
Braz J Phys (2015) 45:120–131
DOI 10.1007/s13538-014-0292-9

GENERAL AND APPLIED PHYSICS

Invariant Solutions for the Unsteady
Magnetohydrodynamics (MHD) Flow of a Fourth-Grade
Fluid Induced Due to the Impulsive Motion of a Flat
Porous Plate

Taha Aziz · A. B. Magan · F. M. Mahomed

Received: 7 November 2014 / Revised: 29 November 2014 / Accepted: 3 December 2014 / Published online: 18 December 2014
© Sociedade Brasileira de Fı́sica 2014

Abstract An analysis is carried out to study the time-
dependent flow of an incompressible electrically conducting
fourth-grade fluid over an infinite porous plate. The flow
is caused by the motion of the porous plate in its own
plane with an impulsive velocity V (t). The governing non-
linear problem is solved by invoking the Lie group theoretic
approach and a numerical technique. Travelling wave solu-
tions of the forward and backward type, together with
a steady state solution, form the basis of our analytical
analysis. Further, the closed-form solutions are also com-
pared against numerical results. The essential features of the
embedded parameters are described. In particular, the phys-
ical significance of the plate suction/injection and magnetic
field is studied.

Keywords Fourth-grade fluid · Lie symmetry approach ·
MHD flow · Travelling wave solutions · Porous plate

1 Introduction

The scientific appeal of non-Newtonian fluid mechanics
has advocated a deeper study of its theory. There has been
substantial interest in the steady and unsteady flows of non-
Newtonian fluids over the last few decades. One reason for
this interest is the wide variety of applications of such flows,
both natural and industrial. These applications range from
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the extraction of crude oil from petroleum products to the
polymer industry. Spin coating is a classic example where
the coating fluids are typically non-Newtonian. The non-
Newtonian fluid models exhibit a nonlinear stress-strain
relation or have a non-zero yield stress. Unlike Newtonian
fluids, non-Newtonian fluids, in view of their diversity in
nature, cannot have a single constitutive relation. One of the
widely accepted models amongst non-Newtonian fluids is
the class of Rivlin-Eriksen fluids [1]. Rivlin-Eriksen fluids
have secured special attention in order to describe the sev-
eral non-standard features of non-Newtonian fluids such as
shear thickening, shear thinning and normal stress effects.

Due to the complex physical structure of non-Newtonian
fluids, these fluids are classified according to the prop-
erties which characterise them. Literature surveys witness
that much focus has been given to the flow problems of
a second-grade fluid [2–4]. A second-grade fluid model,
despite its simplicity, has drawbacks in that although it can
predict the normal stress differences, it fails to recognise
the shear thinning and shear thickening properties if the
shear viscosity is assumed to be a constant. This impediment
is remedied by the third-grade fluid [5–8] and the fourth-
grade fluid models. Very little attention has been given in
literature to the studies related to the fourth-grade fluid
model [9, 10]. Currently, only the fourth-grade fluid seems
to define the properties of non-Newtonian flow phenom-
ena most generally. The fourth-grade fluid model is known
to capture the interesting non-Newtonian flow properties
such as shear thinning and shear thickening that many other
non-Newtonian models do not exhibit. This model is also
capable of describing the normal stress effects that lead to
phenomena like “die-swell” and “rod-climbing” [11]. With
these facts in mind, we have considered a fourth-grade fluid
model in this study. In general, the governing equations of
the problems dealing with the flow of fourth-grade fluids are
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higher order, nonlinear and complicated equations. Litera-
ture survey witness that limited studies have been reported,
up to now, dealing with the flow problems of a fourth-grade
fluid. These studies further narrows down when we speak
about closed form solutions of these problems. However,
some useful and interesting investigations in this direction
are provided in the studies [12–17].

Recently, the study of the motion on non-Newtonian
fluids in the presence of a magnetic field has received spe-
cial attention because of its wide range of applications.
A few examples are flows of nuclear fuel slurries, flow
of plasma, flow of mercury amalgams, flow of biological
fluids, flow of plastic extrusion and the flow of lubrica-
tion with heavy oils [18]. Another very important field
of application for non-Newtonian magnetohydrodynamics
(MHD) flows is electromagnetic propulsion [7]. An elec-
tromagnetic propulsion consists of a power source such
as a nuclear reactor, a plasma and a tube through which
the plasma is accelerated by applying the magnetic force.
The study of such problems which deal with the flow of
non-Newtonian fluids in the presence of a magnetic field
requires complete understanding of the equation of state
and other fluid properties such as stress-strain relation-
ships, electrical conductivity and radiation. Some of these
properties will be influenced by the presence of an exter-
nal magnetic field. With these applications in mind, in
this study, an electrically conducting non-Newtonian fluid
under the effects of an external uniform magnetic field is
analysed.

Flows induced by the arbitrary motion of a plate has
attracted the attention of many researchers with respect to
Newtonian fluids and various non-Newtonian fluids [19–
24], especially the flow of non-Newtonian fluids over a flat
moving porous plate, which is found in various engineer-
ing applications. For example, the injection moulding of
plastic parts is the common example. In our investigation,
we firstly employ a no-slip condition at the moving porous
plate. The no-slip boundary condition is widely used for
the flow problems involving Newtonian and non-Newtonian
fluids past solid boundaries and has proved to be highly use-
ful for a great variety of flow problems. Some investigations
on no-slip conditions have been performed in [25–28].

Keeping in mind the above-mentioned analysis, the
present study deals with the time-dependent flow of a
fourth-grade fluid induced due to impulsive motion of a
flat porous plate in the presence of a uniform magnetic
field. Our investigation is fairly general since the motion
of the fourth-grade fluid, the influence of the applied mag-
netic field and the suction/injection velocity of the porous
plate have been discussed together. The governing model

has been solved exactly by employing the Lie symmetry
approach [29, 30] and using a numerical technique. Fur-
ther, the influence of the various emerging parameters of the
flow model is discussed through graphical analysis of the
obtained results.

2 Mathematical Modelling

In formulating the model equations, we consider a Carte-
sian frame of reference Oxyz. An unsteady, incompressible
and electrically conducting fourth-grade fluid occupies the
region y > 0. At y = 0, the fluid is bounded by an infi-
nite porous plate. The unsteady incompressible motion of
the electrically conducting non-Newtonian fluid is governed
by:

ρ
dV̄

dt
= divT + J̄ × B̄, (1)

divV̄ = 0, (2)

where ρ is the fluid density, d/dt the material time deriva-
tive, T the Cauchy stress tensor and V̄ = (u, v, w) the
velocity vector. The current density is given by J̄ and B̄ and
gives the total magnetic field such that B̄ = B̄0 + b̄,
where B̄0 is the applied magnetic field and b̄ is the induced
magnetic field.

In the present analysis, the fluid is electrically conduct-
ing, and there is an applied magnetic field in the normal
direction to the flow. In the low magnetic Reynolds num-
ber flow, the induced electric and magnetic field can be
neglected and thus the magnetic force J̄ × B̄ becomes

J̄ × B̄ = σ(V̄ × B̄0) × B̄0 = − σB2
0 V̄ , (3)

where σ is the electrical conductivity of the fluid.
The material time derivative d/dt is defined as:

d

dt
= ∂

∂t
+ (V̄ · ∇). (4)

For the model under investigation, we consider a velocity
field of the form

V̄ = [u(y, t), −W0, 0], (5)

where u(y, t) is the velocity field in the x-direction and W0

corresponds to either suction or injection. For W0 > 0, we
have suction velocity and for W0 < 0, we have injection
velocity. The suction or injection is independent of both the
time and spatial derivatives.
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The Cauchy stress tensor T for a fourth-grade fluid is
given by [9]

T = − pI +
n∑

j=1

Sj , (6)

where p is the pressure, I is the identity tensor and Sj is the
extra stress tensor. The components of Sj are given as:

S1 = μA1, (7)

S2 = α1A2 + α2A2
1, (8)

S3 = β1A3 + β2(A1A2 + A2A1) + β3(trA2
1)A1, (9)

S4 = γ1A4 + γ2(A3A1 + A1A3) + γ3A2
2 + γ4(A2A2

1 + A2
1A2)

+γ5(trA2)A2 + γ6(trA2)A2
1 + (γ7trA3 + γ8tr(A2A1)A1).

(10)

In the above equations, μ is the dynamic viscosity and
αi(i = 1, 2), βk(k = 1, 2, 3) and γl(l = 1, . . . , 8) are
the material parameters. The Rivlin-Ericksen tensors, also
known as kinematic tensors, are

A1 = (∇V) + (∇V)T , (11)

An = d

dt
An−1 + An−1(∇V) + (∇V)T An−1, (n > 1),

(12)

where ∇ is the gradient operator. The continuity equation is
identically satisfied using (5). Further, we substitute (5) into
(1) to obtain the set of motion equations

ρ
du

dt
= ∂Txx

∂x
+ ∂Txy

∂y
+ ∂Txz

∂z
− σB2

0u, (13)

0 = ∂Tyx

∂x
+ ∂Tyy

∂y
+ ∂Tyz

∂z
, (14)

0 = ∂Tzx

∂x
+ ∂Tzy

∂y
+ ∂Tzz

∂z
. (15)

The substitution of (4) into (7–10) yields the components
of the

Txx = −p + α2

(
∂u

∂y

)2

+ 2β2

(
∂u

∂y

∂2u

∂y∂t
− W0

∂u

∂y

∂2u

∂y2

)

+2γ2

(
∂u

∂y

∂3u

∂y∂t2
− 2W0

∂u

∂y

∂3u

∂y2∂t
+ W 2

0
∂u

∂y

∂3u

∂y3

)

+γ3

[(
∂2u

∂y∂t

)2

− 2W0
∂2u

∂y2

∂2u

∂y∂t
+ W 2

0

(
∂2u

∂y2

)2]

+2γ6

(
∂u

∂y

)4

,

(16)

Txy = Tyx = α1

(
∂2u

∂y∂t
− W0

∂2u

∂y2

)

+β1

(
∂3u

∂y∂t2
− 2W0

∂3u

∂y2∂t
+ W 2

0
∂3u

∂y3

)

+2(β2 + β3)

(
∂u

∂y

)3

+γ1

(
∂4u

∂y∂t3
− 3W0

∂4u

∂y2∂t2
+ 3W 2

0
∂4u

∂y3∂t
− W 3

0
∂4u

∂y4

)

+μ
∂u

∂y
+ 2(3γ2 + γ3 + γ4 + γ5 + 3γ7 + γ8)

(
∂u

∂y

)2
∂2u

∂y∂t

−2(3γ2 + γ3 + γ4 + γ5 + 3γ7 + γ8)

(
∂u

∂y

)2

W0
∂2u

∂y2
,

(17)

Txz = Tzx = 0, (18)

Tyy = −p + 2α1

(
∂u

∂y

)2

+ α2

(
∂u

∂y

)2

+ 6β1

(
∂u

∂y

∂2u

∂y∂t
− W0

∂u

∂y

∂2u

∂y2

)

+2β2

(
∂u

∂y

∂2u

∂y∂t
− W0

∂u

∂y

∂2u

∂y2

)
+ 4γ4

(
∂u

∂y

)4

+ 4γ5

(
∂u

∂y

)4

+γ3

⎡

⎣
(

∂2u

∂y∂t

)2

− 2W0
∂2u

∂y2

∂2u

∂y∂t
+ W 2

0

(
∂2u

∂y2

)2

+ 4
(

∂u

∂y

)4
⎤

⎦

+2γ2

(
∂u

∂y

∂3u

∂y∂t2
− 2W0

∂u

∂y

∂3u

∂y2∂t
+ W 2

0
∂u

∂y

∂3u

∂y3

)

+2γ6

(
∂u

∂y

)4

+ γ1

⎡

⎣6

(
∂2u

∂y∂t

)2

+ 8
∂u

∂y

∂3u

∂y∂t2
− 12W0

∂2u

∂y∂t

∂2u

∂y2

+ 6W 2
0

(
∂2u

∂y

)2

+ 8W 2
0

∂u

∂y

∂3u

∂y3 − 16W0
∂u

∂y

∂3u

∂t∂y2

⎤

⎦ , (19)

Tyz = Tzy = 0, (20)

Tzz = −p. (21)
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Making use of (16)–(21) and substituting into (13), the
x-component of the governing equation is given by

ρ

(
∂u

∂t
− W0

∂u

∂y

)
= − ∂p

∂x
+ α1

(
∂3u

∂y2∂t
− W0

∂3u

∂y3

)

+β1

(
∂4u

∂y2∂t2
− 2W0

∂4u

∂y3∂t
+ W 2

0
∂4u

∂y4

)

+6(β2 + β3)

(
∂u

∂y

)2 ∂2u

∂y2

+γ1

(
∂5u

∂y2∂t3
− 3W0

∂5u

∂y3∂t2

+3W 2
0

∂5u

∂y4∂t
− W 3

0
∂5u

∂y5

)

+μ
∂2u

∂y2
+ 2(3γ2 + γ3 + γ4 + γ5 + 3γ7 + γ8)

∂

∂y

×
[(

∂u

∂y

)2 ∂2u

∂y∂t

]

−2(3γ2 + γ3 + γ4 + γ5 + 3γ7 + γ8)W0
∂

∂y

×
[(

∂u

∂y

)2 ∂2u

∂y2

]
− σB2

0u. (22)

Substituting (16–21) into (14), the y-component the
equation of motion is given by

−∂p

∂y
+ 4α1

(
∂u

∂y

)
∂2u

∂y2
+ 2α2

(
∂u

∂y

)
∂2u

∂y2

+6β1

[
∂2u

∂y2

∂2u

∂y∂t
+ ∂u

∂y

∂3u

∂y2∂t
− W0

(
∂2u

∂y2

∂2u

∂y2
+ ∂u

∂y

∂3u

∂y3

)]

+2β2

[
∂2u

∂y2

∂2u

∂y∂t
+ ∂u

∂y

∂3u

∂y2∂t
− W0

(
∂2u

∂y2

∂2u

∂y2
+ ∂u

∂y

∂3u

∂y3

)]

+γ1

[
12

(
∂2u

∂t∂y

)
∂3u

∂t∂y2
+ 8

(
∂2u

∂y2

∂3u

∂y∂t2
+ ∂u

∂y

∂4u

∂y2∂t2

)

− 12W0

(
∂3u

∂t∂y2

∂2u

∂y2
+ ∂2u

∂t∂y

∂3u

∂y3

)

−16W0

(
∂2u

∂y2

∂3u

∂t∂y2
+ ∂u

∂t

∂4u

∂t∂y3

)
+ 12W 2

0
∂2u

∂y2

∂3u

∂y3

+ 8W 2
0

(
∂2u

∂y2

∂3u

∂y3
+ ∂u

∂y

∂4u

∂y4

)]

+2γ2

[
∂2u

∂y2

∂3u

∂y∂t2
+ ∂u

∂y

∂4u

∂y2∂t2

−2W0

(
∂2u

∂y2

∂3u

∂y2∂t
+ ∂u

∂y

∂4u

∂y3∂t

)

+ W 2
0

(
∂2u

∂y2

∂3u

∂y3
+ ∂u

∂y

∂4u

∂y4

)]

+16γ4

(
∂u

∂y

)3
∂2u

∂y2
+ 16γ5

(
∂u

∂y

)3
∂2u

∂y2

(23)

+γ3

[
2

∂2u

∂y∂t

∂3u

∂y2∂t
− 2W0

(
∂3u

∂y3

∂2u

∂y∂t
+ ∂2u

∂y2

∂3u

∂y2∂t

)

+ 2W 2
0

∂2u

∂y2

∂3u

∂y3 + 16

(
∂u

∂y

)3
∂2u

∂y2

]

+8γ6

(
∂u

∂y

)3
∂2u

∂y2
= 0. (24)

Inserting (16–21) into (15), the z-component of the equation
of motion is

−∂p

∂z
= 0. (25)

Considering p̂ = −Tyy and p̂ = −Tzz, we have

∂p̂

∂y
= ∂p̂

∂z
= 0. (26)

Thus, the y-component and the z-component of the equa-
tion of motion can be solved to show that p̂ is a function
independent of y and z and simply a function of x and t . For
the purposes of this study, we neglect the effects of modi-
fied pressure gradient. As a result of this, the x-component
the equation of motion (22) reduces to

ρ

(
∂u

∂t
− W0

∂u

∂y

)
= α1

(
∂3u

∂y2∂t
− W0

∂3u

∂y3

)

+β1

(
∂4u

∂y2∂t2
− 2W0

∂4u

∂y3∂t
+ W 2

0
∂4u

∂y4

)

+6(β2 + β3)

(
∂u

∂y

)2
∂2u

∂y2

+γ1

(
∂5u

∂y2∂t3
− 3W0

∂5u

∂y3∂t2

+ 3W 2
0

∂5u

∂y4∂t
− W 3

0
∂5u

∂y5

)

+ μ
∂2u

∂y2
+ 2(3γ2 + γ3 + γ4 + γ5 + 3γ7 + γ8)

∂

∂y

×
[(

∂u

∂y

)2
∂2u

∂y∂t

]

− 2(3γ2 + γ3 + γ4 + γ5 + 3γ7 + γ8)W0
∂

∂y

×
[(

∂u

∂y

)2
∂2u

∂y2

]
− σB2

0 u. (27)

The relevant initial and boundary conditions are:

u(0, t) = U0V (t), t > 0, (28)

u(∞, t) = 0, t > 0, (29)

u(0, y) = F(y), y > 0, (30)
∂u

∂t
(0, y) = G(y), y > 0, (31)

∂2u

∂t2 (0, y) = H(y), y > 0, (32)
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where U0 is the reference velocity and V (t), F (y), G(y)

and H(y) are functions to be determined from further con-
ditions. The first boundary condition (28) indicates that the
plate is moving with an impulsive velocity V (t), also known
as the no-slip condition. The second boundary condition
(29) shows that the mainstream velocity is zero as the fluid
to be considered is at rest far away from the plate. The ini-
tial condition (30) indicates that initially, the fluid is moving
with some non-uniform velocity F(y). The remaining two
initial conditions, (31) and (32), are the extra two conditions
imposed to make the problem well posed.

We define the transformations as

ū = u

U0
, ȳ = U0y

ν
, t̄ = U2

0 t

ν
, W̄0 = W0

U0
. (33)

Making use of (33) and substituting it into (27), the govern-
ing equation in a non-dimensional form is written as

∂ū

∂t̄
= W̄0

∂ū

∂ȳ
+ ∂2ū

∂ȳ2
+ ᾱ1

(
∂3ū

∂ȳ2∂t̄
− W̄0

∂3ū

∂ȳ3

)
(34)

+β̄1

(
∂4ū

∂ȳ2∂t̄2
− 2W0

∂4ū

∂ȳ3∂t̄
+ W̄ 2

0
∂4ū

∂ȳ4

)
+ β̄

(
∂ū

∂ȳ

)2
∂2ū

∂ȳ2

+γ̄

(
∂5ū

∂ȳ2∂t̄3
− 3W̄0

∂5ū

∂ȳ3∂t̄2
+ 3W̄ 2

0
∂5ū

∂ȳ4∂t̄
− W̄ 3

0
∂5ū

∂ȳ5

)

+2	̄
∂

∂ȳ

[(
∂ū

∂ȳ

)2
∂2ū

∂ȳ∂ t̄

]
− 2	̄W̄0

∂

∂ȳ

[(
∂ū

∂ȳ

)2
∂2ū

∂ȳ2

]
− M̄2ū.

The dimensionless boundary and initial conditions are:

ū(0, t̄) = V̄ (t̄ ), t > 0, (35)

ū(∞, t̄ ) = 0, t > 0, (36)

ū(0, ȳ) = f̄ (ȳ), y > 0, (37)
∂ū

∂t̄
(ȳ, 0) = ḡ(ȳ), y > 0, (38)

∂2ū

∂ t̄2
(ȳ, 0) = h̄(ȳ), y > 0, (39)

where

ᾱ1 = α1U
2
0

ρν2
, β̄1 = β1U

4
0

ρν3
, β̄ = 6(β2 + β3)

U4
0

ρν3
, γ̄ = γ1U

6
0

ρν4
,

	̄ = (3γ2 + γ3 + γ4 + γ5 + 3γ7 + γ8)
U6

0

ρν4
, M̄2 = σB2

0ν

ρU2
0

, (40)

and

f̄ (y) = F(y)

U0
, ḡ(y) = G(y)

U0
and h̄(y) = H(y)

U0
.

(41)

The functions V̄ (t̄), f̄ (ȳ), ḡ(ȳ) and h̄(ȳ) are arbitrary. For
simplicity we neglect the bars from all the non-dimensional
quantities in the further analysis.

Remark 1 By performing the classical Lie group analysis,
[28, 29] the infinitesimals for the partial differential (34) are

ξ1 = c1, ξ2 = c2, η = 0, (42)

where c1 and c2 are constants.

The corresponding Lie point symmetry generators are

X1 = ∂

∂t
and X2 = ∂

∂y
, (43)

where X1 is the time-translational symmetry generator and
X2 is the space-translational symmetry generator.

3 Invariant Solutions of the Problem

In this section, we present different types of group invariant
solutions of the initial boundary value problem (34)–(39)
with the aid of the Lie group translation operator.

3.1 Travelling Wave Solutions

Travelling wave solutions are one of a special kind of group
invariant solutions which remain invariant under a linear
combination of time-translational and space-translational
symmetry generators. It is already easily seen that the par-
tial differential (34) admits the Lie symmetry generators
∂/∂t (time translation) and ∂/∂y (space translation in y).
Therefore, we can develop travelling wave solutions for the
modelled non-linear partial differential equation.

3.1.1 Backward Type

We search for the invariant solution under the operator

X = X1 − mX2, m > 0, (44)

which represents a backward wave-front type travelling
wave solution. In this case, the waves are propagating
towards the plate with a constant wave speed m.

By solving the differential equations of the characteris-
tic curves corresponding to the operator (44), we find the
invariant solution of the form

u(y, t) = P(ξ), where ξ = y + mt. (45)
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With the substitution of (45) into (34) the partial dif-
ferential equation is transformed into a fifth-order ordinary
differential equation for P(ξ), viz.

m
dP

dξ
= W0

dP

dξ
+ d2P

dξ 2 + α1

[
m

d3P

dξ 3 − W0
d3P

dξ 3

]

+β1

[
m2 d4P

dx4
− 2W0m

d4P

dx4
+ W 2

0
d4P

dξ 4

]

+β

(
dP

dξ

)2
d2P

dξ 2

+γ

[
m3 d5P

dξ 5
− 3W0m

2 d5P

dξ 5
+ 3W 2

0 m
d5P

dξ 5
− W 3

0
d5P

dξ 5

]

+2	
d

dξ

[
m

(
dP

dξ

)2
d2P

dξ 2

]
− 2	W0

d

dξ

[(
dP

dξ

)2
d2P

dξ 2

]

−M2P. (46)

Thus, the partial differential (34) is transformed into an
ordinary differential (46) along certain curves in the y–t

plane.
In order to solve the ordinary differential (46) for P(ξ),

we assume a solution of the form

P(ξ) = A exp(Bξ), with A and B �= 0, (47)

where A and B are constants to be determined. Substituting
(47) into (46) yields

e0W0B − e0mB + e0B2 + e0α1mB3 − e0α1W0B
3

+e0β1m
2B4 − 2e0W0B

4β1m

+e0β1W
2
0 B4 + e2BξβB4 + e0γm3B5 − 3e0γm2W0B

5

+3e0γmW 2
0 B5 − e0γW 3

0 B5

+4e2Bξ	mB5 + 2e2Bξ	mB5 − 4e2Bξ	W0B
5

−2e2Bξ	W0B
5 − e0M2 = 0. (48)

Separating (48) in powers of e0 and e2Bξ results in

e0 : W0B − mB + B2 + α1mB3 − α1W0B
3

+ β1m
2B4 − 2W0B

4β1m

+ β1W
2
0 B4γm3B5 − 3γm2W0B

5 + 3γmW 2
0 B5

− γW 3
0 B5 − M2 = 0, (49)

e2Bξ : βB4 + 6	mB5 − 6	W0B
5 = 0. (50)

By solving (50), we find

B = −β

6	(m − W0)
. (51)

Making use of the value of B in (49), we deduce

β

6	
+ β2

(6	)2(m − W0)2 − α1β
3

(6	)3(m − W0)2 (52)

+ β1β
4

(6	)4(m − W0)2
− γβ5

(6	)5(m − W0)2
− M2 = 0.

Thus, the exact solution for P(ξ) provided the condition
(52) holds is written as

P(ξ) = A exp

[ −βξ

6	(m − W0)

]
, with m > W0. (53)

Finally, the exact solution u(y, t) which satisfies the condi-
tion (52) is given by

u(y, t) = A exp

[ −β(y + mt)

6	(m − W0)

]
, with m > W0. (54)

Further, by making use of the boundary conditions (35)–
(39), we can deduce the following

V (t) = exp

[ −β(mt)

6	(m − W0)

]
, (55)

f (y) = exp

[ −βy

6	(m − W0)

]
, (56)

g(y) = −βm

6	(m − W0)
f (y), (57)

h(y) = −β2m2

(6	)2(m − W0)2
f (y), (58)

with

A = V (0) = f (0). (59)

The initial velocity V (0) of the porous plate can be pre-
scribed but its velocity V (t) for t > 0, cannot be arbitrary
and its given by (55). Similarly, the initial profile u(y, 0)

cannot be arbitrary and it given by (56).
We note that by making use of the imposing condition

(52), we can express the solution (54) in the form

u(y, t) = exp

[
−

(
M2

(m − W0)
+ γβ5

(6	)5(m − W0)3
(60)

− β1β
4

(6	)4(m − W0)
3

+ αβ3

(6	)3(m − W0)
3 − β2

(6	)2(m − W0)
3

)
(y + mt)

]
.

The solution (60) is plotted in Figs. 1, 2, 3, 4, 5, 6 and 7
for varying values of the emerging parameters of the flow
problem.

Further, the imposing condition (52) can also be written
as

(m − W0)
2 =

(
β

6	

)2
[

1 − α1

(
β

6	

)
+ β1

(
β

6	

)2

− γ

(
β

6	

)3
]

(
M2 − β

6	

) .

(61)

Equation (61) determines the wave speed m provided that

M2 �= β

6	
. (62)
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We note that the range of the values of the parameter β for
which m is real depends on the cubic polynomial in β on the
numerator of (61) and also on the sign of the denominator.

3.1.2 Forward Type

We now find the invariant solution under the operator

X = X1 + mX2, with m > 0, (63)

which represents a forward wave-front type travelling wave
solution. In this case the waves are propagating away from
the plate at a constant speed m. There are solutions of the
form

u(y, t) = Q(η) with η = y − mt. (64)

The use of (64) into (34) results in the fifth-order ordinary
differential equation for Q(η)

− m
dQ

dη
= W0

dQ

dη
+ d2Q

dη2
+ α1

[
−m

d3Q

dη3
− W0

d3Q

dη3

]

+β1

[
m2 d4Q

dη4
+ 2W0m

d4Q

dη4
+ W 2

0
d4Q

dη4

]

+β

[
dQ

dη

]2
d2Q

dη2

+γ

[
−m3 d5Q

dη5
− 3W0m

2 d5Q

dη5
− 3W 2

0 m
d5Q

dη5

− W 3
0

d5Q

dη5

]

+ 2	
d

dη

[
−m

(
dQ

dη

)2
d2Q

dη2

]

−2	W0
d

dη

[(
dQ

dη

)2
d2Q

dη2

]
− M2Q. (65)

Following the same methodology adopted for obtaining
the backward type solution, (65) admits the exact solution
of the form

Q(η) = A exp

[
βη

6	(m + W0)

]
with m > 0. (66)

provided that

β

6	
+ β2

(6	)2(m + W0)2
− αβ3

(6	)3(m + W0)2
(67)

+ β1β
4

(6	)4(m + W0)2
− γβ5

(6	)5(m + W0)2
− M2 = 0.

Thus, the exact solution u(y, t) which satisfies condition
(67) is given by

u(y, t) = exp

[
β(y − mt)

6	(m + W0)

]
, with m > 0. (68)

The solution (68) is a shock wave solution to the governing
partial differential (34). The above solution is valid under a
particular condition on the physical parameters of the flow
problem given in (67). This solution does show the hidden
shock wave behaviour of the flow problem with the slope
of the velocity field or the velocity gradient approaching
infinity such that

∂u

∂y
→ ∞ as y > 0. (69)

The solution (68) does not satisfy the second bound-
ary condition at infinity but does satisfy the rest of the
boundary conditions for particular values of the functions
V (t), f (y), g(y) and h(y). The use of (68) in (35)–(39)
gives

V (t) = exp

[ −β(mt)

6	(m + W0)

]
, (70)

f (y) = exp

[
βy

6	(m + W0)

]
, (71)

g(y) = −βm

6	(m + W0)
f (y), (72)

h(y) = β2m2

(6	)2(m + W0)
2 f (y), (73)

where the functions V (t), f (y), g(y) and h(y) depend on
the physical parameters of the flow problem.

The physical significance of the imposing condition (67)
is that it gives the speed of the travelling shock wave. From
(67), we deduce

(m+W0)
2 =

β

6	

[
1 − α1

(
β

6	

)
+ β1

(
β

6	

)2

− γ

(
β

6	

)3
]

(
M2 − β

6	

) , (74)
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with
(

M2 − β

6	

)
�= 0. (75)

The shock wave behaviour of solution (68) is observed in
Fig. 8.

3.1.3 Steady State Solution

The time translational symmetry generator is given by

X1 = ∂

∂t
. (76)

The invariant solution is obtained by solving the corre-
sponding differential equations of characteristic curves and
is given by

u = R; R = R(y). (77)

Substituting (77) into (34), the partial differential equation
reduces to the following ordinary differential equation

W0
dR

dy
+ d2R

dy2
− α1W0

d3R

dy3
+ β1W

2
0

d4R

dy4
+ β

(
dR

dy

)2
d2R

dy2
(78)

−γW 3
0

d5R

dy5
− 2	W0

d

dy

[(
dR

dy

)2
d2R

dy2

]
− M2R = 0.

The invariant boundary conditions are given by

R(0) = l1, where l1 is a constant, (79)

lim
y→∞ Rn(y) = 0, n = 0, 1, 2, 3. (80)

It can also be seen that (78) admits the exact solution

u = R(y) = exp

(
βy

6	W0

)
, (81)

provided that

β

6	
+ β2

(6	)2(W0)2
− α1β

3

(6	)3(W0)2
+ β1β

4

(6	)4(W0)2
− γβ5

(6	)5(W0)2
−M2 = 0.

(82)

The steady state solution (81) is only valid for injection
(W0 < 0). For the case of suction (W0 > 0), the solution
does not satisfy the second boundary condition at infinity
and places a restriction on the physical parameters. One can
also solve the reduced ordinary differential (78) subject to
the boundary conditions (79)–(80) numerically. These solu-
tions are plotted in Figs. 9 and 10 using the Mathematica�

solver NDSolve.

Remark 2 Finally, we note that further reduction of the
ordinary differential (46) is also possible. The ordinary

differential (46) admits the Lie point generator k = ∂

∂ξ
. The

corresponding invariants of k are

c = p, p′ = n with n = n(c). (83)

Under these invariants, the fifth-order ordinary differ-
ential (46) reduces to a fourth order ordinary differential
equation in n given as

(m − W0)n = dn

dc
+ α1(m − W0)

d2n

dc2
+ β1(m − W0)

2 d3n

dc3
+ βn2 dn

dc

+γ (m − W0)
3 d4n

dc4
+ 2	(m − W0)

[
2n

(
dn

dc

)2

+ n2 d2n

dc2

]

−M2c = 0. (84)

The above ordinary differential (84) does not generate
any Lie point symmetries. Thus, this further reduction is not
helpful in this analysis as difficulties arise when transform-
ing the solutions of the ordinary differential (84) back into
original variables.

4 Results and Discussion

In order to get the physical insight of the flow model under
investigation, the behaviour of various pertinent parameters
on the structure of the velocity field is observed.

The effects of time t on the velocity field (60) is shown
in Fig. 1. This figure shows that the velocity decreases for
large values of time. The variation of velocity is observed
for 0 ≤ t ≤ 4.2. For t > 4.2, the velocity field remains
the same. In other words, we can say that the steady state
behaviour of velocity is achieved for t > 4.2.

The influence of the wave speed m on the velocity field
(60) has been presented in Fig. 2. It is observed that the
velocity increases by increasing m. In this way, we can
remark that both time and wave speed have the opposite
effect on the closed form solution (60) of the model.

The dependence of the distribution of the velocity field
(60) on the magnetic field is shown in Fig. 3. From
the figure, it is observed that the applied magnetic field
tends to restrict the shearing to a thinner boundary layer
near the porous plate. The reason for this thinning is that
the magnetic field provides a resistance to the flow and
hence decreases the velocity field. Thus, the magnetic field
provides some mechanism to control the boundary layer
thickness. These facts have also been observed from Fig. 3.

Figures 4 and 5 describe the behaviour of the velocity
field (60) with suction (W0 > 0) and injection (W0 < 0)

parameters. It is depicted from Fig. 4 that the velocity field,
as well as the boundary layer thickness, decreases with an
increase in the suction parameter W0 > 0. This structure
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of the velocity profile is also expected physically because
suction always causes a reduction in the boundary layer
thickness. Figure 5 is displayed to show the effect of the
variation of the injection velocity. For injection through a
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for varying values of the magnetic field parameter M , with
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porous plate, the fluid behaves qualitatively opposite to suc-
tion velocity. So, from these figures, it has been observed
that our closed-form solution (60) remains stable both for
the case of suction and injection provided that m > W0.
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In order to describe the influence of the third-grade fluid
parameter 	 on the flow model, the velocity field (60) has
been plotted in Figs. 6 and 7. These figures reveal that both
β and 	 have opposite roles on the structure of the veloc-
ity, i.e., with an increase in parameter β, the velocity field is
decreasing, which shows the shear thickening behaviour of
the fluid. However, the velocity profile increases for increas-
ing values of 	 showing the shear thinning property of the
fluid.

In Fig. 8, the closed-form solution (68) is plotted. This
figure predicts the shock wave behaviour of the flow with
the slope approaching infinity along the characteristics. This
solution does not show the physics of the model, but does
predict the hidden shock wave phenomena in the flow.
Some examples of shock waves are moving shock, detona-
tion waves, detached shock, attached shock, decompression
shock, shock in a pipe flow, shock waves in rapid granular
flows, shock waves in astrophysics and so on.

Finally, the numerical solutions of the reduced ordinary
differential (78) subject to the boundary conditions (80) are
plotted in Figs. 9 and 10 for varying values of M and W0.
It is clearly observed from these figures that the numeri-
cal solutions show the same behaviour as we have observed
from the closed-form solutions.

5 Concluding Remarks

In this study, we have focused on the modelling and solu-
tions of a nonlinear time-dependent flow model of an elec-
trically conducting fourth-grade fluid with plate suction and
injection. Lie group theoretic analysis has been employed
to perform reductions of the governing nonlinear partial
differential equations to different ordinary differential equa-
tions. Both forward and backward wave-front type travelling
wave solutions (of the model equation) have been devel-
oped in the form of a closed-form exponential function. The
steady-state model has also been solved exactly.

The backward wave-front type travelling wave solution
best represents the physics of the model under investigation
in the sense that this solution satisfies all the boundary and
initial conditions. It also shows the effects of the magnetic
field and the plate injection/suction directly on the physi-
cal system. On the other hand, the forward wave-front type
travelling wave solution does not satisfy the boundary con-
dition at infinity. As a consequence, it does not show the
physical behaviour of the flow model. But this solution,
however, does describe the hidden shock wave behaviour of
the flow. To emphasize, we say that this solution is going to
be very useful in carrying out further analysis of the shock
wave behaviour associated with non-Newtonian fluid flow
problems. Moreover, the model considered herein is theo-
retical and prototype in nature, but the methodology used is

quite useful to handle a wide range of nonlinear problems.
This is not only restricted to the field of non-Newtonian
fluid mechanics, but also in other fields of science and
engineering.
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