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Abstract The nonlinear dynamics of the dust-acoustic
shock waves in a dusty plasma containing negatively
charged mobile dust, nonextensive electrons with two dis-
tinct temperatures, and Maxwellian ions have been investi-
gated by deriving the Burgers equation. The normal mode
analysis is used to examine the linear properties of dust-
acoustic (DA) waves. It has been observed that the proper-
ties of the DA shock waves (SHWs) are significantly modi-
fied by nonextensivity of the electrons, electron temperature
ratios, and the respective number densities of two species
of electrons. A critical value of nonextensivity is found
for which shock structures transit from positive to nega-
tive potential. The shock waves with positive and negative
potential are obtained depending on the plasma parameters.
The entailments of our results may be useful to understand
the structures and the characteristics of DASHWs both in
laboratory and astrophysical plasma systems.

Keywords Dust-acoustic waves · Maxwellian ions ·
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1 Introduction

Dusty plasmas have received a great deal of interest in the
last few decades. Dust is ubiquitous in nebulas, in asteroid
zones, in planetary magnetospheres, in interstellar clouds,
in cometary environments (e.g. cometary comae and tails),
on the surfaces of the Mars’ and Earth’s moon, and in
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the Earth’s polar mesosphere [1–5]. A dusty plasma is an
electron-ion plasma with an additional component of small
micron- sized highly charged dust [5]. This introduction
of massive, charged dust component modify the existing
linear wave modes and introduces new waves such as dust-
acoustic (DA) wave, dust-ion-acoustic (DIA) wave, etc.

Rao et al. [6] first theoretically predicted the existence
of dust-acoustic waves (DAWs) in an unmagnetized dusty
plasma. After 5 years, Barkan et al. [7] experimentally
studied the DAWs and verified the theoretical prediction
of Rao et al. [6]. The DAWs which are now found to be
very common in both space and laboratory devices [6–10],
in which the inertia is provided by the dust particle mass
and the restoring force, are provided by the pressures of
the inertialess electrons and ions. A number of authors
have studied nonlinear DAWs both theoretically [11–14]
and experimentally [15–17] during the last few years.

A nonextensive distribution (q distribution) [18] is the
most generalized distribution to study the linear and the
nonlinear properties of shock waves (SHWs) in different
plasma systems, where the non-equilibrium stationary states
exist. The experimental results for electrostatic plane wave
propagation in a collisionless thermal plasma have shown a
transition to a class of Tsallis velocity distribution charac-
terized by a nonextensive parameter q that is usually smaller
than one [19]. Nowadays, the study of nonextensive plasma
[18] has been received a great deal of interest to the plasma
physics researchers due to its wide relevance in astrophysi-
cal and cosmological scenarios like protoneutron stars [20],
stellar polytropes [21], hadronic matter and quark-gluon
plasma [22], dark-matter halos [23], etc. Different types
of waves such as DIAWs or DAWs or ion-acoustic waves
or positron-acoustic waves have been studied in nonex-
tensive plasmas by many authors considering one or two
components to be nonextensive [24–26].

mailto:mariyaferdousi@gmail.com


90 Braz J Phys (2015) 45:89–94

The shock structures arise due to the balance between
the nonlinear effect and the dissipation. The dissipation
arises due to Landau damping, kinematic viscosity among
the plasma species, wave particle interaction, etc., which is
responsible to form the shock structures in a plasma system
[27]. The shock structures were found by Andersen et al.
[28] in laboratory experiments such as Q-machine experi-
ment. First observation of DASHWs was reported by Sam-
sonov et al. [29] in a three-dimensional dusty plasma under
microgravity condition. Already a large number of scien-
tists have investigated SHWs both theoretically and exper-
imentally in different plasma system. Shahmansouri and
Tribeche [30] have studied the DASHWs in a charge varying
dusty plasma with nonextensive ions as well as electrons.
Tasnim et al. [31] considered two-temperature nonthermal
ions and discussed the properties of SHWs. In the same year,
Masud et al. [32–34] considered two-temperature electrons
following Maxwellian distributions in a dusty plasma envi-
ronment and analyzed both the solitary waves and the SHWs
in respective articles. Recently, Alam et al. [35] considered
kappa distributed electrons with two distinct temperatures
and discussed the properties of DIASHWs. Very recently,
Emamuddin et al. [24, 36] have studied the DA soli-
tary structures in both magnetized and unmagnetized dusty
plasma system with two-temperature nonextensive electrons
and Maxwellian ions.

In our present manusript, we have considered the same
plasma system considered by Emamuddin et al. [24, 36] but
we have studied the shock structures in this plasma system.
Our aim here is to investigate the shock wave properties
and also to analyze their basic features (polarity, amplitude,
width, etc.) in such a dusty plasma with two-temperature
electrons.

The manuscript is organized as follows. The governing
equations of the plasma fluid model are given in Section 2.
In Section 3, the characteristics of linear waves are briefly
summarized. In Section 4, we have derived Burgers equa-
tion using the reductive perturbation method. The numerical
solution of Burgers equation is presented in Section 5. A
brief discussion is finally presented in Section 6.

2 Governing Equations

We consider the nonlinear propagation of the DAWs in a
collisionless and unmagnetized dusty plasma system con-
sisting of negatively charged mobile dust, two-temperature
electrons of temperature Te1 and Te2, and Maxwellian ions
with temperature Ti . The concept of two-temperature elec-
trons (electrons with two distinct temperatures) is now well
established from the theoretical [34–38] and experimental
[39, 40] points of view. Thus, at equilibrium the quasi-
neutrality condition implies, ni0 = ne10 + ne20 + Zdnd0,

where ns0 is the unperturbed number densities of the species
s (here s = i, e1, e2, d for ion, electrons with tempera-
ture Te1, electrons with temperature Te2, and immobile dust,
respectively) and Zd is the number of electrons residing
onto the dust grain surface. We assume that Te2 > Te1 so
that the electron with temperature Te2 can be called a hot
electron and the electron with temperature Te1 can be called
a cold electron. The dynamics of the DAWs, whose phase
speed is much smaller (larger) than the electrons (ions) ther-
mal speed, can be described by using normalized equations
of the forms

∂nd

∂t
+ ∂

∂x
(ndud) = 0, (1)

∂ud

∂t
+ ud

∂ud

∂x
= ∂ψ

∂x
+ η

∂2ud

∂x2 , (2)

∂2ψ

∂x2
= −μie

−ψ +
[
μ1{1 + (q − 1)σ1ψ} 1+q

2(q−1)

]

+
[
μ2{1 + (q − 1)σ2ψ} 1+q

2(q−1)

]
+ nd . (3)

where nd is the ion number density normalized by its equi-
librium value nd0, ud is the dust fluid speed normalized
by Cd , ψ is the electrostatic wave potential normalized
by Te/e, and η is the viscosity coefficient normalized by
mdndoωpdλ2

Dm. The time variable t is normalized by ω−1
pd =(

md/4πe2nd0Z
2
d

)1/2
and the space variable x is normal-

ized by λDm = (
Ti/4πe2nd0Zd

)1/2
. We have defined

the parameters μs = ns0/Zdnd0 (here, s = i, e1, e2),
σ1 = Ti/Te1, and σ2 = Ti/Te2. Furthermore, Ti ; Te1,
and Te2 are, respectively, the temperatures of the ions,
the cold electrons, and the hot electrons in the units of
energy. Consequently, the number densities [24, 41] of two-
temperature nonextensive electrons, ne1 and ne2, are given
respectively as

ne1 = ne10[(1 + (q − 1)eψ/Te1]
1+q

2(q−1) , (4)

ne2 = ne20[(1 + (q − 1)eψ/Te2]
1+q

2(q−1) . (5)

Here, q is the nonextensive parameter characterizing the
degree of nonextensivity, and it is larger than −1. It is very
important to note that when we take q → 1, the parti-
cle density reduces to the well-known Maxwell-Boltzmann
density. q < 1 refers to the case of superextensivity [24–26],
whereas q > 1 refers to subextensivity [42].

3 Linear Waves

To analyze the characteristics of linear waves, we derive
the linear dispersion relation for the plasma system under
consideration here. We expand the dependent variables in
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(1)–(3) in a power series of ε, as described below in
(7)–(9), with the terms containing ε2 or higher neglected,
and by replacing ∂/∂t → −iω and ∂/∂x → ik, we get
ω2 + iωηk2 = k2C, where the parameter C is defined as
C = 1/2k2 + 2μi + (q + 1)μ1σ1 + (q + 1)μ2σ2.

Now, we separate the dispersion relation into its real and
imaginary parts by setting ω = ωR + iωI , then we obtain
ω2

R −ω2
I −ωIηk2 = k2C and ωR(2ωI +ηk2) = 0 as the real

and the imaginary parts, respectively. For nonzero real fre-
quency, the imaginary part reduces to ωI = −k2η/2. This
reflects the energy dissipation associated with the viscosity.
Again substituting ωI = −k2η/2, we get the real angular
frequency ωR = √

k2C − k4η2/4.
We first consider the nondissipative case (η = 0), which

leads to the dispersion relation ω2 = k2C ≡ ω2
0, then

we consider η = 0.5 and 0.9, respectively. In Fig. 1, we
have shown the real (positive, upper curves) and imagi-
nary (negative, lower curves) parts of the linear dispersion
relation for DAWs. It is observed that the real part of the
wave frequency decreases (in absolute magnitude), while
the imaginary part of the wave frequency increases (in abso-
lute magnitude) with the increasing values of kinematic
viscosity (i.e., dissipative effect) η (see Fig. 1).

4 Nonlinear Waves

To derive a dynamical equation for the electrostatic
DASHWs from our basic system of equations (1)–(3), we
employ the reductive perturbation technique. We first intro-
duce the stretched coordinates as [25, 34]

ξ = ε(x − Vpt), τ = ε2t. (6)

Fig. 1 Variation of the wave frequency ω with the wave vector k for
different viscosity coefficient η. The upper (positive ω) curves are for
real and the lower (negative ω) curves are for imaginary parts of the
DAWs linear dispersion relation

where ε is a smallness parameter measuring the weakness
of the dispersion and Vp is the phase speed of the DAWs.
We can expand the perturbed quantities nd , ud , and ψ about
the equilibrium values in power series of ε as

nd = 1 + εn
(1)
d + ε2n

(2)
d + · · ·, (7)

ud = 0 + εu
(1)
d + ε2u

(2)
d + · · ·, (8)

ψ = 0 + εψ(1) + ε2ψ(2) + · · ·, (9)

and develop equations in various powers of ε. To the lowest
order in ε, (1)–(3) give

u
(1)
d = −ψ(1)

Vp

, (10)

n
(1)
d = −ψ(1)

V 2
p

, (11)

Vp =
√

1

μi

+ 2

(q + 1)(μ1σ1 + μ2σ2)
. (12)

Equation (12) describes the phase speed of DAWs regard-
ing the dusty plasma under consideration. To the next higher
order of ε, i.e., taking the coefficients of ε3 from (1) and
(2), and ε2 (3), one may obtain another set of simultane-
ous equations for ψ(1) = φ, ψ(2), n

(2)
d , and u

(2)
d . After

some algebraic calculation (omitted here), one may obtain
the nonlinear Burgers type equation as

∂φ

∂τ
+ Aφ

∂φ

∂ξ
= C

∂2φ

∂ξ2 , (13)

where the nonlinear coefficient A and the dissipative coef-
ficient C are given by

A = V 3
p

2

[
μi + 1

4 (q+1)(q−3)
(
μ1σ

2
1 +μ2σ

2
2

)− 3
V 4

p

]
,

B = η
2 .

⎫⎬
⎭ (14)

Fig. 2 The A = 0 graph which represent the variation of qc with
σ1 and σ2, where qc is the critical value of nonextensive index q above
or below which positive or negative shock structures are formed
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Fig. 3 Showing the variation of amplitude of the positive shock
potential with σ2 and μ2. The other plasma parameters are fixed at
q = −0.85, σ1 = 0.5, μ1 = 0.2, μi = 0.1, and U0 = 0.01

5 Steady-State Solution of the Burgers Equation

The stationary shock wave solution of the Burgers equation
(13) is obtained by transforming the independent variables
to ζ = ξ − U0τ

′ and τ ′ = τ , where U0 is the speed of
the shock waves, and imposing the appropriate boundary
conditions, viz. ψ → 0, dψ/dξ → 0, d2ψ/dζ 2 → 0 at
ξ → ±∞. Thus, one can express the stationary shock wave
solution of the Burgers equation (13) as

ψ = ψm[1 − tanh(ξ/δ)], (15)

where the amplitude ψm, and the width δ are given by

ψm = U0/A, δ = 2B/U0. (16)

It is obvious from (15)–(16) that for vanishing nonlin-
ear effect (i.e., for A = 0), the amplitude of the SHWs
approaches to infinity. This means that our theory is not

Fig. 4 Showing the variation of amplitude of the negative shock
potential with σ2 and μ2. The other plasma parameters are fixed at
q = −0.5, σ1 = 0.5, μ1 = 0.2, μi = 0.1, and U0 = 0.01

Fig. 5 Showing the variation of positive potential shock profile with
ξ and q. The other plasma parameters are fixed at σ1 = 0.5, σ2 = 0.25,
μ2 = 0.65, μi = 0.1, η = 0.1, and U0 = 0.01

valid when A ∼ 0 which makes the amplitude extremely
large and breaks down the validity of the reductive pertur-
bation method. Thus, A = 0 gives the critical value of
the plasma parameters above/below which positive/negative
potential structures may exist. We note that the nonlinearity
coefficient A is a function of μi , μ1, μ2, σ1, σ2, and q for
the model under consideration in this manuscript. So, to find
the parametric regimes corresponding to A = 0, we have to
express one (viz. q) of these parameters in terms of the oth-
ers (viz. μi , μ1, μ2, σ1, and σ2). Therefore, A(q = qc) = 0
leads to the critical value of q (long expression →omitted
here).

We find the critical value q = qc = −0.6 for a set of
plasma parameters (viz. μ1 = 0.2, μ2 = 0.65, μi = 0.1,
σ1 = 0.5, and σ2 = 0.25) [24] that means q < 1 which is
referred to the case of superextensivity [24–26]. The para-
metric regime for this set of values is shown in Fig. 2.
Figures 3, 4, 5, 6, 7, 8, and 9 show how the nonextensivity

Fig. 6 Showing the variation of negative potential shock profile with
ξ and q. The other plasma parameters are fixed at σ1 = 0.5, σ2 = 0.25,
μ2 = 0.65, μi = 0.1, η = 0.1, and U0 = 0.01
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Fig. 7 Showing the variation of electrostatic potential ψ of the posi-
tive shock profile with ξ for different values of μ1. The other plasma
parameters are fixed at q = −0.7, σ1 = 0.5, σ2 = 0.25, μ2 = 0.65,
μi = 0.1, η = 0.1, and U0 = 0.01

of electrons and Maxwellian ions, electron-to-dust number
density ratio, ion-to-dust number density ratio, and ion-
to-electron temperature ratio affect on the formation of
DASHWs. Figures 3 and 4 show the variation of amplitude
of positive (at q < qc) and negative (at q > qc) SHWs
with σ2 and μ2 keeping other plasma parameters fixed at
σ1 = 0.5, μ1 = 0.2, μi = 0.1, and U0 = 0.01. In Figs. 5
and 6 we observe the positive and negative shock struc-
tures for different values of the nonextensive index q for
σ1 = 0.5, σ2 = 0.25, μ1 = 0.2, μ2 = 0.65, μi = 0.1,
η = 0.1, and U0 = 0.01. Figures 7 and 8 show the posi-
tive and negative potential SHWs for different values of μ1.
Figure 9 shows the variation of the width � of the SHWs
with kinematic viscosity η.

Fig. 8 Showing the variation of electrostatic potential ψ of the nega-
tive shock profile with ξ for different values of μ1. The other plasma
parameters are fixed at q = −0.5, σ1 = 0.5, σ2 = 0.25, μ2 = 0.65,
μi = 0.1, η = 0.1, and U0 = 0.01

Fig. 9 Variation of the shock wave width � with U0 for different
viscosity coefficient η

6 Discussion

The basic features of the DASHWs in an unmagnetized
dusty plasma containing negatively charged mobile dust
fluids, nonextensive electrons with two distinct tempera-
tures, and Maxwellian ions are investigated theoretically
and numerically. The propagation of the small amplitude
DASHWs in nonextensive plasmas has been considered by
analyzing the solution of the Burgers equation. It should
also be noted that the Burgers equation derived here is valid
[25, 31] only for the limits A �= 0, A > 0, and A < 0. The
results which have been found from this investigation are
summarized as follows:

1. The wave frequency (real part) is observed to increase
with the increasing values of wave vector. On the other
hand, the wave frequency is found to decrease with the
increasing values of kinematic viscosity effect (via η)
for fixed values of wave vector, that is, the phase speed
decreases with increasing kinematic viscosity (shown in
Fig. 1).

2. The nonextensive plasmas under consideration support
finite-amplitude shock structures, whose basic features
(viz. polarity, amplitude, width, etc.) strongly depend
on different plasma parameters, particularly, ion-to-dust
number density ratio (via μi ), cold electron-to-dust
number density ratio (via μ1), hot electron-to-dust num-
ber density ratio (via μ2), ion-to-cold electron tempera-
ture ratio (via σ1), ion-to-hot electron temperature ratio
(via σ2), and nonextensive index q .

3. We have obtained the critical value q = qc = −0.6 for
a fixed set of parametric values (viz. μ1 = 0.2, μ2 =
0.65, μi = 0.1, σ1 = 0.5, and σ2 = 0.25) [24] (shown
in Fig. 2).

4. We have observed that at q < qc, positive SHWs exist,
whereas at q > qc, negative SHWs exist (shown in
Figs. 5, 6, 7, and 8).
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5. The height of the positive (negative) potential shock
structure increases (decreases) with the increase of σ2

and μ2, as shown in Figs. 3 and 4.
6. The amplitude of positive and negative potential SHWs

increases with the increase of q (see Figs. 5 and 6).
7. It is observed that the amplitude of positive (negative)

potential SHWs decreases (increases) with the increase
of μ1, as shown in Fig. 7 (Fig. 6). Our results agree with
the results of Masud et al. [34].

8. Figure 9 shows the variation of width � with U0 for
different values of the kinematic viscosity η, where �
increases with the increase of η and decreases with the
increase of dust fluid speed U0. The later is consistent
with the result of Masud et al. [32] obtained in a dusty
plasma with two distinctive temperatures Maxwellian
electrons.

Therefore, our findings should clarify the nonlinear
electrostatic structures that propagate in astrophysical and
cosmological plasma scenarios where unmagnetized nonex-
tensive plasma with two-temperature electrons and ions
may exist: like stellar polytropes [21], hadronic matter and
quark-gluon plasma [22], protoneutron stars [20], dark-
matter halos [23], etc. It can be noted here that the analysis
of shock structures in such plasmas in the presence of exter-
nal magnetic field is also a problem of great importance
and outside the scope of our present study. The labora-
tory experiment of SHWs in different plasma models have
been performed by a number of authors. Luo et al. [43]
have examined the shock formation in negative ion plasma.
Nakamura [44] has examined DIASHWs in a homogeneous
unmagnetized dusty double-plasma device. To conclude, we
propose to perform a new laboratory experiment to ver-
ify the results of theory (i.e., to observe such DASHWs
with two distinct temperature nonextensive electrons and
Maxwellian ions in both laboratory and space plasma) that
is presented in this manuscript by using the experimental set
up of Luo et al. [43] or Nakamura [44].
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