(
q̂ − 〈q〉) (

p̂ − 〈p〉) + (
p̂ − 〈p〉) (

q̂ − 〈q〉)〉
= i

[
1/2 − g (τ) f ∗ (τ )

]
. (37)

One can easily see that the generalized CS (35) minimize
the Robertson-Schrödinger uncertainty relation [29, 30],

σ 2
q (τ ) σ 2

p − σ 2
qp (τ ) = 1/4. (38)

This means that the generalized CS are squeezed states [8].
Let us analyze the Heisenberg uncertainty relation in the

generalized CS taking into account restriction (13),

σq (τ ) σp (τ)
∣∣
2 Re(c∗

1c2)
= 1

2

√
1 + 4 (Im (gf ∗))2 ≥ 1

2
. (39)

Then using (37), we find σq (0) = σq = |c2| and
σp (0) = σp = |c1| , such that at τ = 0, this relation reads

σqσp

∣∣
2 Re(c∗

1c2)
=

√
1

4
+ [|c2| |c1| sin (μ2 − μ1)]2. (40)

Taking into account (14), we see that if μ1 = μ2 = μ, the
left hand side of (39) is minimal, such that

σqσp = 1/2, σqp = 0. (41)

One can see that the constant μ does not enter CS (35).
Then, in what follows, we consider generalized CS with the
restriction μ1 = μ2 = μ = 0. Namely, such states we call
simply CS.

Now restriction (13) takes the form c1 = |c1| , c2 =
|c2| , 2c1 = c−1

2 , such that

g (0) = |c2| = σq, f (0) = |c1| = σp = 1

2σq

. (42)

Thus, σqp = σqp (0) = i [1/2 − g (0) f (0)] = 0, which is
consistent with (41).
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With account taken of (35), (37), and (42), we obtain the
following expression for the CS:

�
σq
z (q, τ ) = 1√√

2πσq (τ)

exp

{
ip (τ) q − f (τ)

g (τ)

[q − q (τ)]2

2
+ i Im φ (τ)

}
,

φ (τ ) =
∫ τ

0
i

{
αq2 (τ ) − i

2

[
p2 (τ )

+ f (τ)

g (τ)

]
− iνp (τ) − β − iε

}
dτ. (43)

In fact, we have a family of CS parameterized by one real
parameter—the initial standard deviation σq > 0. Each set
of CS in the family has its specific initial standard devia-
tions σq . Different CS from a family with a given σq have
different quantum numbers z, which are in one to one corre-
spondence with trajectory initial data q0 and p0. It follows
from (26) that

z = q0

2σq

+ iσqp0, q0 = 2σq Re z, p0 = Im z

σq

. (44)

The probability density that corresponds to the CS (43)
reads

ρ
σq
z (q, τ ) = 1√

2πσq (τ)
exp

{
− [q − q (τ)]2

2σ 2
q (τ )

}
. (45)

One can prove that for any fixed σq states (43) form an
over complete set of functions with the following orthogo-
nality and completeness relations

∫
�

σq

z′ (q, τ )�
σq
z (q, τ ) dq = exp

(
z′∗z −

∣∣z′∣∣2 + |z|2
2

)
, ∀τ,

∫ ∫
�

σq
z (q, τ ) �

σq
z (q ′, τ )d2z = πδ

(
q − q ′) ,

d2z = d Re z d Im z,∀τ. (46)

4 An Exact Solution of Oscillator Equation
with Time-Dependent Frequency and Related CS

Let us consider the following function ω2 (τ ) ,

ω2 (τ ) = ω2 + 2ω2
0

cosh2 ω0τ
, ω2 ≤ ω2 (τ )

≤ ω2
max, ω (±∞) = ω2, (47)

where ω and ω0 are some positive constants, ωmax ≥ ω.
The function ω2 (τ ) is an even function, which decreases
monotonically as |τ | changes from 0 to ∞,

ω2 (±∞) = ω2, ω2 (0) = ω2
max = ω2 + 2ω2

0. (48)

For ω = 1 and ω0 = 2−1/2, the plot of the function
ω (τ) has the form

The general solution of equation (18) can be written as

g(τ) =
[

iAω0 tanh(ω0τ)

ω2 + ω2
0

+ B

]
cos(ωτ)

+
[

iAω2

ω2 + ω2
0

− B ω0 tanh(ω0τ)

]
sin(ωτ)

ω
. (49)

The restriction (13), (14), and (42) that set the CS from
the entire set of generalized CS lead to the following
relations for the constants A and B:

B = g (0) = |g (0)| = σq,

A = f (0) = |f (0)| = 1/2σq. (50)

Using (49) and (50), we calculate the mean trajectories
q(τ) and p (τ) according (26),

q(τ) = 2 Re
[
g (τ) z∗] = g (τ)|A=Ā, B=B̄ ,

p(τ ) = ġ (τ )|A=Ā, B=B̄ = q̇(τ ) ,

A = −σ−1
q Im z, B = 2σq Re z . (51)

For ωmin > 0, the mean trajectory q(τ) can be presented
as

q(τ) = R0R(τ) sin[ωτ + �(τ) + �0] , (52)

where functions R(τ) and �(τ) and constants R0 and �0

are
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R(τ) =
√

1 + ω2
0

ω2
tanh2 ω0τ , 1 � R(τ) < ω−1

√
ω2 + ω2

0 ;

�(τ) = arctan
[ω0

ω
tanh ω0τ

]
, −� < �(τ) < � ,

� = arctan
(ω0

ω

)
;

R0 =
√

p2
0ω2 + q2

0 (ω2 + ω2
0)

4

(ω2 + ω2
0)

2
, sin �0 = q0

R0
,

cos �0 = p0 ω

R0(ω2 + ω2
0)

2
. (53)

Thus, we deal with a quasiharmonic motion with the
frequency ω and an amplitude that is changing in time in
finite limits and with a time-dependent phase that is slowly
changing in also finite limits.

Let us derive the case of a harmonic oscillator with a
fixed frequency ω > 0 from the above formulas. To this
end, we have to set ω0 = 0 and α = ω2/2, ν = β = ε = 0
such that ω2 (τ ) = ω2. Then,

g (τ) = σq cos ωτ + i sin ωτ

2σqω
,

f (τ) = cos ωτ

2σq

+ iσqω sin ωτ,

q(τ) = q0 cos ωτ + p0

ω
sin ωτ,

p(τ) = p0 cos ωτ − ωq0 sin ωτ, (54)

and z = σpq0 + iσq p0. Taking all that into account in
(43), we obtain the following representation for CS (in the
above given definition) of the harmonic oscillator:

�
σq
z (q, τ ) = 1√√

2πg (τ)

exp

{
−1

2

f (τ)

g (τ)

[
q − z

f (τ)

]2

+ f ∗ (τ )

f (τ)

z2

2
− |z|2

2

}
. (55)

For these CS

σq (τ ) = σq

√√√√
1 +

(
1 − 4σ 4

q ω2
)

4σ 4
q ω2

sin2 ωτ,

σp (τ) = σp

√
1 −

(
1 − 4σ 4

q ω2
)

sin2 ωτ, (56)

and the corresponding probability density reads

ρ
σq
z (q, τ ) = 1√

2πσq (τ)
exp

{
− [q − q (τ)]2

2σ 2
q (τ )

}
. (57)

One has to consider the following three cases:

a) σq

√
2ω = 1, then

σq (τ ) = σq, σp (τ) = σp,

σq (τ ) σp (τ) = σqσp = 1/2, ∀τ.

b) σq

√
2ω < 1, then

σq (τ )
∣∣
min = σq (τ )

∣∣
τ= πn

ω
= σq,

σq (τ )
∣∣
max = σq (τ )

∣∣
τ= 2n+1

2
π
ω

= 1

2σqω
,

σp (τ)
∣∣
min = σp (τ)

∣∣
τ= 2n+1

2
π
ω

= σqω,

σp (τ)
∣∣
max = σp (τ)

∣∣
τ= πn

ω
= σp,

σq (τ ) σp (τ)
∣∣
min = σq (τ ) σp (τ)

∣∣
τ= πn

ω
= 1/2,

σq (τ ) σq (τ )
∣∣
max = σq (τ ) σq (τ )

∣∣
τ= 2n+1

4
π
ω

= 1 + 4σ 4
q ω2

8σ 2
q ω

,

n ∈ N = 0, 1, 2, ... .

c) σq

√
2ω > 1, then

σq (τ )
∣∣
min = σq (τ )

∣∣
τ= 2n+1

2
π
ω

= 1

2σqω
,

σq (τ )
∣∣
max = σq (τ )

∣∣
τ= nπ

ω
= σq,

σp (τ)
∣∣
min = σp (τ)

∣∣
τ= nπ

ω
= σp,

σp (τ)
∣∣
max = σp (τ)

∣∣
τ= 2n+1

2
π
ω

= σqω,

σq (τ ) σp (τ)
∣∣
min = σq (τ ) σp (τ)

∣∣
τ= n

2
π
ω

= 1/2,

σq (τ ) σq (τ )
∣∣
max = σq (τ ) σq (τ )

∣∣
τ= 2n+1

4
π
ω

= 1 + 4σ 4
q ω2

8σ 2
q ω

, n ∈ N .

We can see that in case (a), the Heisenberg uncertainty
relation is minimized in the CS (55). In the same case, these
CS coincide (up to a phase factor) with the well-known
Schrödinger-Glauber CS [23]. CS with σq obeying (b) and
(c) minimize the Heisenberg uncertainty relation periodi-
cally, but the product σq (τ ) σq (τ ) is always restricted by

the limits 1/2 and
1+4σ 4

q ω2

8σ 2
q ω

.

Setting ω0 = ω = α = ν = β = ε = 0, and
taking into account the limits

lim
ω0→0

g (τ) = B cos (ωτ) + iA

ω
sin (ωτ) ,

lim
ω0,ω→0

g (τ) = B + iAτ,

lim
ω→0

g (τ) = (iA − Bω2
0τ)

tanh(ω0τ)

ω0
+ B,

we obtain from (43) CS of a free particle studied by us in
the [25].
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