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Abstract The nonlinear propagation of the electron-
acoustic solitary waves (EASWs) in an unmagnetized,
collisionless degenerate quantum plasma system has been
investigated theoretically. Our considered model consist-
ing of two distinct groups of electrons (one of inertial
non-relativistic cold electrons and other of inertialess ultra-
relativistic hot electrons) and positively charged static ions.
The Korteweg-de Vries (K-dV) equation has been derived
by employing the reductive perturbation method and numer-
ically examined to identify the basic features (speed, ampli-
tude, width, etc.) of EASWs. It is shown that only rarefac-
tive solitary waves can propagate in such a quantum plasma
system. It is found that the effect of degenerate pressure and
number density of hot and cold electron fluids, and pos-
itively charged static ions, significantly modify the basic
features of EASWs. It is also noted that the inertial cold
electron fluid is the source of dispersion for EA waves and
is responsible for the formation of solitary structures. The
applications of this investigation in astrophysical compact
objects (viz. non-rotating white dwarfs, neutron stars, etc.)
are briefly discussed.
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1 Introduction

Studies of nonlinear wave phenomena in collisionless plas-
mas provide a firm basis not only for exploring fundamental
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properties of the nonlinear physics but also for developing
practical application in controlled nuclear fusion technolo-
gies. About 37 years ago, Watanabe and Taniuti [1] have
first shown the existence of the electron-acoustic (EA) mode
in a plasma of two-temperature (cold and hot) electrons.
This is basically an electro-acoustic wave in which the iner-
tia is provided by the mass of the cold electron, and the
restoring force comes from the pressure of the hot electrons.
The ions play the role of a neutralizing background, i.e.,
the ion dynamics does not influence the EA waves, since
the EA wave frequency is much larger than the ion plasma
frequency. The propagation of the EA waves has received
a great deal of renewed interest, not only because the two
electron temperature plasma is very common in laboratory
experiments [2–6] and in space [7–12], but also because
of the potential importance of the EA waves in interpret-
ing electrostatic component of the broadband electrostatic
noise (BEN) observed in the cusp of the terrestrial magne-
tosphere [13], in the geomagnetic tail [14], in white dwarfs
and neutron stars [15], etc.

In the present days, there is a great deal of interest in
understanding the basic properties of matter under extreme
conditions [16–23]. A white dwarf is an example of mat-
ter under extreme condition. In a white dwarf, the matter
compresses to an enormous density (one cubic meter of
material from a white dwarf core weighs about one billion
tonnes). The core is also very hot as it was once the active
core of a star, but is now exposed to outer space and will
slowly cool over billions of years, as it no longer burns
fuel by nuclear fusion to generate heat. The material inside
the white dwarf is rather like a very dense gaseous metal,
initially, with electrons tripped from the nuclei and nuclei
vibrating due to their thermal energy. When this happens,
the white dwarf will contract slightly, until the electrons
are squeezed together as tightly as quantum mechanics will
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allow. At this point, the gas of electrons which permeates the
solid ion lattice becomes a degenerate electron gas (which
although extremely hot behaves as if it was cold). This
is a purely (and somewhat mysterious) quantum mechani-
cal phenomenon, but the degeneracy pressure produced by
these tightly packed electrons stops the core from collaps-
ing under its own gravity. In case of such a compact object,
the degenerate electron number density is so high (in white
dwarfs it can be of the order of 1030 cm−3, even more)
[24–27] that the electron Fermi energy is comparable to the
electron mass energy and the electron speed is comparable
to the speed of light in a vacuum. Chandrasekhar [16, 17]
presented a general expression for the relativistic ion and
electron pressures in his classical papers. The pressure for
cold electron fluid can be given by the following equation

Pc = Kcn
α
c , (1)

where nc is the cold electron number density and
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for the non-relativistic limit (where Λc = π�/mc = 1.2 ×
10−10 cm, and � is the Planck constant divided by 2π ). And
for hot electron fluids
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for the ultra-relativistic limit [16–18].
There has been an enormous interest in understanding a

quantum plasma physics (i.e., a plasma which has a very
high electron number density in comparison with classical
plasmas where the plasma particle number density is rel-
atively low) because it is a new emerging and a rapidly
growing subfield of plasma physics [28–34]. By considering
a quantum plasma physics, Shukla et al. [32] investigated
the basic properties of EASWs. They derived Kadomtsev-
Petviashvili equation and found that the angular dependence
of the physical quantities and the presence of cold electrons
in a quantum plasma lead to the coexistence of some new
interesting novel solitary structures quite distinctive from
the classical ones. Sah and Manta [33] investigated in a three
component unmagnetized dense quantum plasma consisting
of two distinct groups of electrons and examined numeri-
cally on the profiles of the amplitude and the width of EA
solitary waves. El-Labany et al. [35] considered a quan-
tum plasma system and rigorously investigated the effects of
Bohm potential on the head-on collision between two quan-
tum electron-acoustic solitary waves using the extended
Poincaré-Lighthill-Kuo method.

Recently, Chandra et al. [36, 37] considered both unmag-
netized and magnetized relativistic quantum plasma and

rigorously investigated the basic properties of solitary exci-
tations by using the quantum hydrodynamic model. The
formation of electrostatic shocks in a super-dense plasma
composed of relativistically degenerate electrons and fully
ionized ions is theoretically investigated by Eliasson and
Shukla [38]. Masood and Eliasson [39] considered a model
for nonlinear ion waves in an unmagnetized plasma with
relativistically degenerate electrons and cold fluid ions and
studied the properties of localized ion acoustic solitons for
parameters relevant for dense astrophysical objects such
as white dwarf stars. By using a Sagdeev pseudo-potential
method, the propagation of nonlinear ion waves in relativis-
tically degenerate electron-ion plasmas has been investi-
gated theoretically by Akbari-Moghanjoughi [40]. He found
that the electron relativistic degeneracy parameter has sig-
nificant effects on nonlinear wave dynamics in superdense
degenerate plasmas such as those encountered in white
dwarfs and the cores of massive planets.

Moreover, quantum EA solitary wave (QEASWs) repre-
sents one of the most important aspects of nonlinear waves
in modern quantum plasma researches. The QEASWs can
exist in a quantum plasma consisting of two different
types of electrons (i.e., hot and cold electrons). Typi-
cally, QEASWs are high frequency in comparison with the
quantum ion plasma frequency. It is important to mention
here that in quantum plasmas, two population electrons,
i.e., densely and sparsely populated electrons, can exist
because, according to the Fermi gas model, Fermi tem-
perature is directly related to number density of fermionic
particles. In astrophysical dense compact objects, the elec-
tron Fermi temperature is usually greater than the electron
thermal temperature. Therefore, plasma becomes degen-
erate and quantum mechanical effects can no longer be
ignored. Elwakil et al. [41] considered a four-component
relativistic degenerate plasma whose constituents are cold
relativistic electron fluid, non-thermal hot electrons obey-
ing a non-thermal distribution, a relativistic electron beam,
and stationary ions, and studied the nonlinear characteris-
tics of EASWs. Sahu and Roychoudhurya [42] derived the
exact Sagdeev pseudopotential for EAWs in a two elec-
tron temperature plasma (cold and hot electrons) in the
presence of relativistic electron beam plasma using a vortex-
like distribution for trapped electrons. All of the authors
did not consider the effects of relativistic limits (i.e., both
non-relativistic and ultra-relativistic) and degenerate plasma
pressure which can significantly modify the propagation of
solitary and shock waves. As far as we know, no theoretical
investigation has been made to study the extreme condi-
tions of matter for both non-relativistic and ultra-relativistic
limits, and considering the effects of relativistic parame-
ter and degenerate pressure in a one-dimensional EA mode.
Therefore, in our present work, we attempt to study the
basic features of EASWs by deriving the Korteweg-de Vries
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equation in a degenerate quantum plasma containing degen-
erate cold and hot electrons and static positive ion fluids.

2 Governing Equations

We consider a nonlinear propagation of EA waves in an
unmagnetized, collisionless, homogeneous dense plasma
system. The plasma system is assumed to be composed of
non-relativistic inertial cold electrons, both non-relativistic
and ultra-relativistic degenerate hot electron fluids, and
static positive ions. Thus at equilibrium, we have ni0 =
nc0 + nh0, where ns0 is the equilibrium number density of
the species s (s = c, h, i for cold electrons, hot electrons,
positive ions, respectively). The nonlinear dynamics of the
electrostatic waves propagating in such a degenerate quan-
tum plasma system is governed by the following normalized
equations

∂ns

∂t
+ ∂

∂x
(nsus) = 0, (5)

∂uc

∂t
+ uc

∂uc

∂x
− ∂φ

∂x
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∂nα
c
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γ

h

∂x
= 0, (7)

∂2φ

∂x2
= −ρ, (8)

ρ = μ − nc − (μ − 1)nh, (9)

where ns (s=c, h, i) is the plasma species number den-
sity normalized by its equilibrium value ns0, us is the
plasma fluid speed normalized by Cc = (mhc

2/mc)
1/2

with mh and mc being the hot electron and the cold elec-
tron masses, c is the speed of light in vacuum, φ is the
electrostatic wave potential normalized by mhc

2/e. Here,
μ (= ni0/nc0) is the ratio of ion-to-cold electron num-
ber density. The time variable (t) is normalized by ωpi =(
4πnc0e

2/mc
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γ−1
h0 Ke/mhc

2.

3 Derivation of K-dV Equation

Now, we derive K-dV equation by employing the reductive
perturbation technique in order to examine the characteris-
tics of the electrostatic solitary waves propagating in a dense
plasma system. We introduce the stretched coordinates
[43, 44] as follows:

ξ = −ε1/2(x + Vpt), τ = ε3/2t, (10)

where Vp is the wave phase speed (ω/k with ω being the
angular frequency and k being the wave number), and ε is a

smallness parameter measuring the weakness of the disper-
sion (0 < ε < 1). We then expand the parameters nc, nh,
uc, φ, and ρ in power series of ε as:

nc = 1 + εn(1)
c + ε2n(2)

c + · · · , (11)

nh = 1 + εn
(1)
h + ε2n

(2)
h + · · · , (12)

uc = εu(1)
c + ε2u(2)

c + · · · , (13)

φ = εφ(1) + ε2φ(2) + · · · , (14)

ρ = ερ(1) + ε2ρ(2) + · · · , (15)

Now, expressing (5–9) (using (10), in terms of ξ and
τ , and substituting (11–15), one can easily develop differ-
ent sets of equations in various powers of ε. To the lowest
order in ε, we have: u
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where K ′
1 = αK1 and K ′

2 = γK2. The relation Vp =√
K ′

2
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1 represents the dispersion relation as well as

the phase speed for the EA type electrostatic waves in the
degenerate quantum plasma under consideration.

To the next higher order in ε, we obtain a set of equations
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Now, combining Eqs. (16–20), we deduce Korteweg-de
Vries (K-dV) equation
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4 Numerical Analysis

Our aim is now to numerically analyze the K-dV equation.
However, for clear understanding, we first briefly discuss
the stationary solitary wave solution for (21). The station-
ary solitary wave solution of standard K-dV equation is
obtained by considering a frame ζ = ξ − u0τ (u0 is the
small increment of wave speed above sound speed) and the
solution is,

φ(1) = φmsech2(ξ/�), (24)

where the amplitude, φm = 3u0/A, and the width, Δ =
(4B/u0)

1/2.
The conditions for the existence of one-dimensional

solitary waves, and their basic features are found to be
significantly modified in the presence of non-relativistic
cold electrons, both non-relativistic and ultra-relativistic
hot electrons and positively charged static ions. The EA
waves are seen to be modified when ions are non-relativistic
degenerate (α = 5/3) and electrons are ultra-relativistic
degenerate (γ = 4/3), compared to when electrons and ions
are non-relativistic degenerate (α = γ = 5/3). It is impor-
tant to mention that our present work deals with the proper-
ties of one-dimensional EASWs in a relativistic degenerate
quantum plasma (containing degenerate cold electron and
hot electron fluids, and positively charged static ions), and
that we have derived the K-dV equation. We have then ana-
lyzed the basic features of the one-dimensional EASWs. It
is also important to note that for μ > μc (μc = 0.89),
rarefactive solitary waves are found but no compressive soli-
tary waves exist at μ < μc. We have considered u0 = 0.01
for our numerical analysis of EASWs for the plasma system
under investigation here.

Figure 1 shows the variation of phase speed (VP ) with
ion to cold electron number density ratio μ. It is found
that the phase speed decreases with the increasing values
of μ. It is expected as the phase speed Vp (derived from

Fig. 1 Showing the variation of phase speed Vp with ion-to-cold elec-
tron number density ratio μ for u0 = 0.01. The dashed blue line
represents the ultra-relativistic case and the red one represents the
non-relativistic case (color online)

Fig. 2 Showing the variation of amplitude of EASWs. The dashed
blue line represents the ultra-relativistic case and the red one represents
the non-relativistic case (color online)

Fig. 3 Showing the variation of the amplitude of the EA rarefactive
solitary waves with μ when both cold electrons and hot electrons are
non-relativistic degenerate (color online)

Fig. 4 Showing the variation of the amplitude of the EA rarefac-
tive solitary waves with μ when cold electrons are non-relativistic
degenerate and hot electrons are ultra-relativistic degenerate
(color online)

Fig. 5 Showing the variation of the amplitude of the EA rarefactive
solitary waves with u0 when both cold electrons and hot electrons are
non-relativistic degenerate (color online)
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Fig. 6 Showing the variation of the amplitude of the EA rarefac-
tive solitary waves with u0 when cold electrons are non-relativistic
degenerate and hot electrons are ultra-relativistic degenerate (color
online)

this considered plasma) is higher for lower values of μ (see
the expression of Vp in Section 3). The variation of the
amplitude of EASWs for both non-relativistic and ultra-
relativistic limits is shown in Fig. 2. Figures 3, 4, 5, 6, 7,
and 8 shows the variation of amplitude with μ, u0, and Δ

for both non-relativistic and ultra-relativistic limits.

5 Discussion and Results

We have studied the nonlinear propagation of EASWs in
an unmagnetized, collisionless dense plasma (containing
non-relativistic or ultra-relativistic degenerate hot electrons,
non-relativistic degenerate cold electrons, and positively
charged static ions). The degenerate pressure is provided by
the hot electrons whereas the inertia is provided by the cold
electrons. The positively charged static ions participate only
in maintaining the quasi-neutrality condition at equilibrium.
We derived a nonlinear K-dV equation and numerically
analyzed the basic features of EASWs in a degenerate quan-
tum plasma. Finally, the results that we have found in this
investigation can be summarized as follows:

1. The basic properties (speed, amplitude, and width) of
EASWs are found to be significantly modified due to

Fig. 7 Showing the variation of the amplitude of the EA rarefactive
solitary waves with Δ when both cold electrons and hot electrons are
non-relativistic degenerate (color online)

Fig. 8 Showing the variation of the amplitude of the EA rarefac-
tive solitary waves with Δ when cold electrons are non-relativistic
degenerate and hot electrons are ultra-relativistic degenerate (color
online)

the relativistic parameters and plasma particle number
densities.

2. We observed that the plasma system under consid-
eration supports only rarefactive solitary waves with
negative potential, but no compressive solitary waves
exist.

3. The phase speed (Vp) of EASWs decreases with the
increasing values of μ (see Figs. 1).

4. The amplitude of EA rarefactive solitary waves
increases with the increasing values of μ, u0, and � (see
Figs. 3, 4, 5, 6, 7, and 8).

5. We also compare the non-relativistic and ultra-
relativistic limits in Figs. 3, 4, 5, 6, 7, and 8. We found
that the magnitude of the amplitude of the EA rarefac-
tive solitary waves is lower for ultra-relativistic case
than for non-relativistic case.

To conclude, the results of the present investigation
should be useful in understanding the salient features of
localized EA excitation in dense (degenerate) plasmas
[7–12, 45–48] as well as laboratory devices [2–6] where the
degenerate plasma pressure and relativistic effect are taken
into account.
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