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Abstract Time-dependent density functional theory
(TDDFT) is a formally exact approach to the time-
dependent electronic many-body problem which is widely
used for calculating excitation energies. We present a sur-
vey of the fundamental framework, practical aspects, and
applications of TDDFT. This paper is mainly intended for
nonexperts (students or researchers in other areas) who
would like to learn about the present state of TDDFT
without going too deeply into formal details.
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1 Preface

This paper presents an introduction to and a survey of time-
dependent density functional theory (TDDFT). The purpose
of the paper is to explain in a nutshell what TDDFT is and
what it can do. We will discuss the basics of the formal
framework of TDDFT as well as the current state of the art,
skipping over details of the proofs, and highlight some of
the most important applications. Readers who would like a
more detailed treatment and more literature references are
encouraged to consult recent books [1, 2] and review articles
[3–5].
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TDDFT is a theoretical approach to the dynamical quan-
tum many-body problem; it can be used to describe quantum
systems that are not stationary. As a consequence, TDDFT
provides formally exact and practically convenient meth-
ods to calculate electronic excitation energies. By contrast,
density functional theory (DFT) is a ground-state theory: in
other words, it is used to find the ground state of a quantum
system and calculate related quantities of interest, such as
the ground-state energy. In many, if not most, situations of
practical interest, we have to determine the ground state of
the system before we can study its dynamics or calculate its
excitations.

The beginnings of ground-state DFT date back to the
years 1964/1965 when the famous papers by Hohenberg and
Kohn [6] and Kohn and Sham [7] were published. Since
then, DFT has developed into a dominating method for elec-
tronic structure calculations in physics, chemistry, materials
science, and many other areas (see Ref. [8] for a recent up-
to-date account of DFT). Although TDDFT is of much more
recent origin [9], it now has reached a similar status for
calculating electronic excitations.

TDDFT uses many familiar concepts from DFT, most
prominently, the Kohn–Sham idea of replacing the real
interacting many-body system by a noninteracting system
that reproduces the same density. But there are also many
concepts that are unique to the time-dependent case, such
as memory and initial-state dependence. To gain a thorough
understanding of TDDFT, it is hence advisable to begin with
a study of the basic concepts of DFT. We refer the reader to
the very nice introductions to DFT by Capelle [10] and by
Burke and Wagner [11]. There exist a number of books on
DFT, some of which are very accessible to newcomers in
the field [12, 13], others are more advanced [14].
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2 Ground-State DFT in a Nutshell

2.1 The Many-Body Problem

We consider a system of N interacting electrons that is
described by the nonrelativistic Schrödinger equation:

Ĥ0 �j(r1, . . . , rN)

= Ej�j (r1, . . . , rN) , j = 0, 1, 2, . . . . (1)

For a given D-dimensional system, the j th eigenstate
�j(r1, . . . , rN) is a function of DN spatial variables. In the
following, we use the abbreviation �j . Of particular interest
to us is the ground-state wave function �gs.

The many-body Hamiltonian is given by

Ĥ = T̂ + V̂ + Ŵ , (2)

where the kinetic energy and scalar potential operators are

T̂ =
N∑

j=1

−∇2
j

2
, V̂ =

N∑

j=1

v(rj ) , (3)

and the electron–electron interaction operator is

Ŵ =
N∑

i,j=1
i �=j

w(|ri − rj |) . (4)

Notice that we use atomic (Hartree) units throughout, i.e.,
m = e = � = 1. The electron–electron interaction is usu-
ally taken to be the Coulomb interaction, w(|r − r′|) =
1/|r − r′|, but other forms of two-particle interactions, or
zero interactions, are also possible.

The single-particle potential v(r) describes the total
potential acting on the electrons. If one is interested in
describing the properties of matter (atoms, molecules, or
solids), v(r) is the sum of the Coulomb potentials of the
atomic nuclei. However, to define the formal framework of
DFT, it is not necessary to specify where the potential comes
from, as long as it has a mathematically well-behaved form.

From the solutions of the Schrödinger equation, we cal-
culate the expectation value of an observable in the j th
eigenstate:

Oj = 〈�j |Ô|�j 〉. (5)

Here, Ô is a Hermitian operator corresponding to a quantum
mechanical observable.

Let us make two remarks on our formulation of the many-
body problem:

1. We implicitly made the Born–Oppenheimer approxima-
tion (see Section 7.3). In other words, if our system
contains nuclear degrees of freedom (as is the case in
all forms of real matter), we treat them classically. The
many-body wave functions therefore depend only on

the electronic coordinates (r1, . . . , rN), and the nuclei
only act as sources of scalar potentials. In Section 8, we
will briefly discuss what happens if this approximation
is not made and the electronic and nuclear degrees of
freedom are coupled.

2. We have not indicated any spin indices, which was
done mainly for notational simplicity. In other words,
�j(r1, . . . , rN) describes spinless electrons. Including
spin, the many-body wave function can be written as
�(x1, . . . , xN), where xi = (ri , σi) denotes the spatial
and spin coordinate of the ith electron.

2.2 The Basic Idea Behind DFT

Everything we wish to know about our system (energy,
geometry, excitation spectrum, etc.) can be obtained from
the wave functions, see (5). The exact wave functions can be
calculated if the system is small, with no more than one or
two electrons, but this becomes very difficult if N is greater
than that: the many-body Schrödinger equation becomes
too hard to solve, and the usefulness of the wave func-
tion itself becomes more and more questionable for large N
[15].

There exist many approaches to find approximate solu-
tions of the many-body problem. So-called “wave- function-
based techniques” such as Hartree–Fock (HF) or configu-
ration interaction (CI) attempt to find variational solutions
of the Schrödinger equation using expansions of the wave
function in terms of Slater determinants. This approach has
been very successful in theoretical chemistry, but has its
limitations for large systems.

The essence of the density functional approach is that
it is in principle possible to obtain all desired information
about an N -electron system without having to calculate its
full wave function: instead, all one needs is the one-particle
probability density of the ground state,

n0(r) = N

∫
d3r2 . . .

∫
d3rN |�gs(r, r2, . . . , rN)|2 . (6)

This can be mathematically proven (see below), but
before doing so, it is helpful to give a simple illustra-
tion. Consider a one-electron system which satisfies the
Schrödinger equation

[
−∇2

2
+ v(r)

]
ϕj (r) = εjϕj (r) . (7)

The usual procedure is to solve this equation for a given
potential v(r) and determine the ground-state probability
density as n0(r) = |ϕ0(r)|2. But now, imagine the reverse
situation: we are given a density function n0(r), normalized
to 1, and we ask in what potential this is the ground-
state density. Assuming that the wave functions are real so
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ϕ0(r) = √
n0(r), the Schrödinger equation (7) is easily

inverted, and we obtain

v(r) = ∇2n0(r)
4n0(r)

− |∇n0(r)|2
8n0(r)2

. (8)

A one-dimensional example is given in Fig. 1.
What has been accomplished? From the ground-state

density n0(r), we were able to reconstruct the potential v(r).
But this means that we have reconstructed the Hamiltonian
Ĥ of the system, and we can thus solve the Schrödinger
equation (7) and get all the wave functions! This logical
chain can be represented as follows:

n0(r) → v(r) → Ĥ → {�j }. (9)

The reconstruction of the potential from the density is
easy for one-electron systems. For interacting systems with
many electrons, there is no explicit formula such as (8).
Nevertheless, there exists a unique potential for each math-
ematically well-behaved density function such that it is the
ground-state density in this potential. This was proved by
Hohenberg and Kohn in [6].

The Hohenberg–Kohn theorem states that it is impossi-
ble for two different potentials, v(r) and v′(r), to produce
the same ground-state density (v′ is considered to be differ-
ent from v if it is not just v shifted by a constant). In other
words, the relationship between potentials and ground-state
densities is one-to-one:

n0(r) ↔ v(r) . (10)

The proof of this theorem is relatively straightforward, mak-
ing use of the Rayleigh–Ritz minimum principle. It can be
found in any textbook on DFT, so we won’t repeat it here.

Formally, this logical dependence of the wave functions
on the ground-state density constitutes a functional relation-
ship, which is written as �j [n0]. Hence, the name density
functional theory. Every quantum mechanical observable
thus can be written as a density functional.

In particular, the total energy functional of a system with
potential v0(r) is

Ev0[n] = 〈�[n]|T̂ + V̂0 + Ŵ |�[n]〉 , (11)

)(0 xn

)(xv

x
5.05.0 0

Fig. 1 The density n0(x) = cos2(πx) + cos2(3πx) (dashed line,
scaled by a factor 60), for − 1

2 < x < 1
2 , is the ground-state density of

the potential v(x) (full line) which was constructed using (8)

where n is some N -electron density and�[n] is that ground-
state wave function which reproduces this density. The
energy functional (10) is minimized by the ground-state
density n0 which belongs to v0, and then becomes equal to
the ground-state energy:

Ev0[n] > E0 for n(r) �= n0(r) ,

Ev0 [n] = E0 for n(r) = n0(r) . (12)

2.3 The Kohn–Sham Approach

The fact that all observables are functionals of the density
opens up the way for an enormous computational simplifi-
cation, since the density is a function of only D variables
(and not of DN variables as the wave function). But how
can we take advantage of this in practice? To obtain the den-
sity, one still needs to solve the full many-body problem.
This means that nothing has been gained, unless we find a
way to bypass the full Schrödinger equation and obtain the
density in some other, easier way, at least approximately.
Fortunately, a very elegant method exists to do this, known
as the Kohn–Sham formalism [7].

We use the following trick: we define a noninteracting
system in such a way that it reproduces the exact ground-
state density of the interacting system. This means that we
can calculate the exact density as the sum of squares of
single-particle orbitals,

n0(r) =
N∑

j=1

|ϕj (r)|2 , (13)

where the orbitals satisfy the following equation;
[
−∇2

2
+ vs[n](r)

]
ϕj (r) = εjϕj (r) . (14)

This equation is known as Kohn–Sham equation; it is for-
mally a single-particle Schrödinger equation, like (7). How-
ever, the potential vs is very special: it is defined to be that
single-particle potential that produces orbitals which give
the exact ground-state density of the interacting system via
(13). It is therefore a functional of the density, vs[n](r).

The trick is now to write the unknown effective potential
vs[n] in a smart way. No doubt, the given external potential
v0(r) will make a contribution to it. The remainder, vs [n] −
v0(r), then accounts for the electronic many-body effects. A
large portion of the latter is made by the classical Coulomb
potential associated with a given density distribution, also
known as the Hartree potential,

vH(r) =
∫

d3r ′ n(r′)
|r − r′| . (15)

And whatever is left is called the exchange-correlation (xc)
potential, vxc[n](r), so that

vs[n](r) = v0(r)+ vH(r)+ vxc[n](r) . (16)
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It turns out that the solution of the Kohn–Sham equation
(14)—that is, the density (13)—is precisely that density
which minimizes the total energy functional (11). The con-
nection is made by rewriting the energy as follows:

Ev0[n] = T [n] +
∫

d3r v0(r)n(r) +W [n]

= Ts[n] +
∫
d3rv0(r)n(r)

+(T [n] − Ts[n] +W [n])
≡ Ts[n] +

∫
d3rv0(r)n(r)

+EH[n] + Exc[n] . (17)

Here, T [n] is the kinetic energy functional of an interacting
system, whereas Ts[n] is the kinetic energy functional of a
noninteracting system. Neither T [n] nor Ts [n] are known
as explicit density functionals, but it is very straightfor-
ward to write down Ts [n] as an explicit functional of the
orbitals:

Ts [n] = −1

2

N∑

j=1

ϕ∗
j (r)∇2ϕj (r) , (18)

where the orbitals ϕj (r) come from the Kohn–Sham
equation (14) are hence implicit density functionals.

In the last line of (17), we define the Hartree energy

EH[n] = 1

2

∫
d3r

∫
d3r ′

n(r)n(r′)
|r − r′| (19)

and the xc energy as

Exc[n] = T [n] − Ts [n] +W [n] − EH[n] . (20)

This shows that the xc potential is given by the following
functional derivative:

vxc(r) = δExc[n]
δn(r)

. (21)

It is straightforward to show that the total energy (17) can
be expressed as follows:

Ev0[n] =
N∑

j=1

εj − EH[n] −
∫

d3r vxc(r)n(r) +Exc[n] .

(22)

2.4 Discussion and Exact Properties

Let us now summarize some of the most important prop-
erties of the Kohn–Sham approach. Our discussion is by
no means complete, but the following properties will be
relevant for the time-dependent case as well.

Meaning of the wave function. The Kohn–Sham system
is noninteracting, so its total N -particle wave function can
be written as a single Slater determinant:

�KS
gs (r1, . . . , rN) = 1√

N !det{ϕj } . (23)

The Kohn–Sham Slater determinant has only one purpose:
to reproduce the exact ground-state density when substituted
in (6). It is not meant to reproduce the exact ground-state
wave function, i.e., �KS

gs �= �gs in general.
Meaning of the Kohn–Sham energies. The energy eigen-

values εj do not have a rigorous physical meaning, except
for the highest occupied eigenvalue. We have

εN(N) = E(N)− E(N − 1) = −I (N) , (24)

i.e., the highest occupied eigenvalue of the N -particle sys-
tem equals minus the ionization energy of the N -particle
system, and

εN+1(N + 1) = E(N + 1)−E(N) = −A(N) , (25)

i.e., the highest occupied eigenvalue of the N + 1-particle
system equals minus the electron affinity of the N -particle
system.

Eigenvalue differences εa − εi , where a labels an unoc-
cupied single-particle state and i an occupied one, should
not be interpreted as excitation energies of the many-body
system (although they often are).

Asymptotic behavior of the Kohn–Sham potential. A
neutral atom with N electrons has the nuclear potential
v0(r) = −N/r , and its Hartree potential behaves as
vH(r) → N/r for r → ∞. If an electron is far away in the
outer regions of the atom, it should see the Coulomb poten-
tial of the remaining positive ion. This implies that the xc
potential must behave asymptotically as

vxc(r) → −1

r
(26)

for large r , for any finite system. The asymptotic behavior
of vxc(r) reflects the fact that the Kohn–Sham formalism is
free of self-interaction: for a 1-electron system, the Hartree
and xc potential cancel exactly.

Spin-dependent formalism. In practice, the Kohn–Sham
formalism is usually written down and applied in its spin-
polarized form, even if the system does not have a net spin
polarization. We then have

[
−∇2

2
+ v0σ (r)+ vH(r)+ vxcσ (r)

]
ϕjσ (r) = εjσ ϕjσ (r) ,

(27)

where σ =↑,↓. Here, the external potential v0σ carries a
spin index, which could come from a static magnetic field,
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and the spin-polarized xc potential is defined as a functional
of the spin-up and spin-down density:

vxcσ [n↑, n↓](r) = δExc[n↑, n↓]
δnσ (r)

, (28)

where

nσ (r) =
Nσ∑

j=1

|ϕjσ (r)|2 . (29)

Exact exchange. The xc energy can be decomposed
into exchange and correlation energy. The exact exchange
energy is given by

Eexact
x [n] = −1

2

∑

σ=↑,↓

Nσ∑

i,j=1

∫
d3r

∫
d3r ′

×ϕ∗
iσ (r)ϕjσ (r

′)ϕiσ (r′)ϕ∗
jσ (r)

|r − r′| , (30)

where the ϕjσ (r) are the exact Kohn–Sham orbitals. Eexact
x

is a so-called implicit density functional.

2.5 DFT in Practice

The number of applications of DFT in various areas of sci-
ence and engineering is almost impossible to count. Nice
practical introductions from the perspectives of chemistry
and of materials science, respectively, can be found in
recent books and review articles [12, 13, 16]. Here, we will
only make some general remarks and discuss a couple of
representative examples.

Even though DFT is in principle exact (as we have
emphasized), any practical application necessarily involves
two kinds of approximations: (1) the xc energy functional
Exc[n], and the xc potential following from it via (21), are
not exactly known and need to be approximated; (2) the
Kohn–Sham equation (14) needs to be solved using some
computational scheme, which can introduce various types
of numerical inaccuracies.

Over the years, many approximate xc functionals have
been proposed; some of them using physical arguments,
constraints, and exact conditions, others using parametriza-
tions combined with fitting to reference data. Which func-
tional should one choose? This question cannot be easily
answered in general [17] but requires some experience.
Practitioners of DFT who use popular software packages
of quantum chemistry or solid-state physics often encounter
daunting choices between many different menu options for
vxc. Some functionals have turned out to be more popular
and successful than others and are typically chosen in the
majority of applications.

The xc energy of any system can be written as

Exc[n] =
∫

d3r exc[n](r) , (31)

where exc[n](r) is the xc energy density, whose dependence
on the density is, in general, nonlocal: exc at a particular
point r is determined by the density n(r′) at all points in
space. The goal is to approximate exc[n](r).

Much of the success of DFT can be attributed to the
fact that a very simple approximation, the local density
approximation (LDA), gives very useful results in many
circumstances. The LDA has the following form:

ELDA
xc [n] =

∫
d3r ehxc(n(r)) . (32)

Here, the xc energy density of a homogeneous electron
liquid, ehxc(n̄) (which is simply a function of the uniform
density n̄), is evaluated at the local density at point r of
the actual inhomogeneous physical system: ehxc(n(r)) =
ehxc(n̄)

∣∣
n̄=n(r). The so defined ELDA

xc [n] is exact in the limit
where the system becomes uniform, and should be accurate
when the system varies only slowly in space.

The LDA requires ehxc(n̄) as input [18]. We can write

ehxc(n̄) = ehx (n̄)+ ehc (n̄) , (33)

where the exchange energy density can be calculated
exactly using Hartree–Fock theory; the result (for the spin-
unpolarized electron liquid) is

ehx (n̄) = −3

4

(
3

π

)1/3

n̄4/3 . (34)

This gives the following expression for the LDA exchange
potential:

vLDA
x (r) = δ

δn(r)

[
−3

4

(
3

π

)1/3 ∫
d3r ′n(r′)4/3

]

= −
(

3

π

)1/3

n(r)1/3 . (35)

The correlation energy density ehc (n̄) is not exactly known,
but very accurate numerical results exist from quan-
tum Monte Carlo calculations. Based on these results,
parametrizations for the correlation energy of the homoge-
neous electron liquid have been derived [19–21].

The LDA generally performs very well across the board.
It produces atomic and molecular total ground-state ener-
gies within 1–5 % of the exact value, and yields molecular
equilibrium distances and geometries within about 3 %.
For solids, Fermi surfaces in metals come out within a few
percent, lattice constants of solids within about 2 %, and
vibrational frequencies and phonon energies are obtained
within a few percent as well.

On the other hand, the LDA has several shortcomings.
For instance, the LDA is not self-interaction free; as a con-
sequence, the xc potential goes to zero exponentially fast
and not as −1/r (26). This causes the Kohn–Sham energy
eigenvalues to be too low in magnitude in general; in partic-
ular, the highest occupied eigenvalue εN underestimates the
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ionization energy typically by 30–50 %. The LDA does not
produce any stable negative ions, and it underestimates the
band gap in solids. Dissociation of heteronuclear molecules
in LDA produces ions with fractional charges.

Overall, the LDA often gives good results in solid-state
physics and materials science, but it is usually not accurate
enough for many chemical applications.

The LDA can be improved by including a dependence
not only on the local density itself but also on gradients
of the density. This defines the so-called generalized gradi-
ent approximation (GGA), which has the following generic
form:

EGGA
xc [n↑, n↓] =

∫
d3rexc

(
n↑(r), n↓(r),∇n↑(r),∇n↓(r)

)
.

(36)

There exist hundreds of different GGA functionals, and
it is impossible to list all of them here. Among the most
famous ones are the B88 exchange functional [23], the LYP
correlation functional [24] (which, combined together, give
the BLYP functional), and the PBE functional [25]. The
exchange part of the latter has the following form:

EPBE
x =

∫
d3rehx (n)

[
1 + κ − κ

1 + βπ2s2/3κ

]
, (37)

where s(r) = |∇n(r)|/2n(r)kF (r), kF (r) is the local Fermi
wavevector, and κ and β are given parameters.

The GGAs have been crucial in the great success story
of DFT over the past couple of decades, due to their
accuracy combined with computational simplicity. How-
ever, improvements are still desirable. One of the most
important breakthroughs has been the development of the
so-called hybrid functionals, which mix in a fraction of
exact exchange:

E
hybrid
xc = aEexact

x + (1 − a)EGGA
x +EGGA

c , (38)

where a is a mixing coefficient that has a value of around
0.25. The most famous hybrid functional is B3LYP [26],
which nowadays has become the workhorse of computa-
tional chemistry. It should be noted that the exact exchange
mixed in here prevents the easy construction of a local xc
potential, so hybrid functionals are defined in the so-called
generalized Kohn–Sham scheme [27, 28].

Table 1 gives an assessment of various approximate xc
functionals, carried out for large molecular test sets [22].
All xc functionals perform much better than Hartree–Fock.
It is evident that the B3LYP functional gives the best overall
results, with accuracies that come close to the requirements
for predicting chemical reactions (the so-called “chemical
accuracy” of 1 kcal/mol).

In solids, hybrid functionals such as B3LYP perform less
well, due to the fact that they do not reduce to the exact
homogeneous electron gas limit [29]. A detailed assessment

Table 1 Mean absolute errors in several molecular properties calcu-
lated for various test sets [22]

Formation Ionization Equilibrium Vibrational

enthalpya potentialb bond lengthc frequencyd

HF 211.54 1.028 0.0249 136.2

LSDA 121.85 0.232 0.0131 48.9

BLYP 9.49 0.286 0.0223 55.2

PBE 22.22 0.235 0.0159 42.0

B3LYP 4.93 0.184 0.0104 33.5

aFor a test set of 223 molecules (in kcal/mol)
bFor a test set of 223 molecules (in eV), evaluated from the total-
energy differences between the cation and the corresponding neutral,
for their respective geometries
cFor a test set of 96 diatomic molecules (in Angstroms)
dFor a test set of 82 diatomic molecules (in centimeters)

of the performance of modern density functionals for bulk
solids was given by Czonka et al. [30]. Generally speak-
ing, GGA functionals do not improve the lattice constants in
nonmolecular solids obtained with LDA (which are already
very good!): while LDA systematically underestimates lat-
tice constants, GGA overestimates them. Vice versa, bulk
moduli and phonon frequencies are typically overestimated
by LDA and underestimated by GGA. This clearly affects
many properties of solids which are volume-dependent such
as their magnetic behavior. Some typical results for lattice
constants are given in Table 2.

A particular class of hybrid functionals, called range-
separated hybrids, has attracted much interest lately [33].
The basic idea is to separate the Coulomb interaction into a
short-range (SR) and a long-range (LR) part:

1

|r − r′| =
f (μ|r − r′|)

|r − r′| + 1 − f (μ|r − r′|)
|r − r′| , (39)

where the function f has the properties f (μx → 0) = 1
and f (μx → ∞) = 0.

Table 2 Equilibrium lattice constants of some representative bulk
solids [30]

LDA PBE PBEsol TPSS Experiment

Li 3.363 3.429 3.428 3.445 3.449

Na 4.054 4.203 4.167 4.240 4.210

Cu 3.517 3.628 3.562 3.575 3.595

Si 5.403 5.466 5.431 5.451 5.416

NaCl 5.465 5.700 5.602 5.703 5.565

MgO 4.168 4.255 4.223 4.237 4.184

The experimental data include a subtraction of zero-point motion
effects. PBEsol is a variant of the PBE functional [31], and TPSS is
a so-called meta-GGA functional, which contains a dependence on
density gradients and on the kinetic energy density [32]
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Common examples are f (μx) = e−μx and f (μx) =
erfc(μx). The separation parameter μ is determined either
empirically [34–38] or using physical arguments [33, 39].
The resulting range-separated hybrid xc functional then has
the following generic form:

Exc = ESR−DFA
x + ELR−HF

x +EDFA
c , (40)

where DFA stands for any standard density functional
approximation such as the LDA or GGA. The main strength
of range-separated hybrids is that they have the correct
(Hartree–Fock) long-range asymptotic behavior, and at the
same time take advantage of the good short-range behav-
ior of LDA or GGA. This, in turn, leads to a significant
improvement in properties such as the polarizabilities of
long-chain molecules, bond dissociation, and, particularly
importantly for TDDFT, Rydberg, and charge-transfer exci-
tations (see Section 6.3).

This concludes our very brief survey of ground-state
DFT. Let us now come to the dynamical case.

3 Survey of Dynamical Phenomena

The stationary many-body problem was defined in Section
2.1. Solving the Schrödinger equation (1) allows us to obtain
the eigenstates of an N -particle system. The time-dependent
Schrödinger equation is given by

i
∂

∂t
�j (r1, . . . , rN, t) = Ĥ (t)�j (r1, . . . , rN, t) , (41)

where the time-dependent Hamiltonian is defined as

Ĥ (t) = T̂ + V̂ (t)+ Ŵ . (42)

The time-dependent Hamiltonian has the same kinetic
energy and electron–electron interaction parts T̂ and Ŵ

as the static Hamiltonian (2), but it features an external
potential operator that is explicitly time-dependent:

V̂ (t) =
N∑

j=1

v(rj , t) . (43)

The time-dependent Schrödinger equation (41) formally
represents an initial value problem. We define a time t0 as
our initial time (often, t0 = 0), and we start with a given
initial many-body wave function of the system, �(t0) ≡ �0

(notice that this is not necessarily the ground state). This
state is then propagated forward in time, describing how the
system evolves under the influence of the time-dependent
potential v(r, t). In many situations of practical interest, the
time-dependent single-particle potential can be written as

v(r, t) = v0(r)+ θ(t − t0)v1(r, t) , (44)

i.e., the potential is static and equal to v0 until time t0 when
an explicitly time-dependent additional potential v1(t) is
switched on.

The time-dependent wave function allows us to calculate
whatever observable we may be interested in,

O(t) = 〈�(t)|Ô|�(t)〉. (45)

Here, O(t) is the time-dependent expectation value of the
Hermitian operator Ô corresponding to a quantum mechan-
ical observable. Two key quantities for TDDFT are the time-
dependent density and current density, n(r, t) and j(r, t).
They can be defined via the one-particle density operator
and current density operator,

n̂(r) =
N∑

i=1

δ(r − ri ) (46)

ĵ(r) =
N∑

i=1

[∇i δ(r − ri )+ δ(r − ri )∇i ] (47)

so that n(r, t) = 〈�(t)|n̂(r)|�(t)〉 and similar for j(r, t). A
connection between density and current density is provided
by the continuity equation,

i
∂

∂t
n(r, t) = −∇ · j(r, t) . (48)

There are many different types of quantum mechanical time

evolution that are of practical interest. Many of them belong
to one of the following two generic scenarios.

First scenario. Consider a system that starts from a
nonequilibrium initial state, and then freely evolves in a
static potential. A simple one-dimensional example is illus-
trated in Fig. 2: at the initial time t0, the density has an
asymmetric shape which clearly does not come from an
eigenstate of the square-well potential. The density is then
“released” and starts to oscillate back and forth, while the
square-well potential remains static.1

This kind of free time evolution occurs in practice when
the system is subject to a sudden switching or a short “kick”
at the initial time, and is then left to itself. For example,
charge–density oscillations that are triggered in this way
play an important role in the field of “plasmonics” [40].

Second scenario. Consider now a system that is initially in
the ground state, and is then subject to a time-dependent
potential that is switched on at time t0. This is illustrated in
Fig. 3 for a square-well potential that is “shaken” by super-
imposing it with a time-dependent linear potential, which
again leads to an oscillating density.

For example, this scenario takes place if an atom or
molecule is hit by a strong laser pulse: the wave function is

1Strictly speaking, the wave function should penetrate a little bit into
the barrier if the square-well has finite depth. We ignore this for
simplicity and clarity of presentation.
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Fig. 2 (Colored online) First scenario of time evolution: the external
potential is static, but the system starts with a nonequilibrium initial
state. The density then oscillates back and forth

driven by the external field and gets “shaken up,” which can
then lead to ionization.

TDDFT will allow us to describe both dynamical scenar-
ios formally exactly for arbitrary many-body systems. To do
this, we will derive a dynamical version of the Kohn–Sham
equations, which will allow us to carry out real-time prop-
agations of quantum systems, starting from arbitrary initial
states and under the influence of arbitrary time-dependent
potentials. We will derive the formal framework of TDDFT
in Section 4, and we will discuss practical aspects and
applications in Section 5.

Of particular importance are situations in which the
external time-dependent potential can be considered a weak
perturbation. Very often, one is interested in the first-
order response of the system to a perturbation, because
many spectroscopic techniques are used this regime. In
particular, the linear response of a material is directly related

0tt

0tt >

Fig. 3 (Colored online) Second scenario of time evolution: the sys-
tem starts from the ground state and evolves under a time-dependent
external potential that is switched on at the initial time t0

to its spectrum of excitations. As we will see in Sections 6
and 7, TDDFT in the linear response regime is a very
powerful approach to calculate excitation energies and opti-
cal spectra. In fact, this is where the majority of TDDFT
applications are carried out at present.

4 The Formalism of TDDFT

4.1 The Runge–Gross Theorem

The foundation of ground-state DFT is the Hohenberg–
Kohn theorem, which we discussed in Section 2.2. The
unique 1:1 correspondence between ground-state densities
and potentials makes it possible to construct density func-
tionals in a meaningful way, and to determine ground-state
properties in principle exactly via self-consistent solution of
the Kohn–Sham equation.

For the time-dependent case, we would like a similar rig-
orous formal foundation. But the situation is different from
the ground state, in two important ways. First, we do not
have a variational minimum principle in the time-dependent
case. Secondly, the Schrödinger equation (41) is an initial
value problem, so whatever we will prove has to be done
with a given initial state in mind.

The first to deliver an existence proof for TDDFT were
Runge and Gross in [9]. They proved that if two N -electron
systems start from the same initial state, but are subject
to two different time-dependent potentials, their respective
time-dependent densities will be different.

We consider two time-dependent potentials to be differ-
ent if their difference is more than just a time-dependent
constant,

v(r, t)− v′(r, t) �= c(t) (49)

for t > t0. Otherwise, they would give rise to two wave
functions that differ only by a phase factor e−iα(t), where
dα(t)/dt = c(t), as can easily be shown. Such purely
time-dependent phase factors cancel out when one forms
expectation values of operators using (45).

The Runge–Gross theorem applies to potentials that can
be expanded in a Taylor series about the initial time:

v(r, t) =
∞∑

k=0

vk(r)
k! (t − t0)

k . (50)

For such potentials, the following unique 1:1 correspon-
dence can be proven:

v(r, t)
unique 1:1

fixed 0
n(r, t) .

(51)
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The proof proceeds in two steps. In the first step, it is
established that different potentials produce different cur-
rent densities, infinitesimally later than the initial time t0.
One then goes on to show that if the current densities are
different, the densities must be different as well; to prove
this, the continuity equation (48) is used.

Just like in ground-state DFT, the unique 1:1 correspon-
dence (51) allows us to write the potential as a functional of
the density:

v(r, t) = v[n,�0](r, t) . (52)

Notice the formal dependence on the initial state. However,
this dependence goes away if the system starts from the
ground state, i.e., �0 = �gs: the Hohenberg–Kohn theorem
then tells us that �gs[n] is a functional of the density, and
v(r, t) can be thus written as a functional of the density only.

Since the potential can be written as a functional of the
density, the time-dependent Hamiltonian becomes a den-
sity functional as well, and hence the time-dependent wave
function and all observables:

O(t)= 〈�[n,�0](t)|Ô|�[n,�0](t)〉 =O[n,�0](t). (53)

4.2 Time-Dependent Kohn–Sham Formalism

The Kohn–Sham formalism (see Section 2.3) has been
tremendously successful in ground-state DFT. Its time-
dependent counterpart looks very similar. The exact time-
dependent density, n(r, t), can be calculated from a nonin-
teracting system with N single-particle orbitals:

n(r, t) =
N∑

j=1

|ϕj (r, t)|2 . (54)

The orbitals ϕj (r, t) satisfy the time-dependent Kohn–Sham
equation:

i
∂

∂t
ϕj (r, t) =

[
−∇2

2
+ vs(r, t)

]
ϕj (r, t) , (55)

where the time-dependent effective potential is given by

vs[n,�0, 0](r, t)=v(r, t)+vH(r, t)+vxc[n,�0, 0](r, t).
(56)

Here, v(r, t) is the time-dependent external potential, which
we assume to have the form (44). The time-dependent
Hartree potential,

vH(r, t) =
∫

d3r ′ n(r
′, t)

|r − r′| , (57)

depends on the instantaneous time-dependent density only.
The time-dependent xc potential formally has a functional
dependence on the density, the initial many-body state �0

of the exact interacting system, and the initial state of the

Fig. 4 The time-dependent Kohn–Sham equation determines the
time-dependent density self-consistently between the initial time t0 and
some final time t1. The xc potential at time t depends on densities at
times t ′ ≤ t , as well as on the initial states of the interacting and of the
Kohn–Sham system

Kohn–Sham system 0. This is schematically illustrated in
Fig. 4.

4.3 Discussion: Beyond Runge–Gross

The Runge–Gross theorem in and by itself is sufficient to
serve as the fundamental formal basis of TDDFT. However,
there are some subtle questions that it leaves unanswered
and some situations that are not covered by it. Extending
the Runge–Gross theorem, or coming up with alternative
proofs, has therefore been an area of significant research
activity.

This section can be skipped by readers who may be
less interested in the formal details of TDDFT, and more
interested in practical aspects.

4.3.1 v-Representability and the van Leeuwen Theorem

An important question in ground-state DFT is the follow-
ing: given a well-behaved (i.e., continuous and not singular)
mathematical function n(r), with

∫
d3rn(r) = N , can one

always find a potential v0(r) where this n(r) is a ground-
state density? This is known as the v-representability ques-
tion; one distinguishes the interacting and the noninteracting
v-representability problem, depending on whether the given
density is to be reproduced in the physical (interacting) or
in the Kohn–Sham (noninteracting) system.

Why is v-representability an important issue? If there
exist density functions that are not v-representable (VR),
then the domain of the functional Ev0[n] would be ill-
defined, and one would run into formal problems in defining
functional derivatives such as in (21). The v-representability
problem in DFT is still not fully solved, but at least we do
know that all density functions on lattice systems are VR
[41] (ensemble-VR, to be precise). Fortunately, it turns out
that the v-representability problem in ground-state DFT can
be circumvented in an elegant way with the so-called con-
strained search formalism [42, 43], which is, essentially, a
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clever reformulation of the variational minimum principle
as a search over antisymmetric N -particle wave functions,
so that

Ev0[n] = min�→n〈�|T̂ + V̂0 + Ŵ |�〉. (58)

For TDDFT, the situation is different, due to a funda-
mental difference between the ground-state problem and
the time-dependent problem: rather than finding a ground
state, TDDFT describes the time propagation of many-
body systems under the influence of external potentials.
Due to the central role the external potential plays, the v-
representability problem [i.e., whether there exists a v(r, t)
for every n(r, t)] seems unavoidable.

TDDFT is not formulated on the basis of a variational
minimum principle, since there is no quantity equivalent to
the role of energy in time-dependent systems. Instead, it is
possible to formulate TDDFT via a stationary-action prin-
ciple [44–46]. However, the uniqueness of the stationary-
action point remains unproven. A rigorous time-dependent
version of the constrained search approach does not exist,
despite some attempts [47, 48].

Some progress has been made with the time-dependent
v-representability problem for lattice systems [49]. Interest-
ingly, it can happen very easily that perfectly well-behaved
lattice densities are not VR, in this case, for well-understood
reasons [50].

The van Leeuwen theorem [51] made an important con-
tribution towards the resolution of the v-representability
problem in TDDFT. It makes a statement about two
many-body systems with different particle–particle inter-
actions, w(r − r′) (system 1) and w′(r − r′) (system 2),
see Fig. 5. If a time-dependent density n(r, t) is produced
by an external potential v(r, t) in system 1 (starting from
a given initial state), then one can uniquely construct the
potential v′(r, t) that produces the same density in system 2
(the choice of initial state in system 2 is unique, too). There
are some restrictions on the admissible densities: they must
possess a Taylor expansion in t about the initial time (we
denote such densities as t-TE). Below, we show that this
assumption can be problematic.

The van Leeuwen theorem has two important special
cases. The first is that of w = w′, i.e., the two systems are
identical. It turns out that in this way, one gains an alter-
native proof of the Runge–Gross theorem. The second case
is w′ = 0, i.e., the second system is noninteracting. This
establishes noninteracting v-representability in TDDFT, and
hence provides formal justification of the time-dependent
Kohn–Sham approach.

4.3.2 Non-Taylor-Expandable Densities

The van Leeuwen theorem shows that for t-TE densities,
one can always construct the corresponding t-TE potential
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Fig. 5 The van Leeuwen theorem states that a time-dependent density
n(t) coming from a many-body system with interaction w(r − r′) and
potential v(r, t) can be reproduced in a system with different inter-
action, w′(r − r′) and potential v′(r, t). The potential v′ is uniquely
determined

for the TDKS system. However, there is a subtle difference
between the domain of the van Leeuwen theorem and the
Runge–Gross theorem, as the latter only requires the exter-
nal potentials to be t-TE (50), but not the densities. The
van Leeuwen theorem does not apply to non-t-TE densities,
which are allowed by the Runge–Gross theorem. Such den-
sities are commonly considered pathological and thus are
not considered to pose any threat. However, it turns out [52,
53] that the densities of most real world systems can become
non-t-TE, including atoms, molecules, and solids!

In the usual nonrelativistic quantum mechanical descrip-
tion, the nuclei and electrons interact through the diverging
Coulomb potential, and the densities always have cusps
at the positions of nuclei [54]. The dynamics of the sys-
tem, including the time-dependent density, is determined by
the time evolution operator Û(t, t0), which in turn follows
from the Hamiltonian Ĥ (t). In the presence of space-
non-analytic features such as cusps, time-non-analyticities
appear because of the kinetic energy operator T̂ , which is
a differential operator in space. Thus, the time-dependent
density can become non-t-TE.

A striking example [52] demonstrating the difference
between the exact density and the t-TE density is shown in
Fig. 6 (the t-TE density is defined as the result of apply-
ing the t-TE time evolution operator on the initial state). At
the initial time, a density with a cusp is prepared, and then
allowed to freely evolve in time. The upper panel of Fig. 6
shows that the density rapidly becomes smooth and spreads
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Fig. 6 (Colored online) Upper panel: time-dependent density of a
1D system with initial state ψ(x) = exp(−|x|) propagating with no
external potential. Lower panel: using a Taylor expansion in time, the
initial density remains stationary. This wrong behavior is due to the
nonanalyticity of the density

out. By contrast, if one attempts to find the time evolution
by using a Taylor expansion, the density does not move
at all!

We emphasize that although the Runge–Gross theorem is
explicitly formulated for t-TE densities, the original proof
remains valid despite the existence of non-t-TE densities
[53]. Thus, the foundations of TDDFT remain sound.

4.3.3 Fixed-Point Proofs

Recent work on the v-representability problem and related
questions focuses on developing so-called fixed-point
proofs [55, 56], where the previous limitation of t-TE is
lifted. The van Leeuwen theorem provides a way of con-
structing the time-dependent external potential for a given
density, if the density is t-TE; if applied on non-t-TE den-
sities, the constructed potential does not correspond to the
exact density, but in turn reproduces the t-TE density [53].
The fixed-point proofs [55, 56] thus focus on explicitly

showing the one-to-one correspondence between the poten-
tial and the density. The proof starts from the equation of
motion of the density [51]:

∂2n(r, t)
∂t2

− ∇ · [n(r, t)∇v(r, t)] = q(r, t). (59)

The density and the quantity q can be seen as functionals of
the potential, and thus (59) uniquely maps a potential v0 to
q[v0], with the density n[v0, �0] determined by v0 and the
initial wave function �0. In another perspective, (59) can
also be seen as a differential equation for the potential, when
n and q are given. If this given density is chosen to coincide
with the initial density of the system and with its first-order
time-derivative, and q is chosen to be q[v0], (59) can be
solved for the potential, denoted as v1. Ref. [55] proves that
under mild restrictions, v0 = v1, showing the mutual corre-
spondence between the density and the potential. The proof
is strengthened by recent numerical simulations [56]. The
fixed-point proofs apply to densities confined within a finite
(but arbitrarily large) space region, and the cases of density
cusps are included in a limiting sense. It is not clear as of
now whether these restrictions are general enough for the
v-representability problem.

4.3.4 Vector Potentials and Time-Dependent Current-DFT

TDDFT applies to electronic many-body systems in the
presence of time-dependent scalar potentials. But there are
important classes of time-dependent processes that are not
included, namely, many-body systems in time-dependent
magnetic fields or under the influence of electromagnetic
waves. This is obviously a very severe omission, because
this means that, strictly speaking, this precludes discussing
the interaction between light and matter! In practice, we can
often get around this restriction and treat electromagnetic
fields in dipole approximation, so that TDDFT is applicable.
But in the general case, to deal with vector potentials of the
form A(r, t), we need a theory that goes beyond TDDFT.

In general, a system can be under the influence of both a
scalar and a vector potential, v(r, t) and A(r, t). The many-
body Hamiltonian is then given by

Ĥ (t) =
N∑

j=1

{
1

2

[∇j

i
+ A(rj , t)

]2

+ v(rj , t)

}
+ Ŵ . (60)

The time-dependent many-body wave function associated
with Ĥ (t) determines the density n(r, t) and the current
density j(r, t). It is important to keep in mind that the cur-
rent density, like any general vector field, has a longitudinal
and a transverse component,

j(r, t) = jL(r, t)+ jT (r, t) . (61)
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The longitudinal current density is related to the density via
the continuity equation:

∂

∂t
n(r, t) = −∇ · jL(r, t) , (62)

but the transverse component jT (r, t) is not determined by
n. Hence, current densities are, in general, not VR [57]: if
j(r, t) = jL(r, t) + jT (r, t) comes from a potential v(r, t),
then j′(r, t) = jL(r, t)+ j′T (r, t) (same longitudinal but dif-
ferent transverse component) cannot come from a potential
v′(r, t), since this would violate the Runge–Gross theorem.
Hence, we need the full mapping

(v,A) ↔ (n, j) . (63)

However, this map is determined up to within a gauge
transformation:

v(r, t) → v(r, t)− ∂

∂t
�(r, t) (64)

A(r, t) → A(r, t)+∇�(r, t) , (65)

where �(r, t) is an arbitrary (but well-behaved) gauge func-
tion which vanishes at the initial time. Often, one chooses
the gauge function in such a way that the scalar potential
vanishes.

Ghosh and Dhara [58] were the first to give a formal
proof of time-dependent current-DFT (TDCDFT). More
recently, an alternative existence proof of TDCDFT, in
the spirit of the van Leeuwen theorem, was provided by
Vignale [59]. TDCDFT on lattice systems was discussed by
Tokatly [60]. The time-dependent Kohn–Sham equation in
TDCDFT becomes

i
∂

∂t
ϕj (r, t) =

{
1

2

[∇
i
+ As(r, t)

]2

+ vs(r, t)

}
ϕj (r, t) ,

(66)

where the effective scalar potential, as before, is given by
(56), and the effective vector potential is

As (r, t) = A(r, t)+ Axc(r, t) . (67)

Notice that the effective vector potential does not con-
tain a Hartree-like term due to induced currents, since this
would be relativistically small. The gauge-invariant physical
current density is given by

j(r, t) = n(r, t)As (r, t)+ 1

i

N∑

j=1

�[ϕ∗
j (r, t)∇ϕj (r, t)]. (68)

Let us summarize the key points of TDCDFT:

1. TDCDFT overcomes formal limitations of TDDFT,
allowing treatment of electromagnetic waves and gen-
eral vector potentials and time-varying magnetic fields.
However, electromagnetic waves are usually treated
in dipole approximation, so one rarely makes use of
TDCDFT in this way.

2. The Runge–Gross theorem of TDDFT has been proved
for finite systems, where the density vanishes at infin-
ity. However, it also works for periodic systems [61],
provided the external potential is also periodic. The
Runge–Gross theorem does not apply when a uniform
homogeneous field acts on a periodic system. This case,
however, is formally included in TDCDFT [59].

3. TDCDFT can be very useful in situations that could,
in principle, be fully described with TDDFT; using the
current as basic variable, rather than the density, can
make it easier to develop approximations for dynamical
xc effects [62, 63].

5 Practical Aspects

To apply TDDFT in practice requires the following
considerations:

• A suitable approximation for the time-dependent xc
potential needs to be found;

• The time-dependent Kohn–Sham equations need to be
solved numerically;

• The physical observables of interest need to be obtained
from the time-dependent density.

Each of these points has its own challenges. We shall now
address them individually, including some examples.

5.1 The Time-Dependent xc Potential

As we said in Section 4.2, the time-dependent xc poten-
tial is formally a functional of the time-dependent density
as well as the initial states, vxc[n,�0, 0](r, t). In practice,
one is usually interested in situations where the system is
initially in the ground state. If this is the case, things sim-
plify considerably: thanks to the Hohenberg–Kohn theorem
of ground-state DFT, the initial states become functionals of
the initial (ground-state) density, and the xc functional can
be written as a density functional only, vxc[n](r, t).

However, the density dependence of the xc potential is
complicated and nonlocal: the xc potential at space-time
point (r, t) depends on densities at all other points in space
and at all previous times, n(r′, t ′), where t ′ ≤ t (the poten-
tial cannot depend on densities in the future—this would
violate the fundamental principle of causality).

The most widely used approximation for the xc potential
is the adiabatic approximation:

vA
xc(r, t) = v

gs
xc[n0](r)|n0(r)=n(r,t), (69)

where v
gs
xc, the ground-state xc potential defined in (21),

is evaluated at the instantaneous time-dependent density.
Equation (69) becomes exact for an infinitely slowly vary-
ing system which is in its ground state for any time. In
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practice, this is of course not the case (unless one considers
a time-dependent system which just sits there in its ground
state, doing nothing).

One of the most important questions in TDDFT is under
what circumstances the adiabatic approximation works
well. Numerical studies [64–66] demonstrate that the adia-
batic approximation may break down if the system under-
goes very rapid changes, but it turns out that the adiabatic
approximation still works surprisingly well in many cases.
This will be further addressed below when we discuss the
calculation of excitation energies.

As of today, very few applications of TDDFT have
been carried out with nonadiabatic, explicitly memory-
dependent xc functionals [67–70]. Due to its simplicity,
the overwhelming majority of time-dependent Kohn–Sham
calculations use the adiabatic LDA (ALDA),

vALDA
xc (r, t) = vLDA

xc (n(r, t)) , (70)

or any adiabatic GGA defined in a similar way, by replac-
ing the ground-state density with the instantaneous time-
dependent density.

5.2 Observables

In Section 4.1, we showed that all physical observables are
formally functionals of the time-dependent density, see (53).
TDDFT gives, in principle, the exact time-dependent den-
sity n(r, t), and all quantities of interest must be obtained
from it. Some observables are easily calculated in this way,
but others are not. We will now give examples of both kinds.

5.2.1 Easy Observables

The easiest observable is the density itself, which shows
how electrons move during any time-dependent process.
This is certainly useful for visualizing molecular geometries
or structural changes during chemical reactions or photoin-
duced processes, but does not reveal important quantum
mechanical features such as atomic shell structure, cova-
lent molecular bonds, or lone pairs. Such information can
be gained from a convenient visualization tool known as
the time-dependent electron localization function (TDELF)
[71]. The TDELF is defined as a positive quantity with a
magnitude between zero and one:

fELF(r, t) = 1

1 + [Dσ(r, t)/D0
σ (r, t)]2

. (71)

The quantity

Dσ(r, t) = τσ (r, t)− |∇nσ (r, t)|2
8nσ (r, t)

− |jσ (r, t)|2
2nσ (r, t)

(72)

is a measure of the probability of finding an electron in
the vicinity of another electron of the same spin σ at
(r, t). Clearly, Dσ(r, t) is not an explicit density functional,

but it is expressed in terms of the density, the current,
and the orbitals via the kinetic energy density τσ (r, t) =
1
2

∑Nσ

j=1 |∇ϕjσ (r, t)|2. D0
σ in (71) is given by the kinetic

energy density of the homogeneous electron liquid:

D0
σ (r, t) =

3

10
(6π2)3/2n5/3

σ (r, t) = τhσ (r, t) . (73)

The time propagation is unitary, so the total norm is
conserved; but to describe ionization or charge transfer
processes, it is often of interest to obtain the number of
electrons that escape from a given spatial region V :

Nesc(t) = N −
∫

V
d3 n(r, t) . (74)

Here, V can be thought of as a “box” that surrounds the
entire system (in case we wish to calculate ionization rates
of atoms or molecules), or it could be a part of a larger
molecule or part of a unit cell of a periodic solid.

Another easy class of observables are moments of the
density, such as the dipole moment:

d(t) =
∫

d3r rn(r, t) . (75)

The dipole moment can be considered directly, i.e., in
real time, to study the behavior of charge–density oscilla-
tions. Alternatively, it can be Fourier transformed to yield
the dipole power spectrum |d(ω)|2 or related observable
quantities such as the photoabsorption cross section.

Higher moments of the density, such as the quadrupole
moment, can be calculated just as easily, but are less fre-
quently considered.

5.2.2 Difficult Observables

Equation (74) gives the total number of escaped electrons,
which in general can be nonintegral. For instance, if we con-
sider an atom in a laser field, a value of Nesc = 0.5 would
indicate that on average, half an electron has been removed.
In reality, there are of course no “half-electrons,” so we have
to interpret this result in a probabilistic sense: it could for
instance mean that there is 50 % probability that the atom
is singly ionized, and 50 % probability that it is not ion-
ized; other scenarios, involving double ionization, are also
possible. The probabilities to find an atom or molecule in a
certain charge state +m can be defined as follows [72]:

P 0(t) =
∫

V
d3r1 . . .

∫

V
d3rN |�(r1, . . . , rN , t)|2 (76)

P+1(t) =
∫

V

d3r1

∫

V
d3r2 . . .

∫

V
d3rN |�(r1, . . . , rN , t)|2 (77)

and similar for all other P+m(t). Here, V denotes all space
outside the integration box V surrounding the system. The
ion probabilities are defined in terms of the full many-body
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wave function �(t), which is a density functional according
to the Runge–Gross theorem; but it is not possible to extract
the ion probabilities P+m(t) directly from the density in an
elementary way.

Since the full wave function is prohibitively expensive
to deal with, a pragmatic solution is to replace �(t) by the
Kohn–Sham Slater determinant (t), in spite of the fact
that the latter has no rigorous physical meaning. One then
obtains the Kohn–Sham ion probabilities

P 0
s (t) = N1(t)N2(t) . . . NN(t) (78)

P+1
s (t) =

N∑

j=1

N1(t) . . . Nj−1(t)
(
1 −Nj(t)

)

×Nj+1(t) . . . NN(t) (79)

and similar for all other P+m
s (t), where

Nj(t) =
∫

V
d3r|ϕj (r, t)|2 . (80)

The Kohn–Sham ion probabilities are easily obtained from
the orbitals; but apart from certain limiting cases [72], they
are have no rigorous physical meaning [73, 74]. Here are
some other examples of difficult observables:

Photoelectron spectra. The photoelectron kinetic energy
distribution spectrum is formally defined as

P(E)dE = lim
t→∞

N∑

k=1

|〈�k
E|�(t)〉|2dE , (81)

where |�k
E〉 is a many-body eigenstate with k elec-

tron in the continuum and total kinetic energy E of the
continuum electrons. There are approximate ways of cal-
culating photoelectron spectra from the density or from
the Kohn–Sham orbitals [75–77].
State-to-state transition probabilities. The S-matrix
describes the transition between two states:

Si,f = lim
t→∞〈�f |�(t)〉 , (82)

for given initial and final many-body states �i and �f .
To get the S-matrix from the density, a cumbersome
implicit readout procedure was proposed [78].
Momentum distributions. Ion recoil momenta are of great
interest in high-intense field or scattering experiments.
The problem is formally similar to the problem of calcu-
lating ion probabilities from the density, and in principle
requires the full wave function in momentum space. The
Kohn–Sham momentum distributions can be taken as
approximation, without formal justification [79].
Transition density matrix.The transition density matrix is
a quantity that is defined in the linear response regime. As
the name indicates, it refers to a specific excitation of the
system (typically, a large molecular system), and maps

the distribution and coherences of the excited electron
and the associated hole. In particular, the transition den-
sity matrix is useful to visualize excitonic effects. There
is no easy way to obtain it directly from the density; the
best we can do is to construct the transition density matrix
from Kohn–Sham orbitals [80].

All the above examples have in common that they are
explicit expressions of the many-body wave function, or
of the N -body density matrix, but can only be implicitly
expressed as density functionals. One can get approximate
results by replacing the full many-body wave function with
the Kohn–Sham Slater determinant (t), but there is no
guarantee that this will give good results.

5.3 Applications

Real-time TDDFT has been implemented in several com-
puter codes, most notably the open-source code octopus
[81, 82]. A TDDFT code must deal with two basic numer-
ical tasks: (1) The Kohn–Sham orbitals of the system, and
its density, must be represented in space. This can be done
either with a suitable basis, or on a spatial grid using
finite-element or finite-difference discretization schemes
(octopus uses the latter). (2) Time must be discretized
as well, and the time-dependent Kohn–Sham equations are
propagated forward in time, step by step, ensuring norm
conservation.

Let us say a few words about the time propagation. Sup-
pose we know the Kohn–Sham orbitals up until some time
τn. The orbitals at the next time step, τn+1 = τn +�τ , can
then formally be written as

ϕj (τn +�τ) = Û(τn +�τ, τn)ϕj (τn) , (83)

where Û (τn +�τ, τn) is the time evolution operator which
propagates the orbitals one time step �τ forward. If �τ is
sufficiently small, we can approximate Û by

Û (τn +�τ, τn) ≈ e−iĤs (τn+�τ/2)�τ , (84)

where Hs(τn + �τ/2) is the time-dependent Kohn–Sham
Hamiltonian evaluated midway between the two time steps
(in practice, this requires a so-called predictor-corrector
scheme [1]). The time propagation (83) can be numeri-
cally implemented in various ways [83]; an example is the
Crank–Nicholson algorithm:

e−iĤs�τ ≈ 1 − iĤs�τ/2

1 + iĤs�τ/2
, (85)

which is correct to order (�τ)2 and unitary (hence, the
norm of the wave functions is conserved). This converts the
time-dependent Kohn–Sham equations into a set of linear
equations that can be numerically solved.
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The applications of real-time TDDFT can be roughly
divided into two categories, related to the two scenarios we
discussed in Section 3.

In the first class of applications, the system is initially
prepared in a nonequilibrium state through a sudden switch-
ing or a short impulsive excitation, and then allowed to
propagate freely in time [84–86]. The initial perturbation
is kept weak in order to avoid any nonlinear effects, but it
is spectrally broad and hence triggers a dynamical behav-
ior of the system in which essentially the entire range of
excitations participates. The time-dependent dipole moment
d(t), (75), is calculated over a certain time span, and
Fourier transformation yields the optical spectrum of the
system. The time propagation method has certain advan-
tages especially for large systems [87–90] and metallic
clusters [91], but is less frequently used for low-lying
excitations of smaller molecules. Below, in Section 6, we
will discuss an alternative way of calculating excitation
energies.

Figure 7 shows an example of such a calculation for the
CO2 molecule. The optical absorption spectrum, obtained
by Fourier transforming the time-dependent dipole moment,
agrees well with a spectrum that is obtained from linear
response TDDFT (we will discuss this approach in the
following section). Both spectra, in turn, agree well with
experiment [92].

The second class of applications is in the nonlinear
regime, and deals with systems that are subject to strong
excitations such as high-intensity laser pulses or collisions
with fast, highly charged ionic projectiles. The response
following such excitations can be highly nonlinear and far
beyond any treatment using perturbative methods. Propa-
gation of the time-dependent Kohn–Sham equations yields
the response to all orders, in principle exactly, including
collective many-body effects. Quantities of interest include
easy observables such as total ionization yields and high-
harmonic generation spectra, and difficult observables such
as photoelectron spectra, ion probabilities, or momentum
distributions.

Figure 8 shows an example. A CO2 molecule is hit with
a very short, high-intensity laser pulse which deposits a
large amount of excitation energy in a very short time. The
snapshot at t = 10.6 a.u. (1 a.u. equals 24 as) shows
how a packet of density flies off, and the remaining den-
sity is strongly distorted. The TDELF, (71), illustrates how
the electronic orbitals have become extremely diffuse, and
the bonds are essentially destroyed, which will cause the
molecule to break up.

TDDFT calculations for strong excitations have been car-
ried out over the past two decades for a variety of atomic
and molecular systems [73, 74, 79, 93–98] (see [99] for a
review). An intriguing question is whether it is possible to
design the excitation (i.e., the laser intensity, pulse shape,

and spectral composition) in such as way that a specific con-
trol goal can be achieved. The formal framework of TDDFT
and optimal control has been worked out [100, 101], but
some of the more interesting control goals may be diffi-
cult to achieve with standard (adiabatic) TDDFT approaches
[102–106].

6 TDDFT and Linear Response

6.1 Formalism

In many situations of practical interest, systems are sub-
jected to small perturbations and hence do not deviate
strongly from their initial state. This happens in most appli-
cations of spectroscopy, where the response to a weak probe
is used to determine the spectral properties of a system. In
this case, it is not necessary to seek a fully-fledged solution
of the time-dependent Schrödinger or Kohn–Sham equa-
tions (although this would yield the desired information,
too, as we have seen in Fig. 7). Instead, one can use per-
turbation theory. The goal of linear response theory is to
directly calculate the change of a certain variable or observ-
able to first order in the perturbation, without calculating
the change of the wave function. For us, the most important
example is the linear density response.

We consider the case where the system is initially in
the ground state and a time-dependent potential is switched
on at time t0, see (44). Now, however, v1(r, t) is treated
as a small perturbation. This perturbation will cause some
(small) time-dependent changes in the system, and the
density will become time-dependent. We expand it as
follows:

n(r, t) = n0(r)+ n1(r, t)+ n2(r, t)+ . . . . (86)

Here, n0 is the ground-state density, n1 is the linear den-
sity response (the first-order change in density induced by
the perturbation v1), n2 is the second-order density response
(quadratic in the perturbation v1), and there will be higher-
order terms which we have not explicitly indicated. If the
perturbation is small, the linear density response domi-
nates over all higher-order terms in the expansion (86). On
the other hand, if the perturbation is strong, a perturbation
expansion may not even converge! In that case, it makes
more sense to solve the Schrödinger (or Kohn–Sham) equa-
tions instead. Notice that all contributions to the density
response integrate to zero, e.g.,

∫
d3r n1(r, t) = 0, due to

norm conservation.
The linear density response can be formally written as

n1(r, t) =
∫ ∞

−∞
dt ′

∫
d3r ′χ(r, t, r′, t ′)v1(r′, t ′) . (87)
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Fig. 7 Time-dependent Kohn–Sham calculation for a CO2 molecule. Top: time-dependent dipole moment d(t) induced by an initial “kick.”
Bottom: dipole spectrum, obtained by Fourier transforming d(t) (full line), compared with the spectrum obtained from linear response TDDFT
(thin line)

Here, χ(r, r′, t − t ′) is the density–density response func-
tion, defined as [1, 18]

χ(r, t, r′, t ′) = −iθ(t − t ′)〈�gs|[n̂(r, t − t ′), n̂(r′)]|�gs〉 .
(88)

The step function θ(t − t ′) ensures that the response is
causal, i.e., the response comes after the perturbation.
Equation (88) shows that the response function is obtained
from the many-body ground state �gs, involving a com-
mutator of density operators (in interaction representation).
Hence, via the Hohenberg–Kohn theorem, it is formally a
functional of the ground-state density, χ[n0]. Usually, one
is more interested in the frequency-dependent response than
in the real-time response:

n1(r, ω) =
∫

d3r ′χ(r, r′, ω)v1(r′, ω) . (89)

The Fourier transform of the response function (88) can
be written in the following form, known as the Lehmann
representation [1, 18]:

χ(r, r′, ω) =
∞∑

n=1

{ 〈�gs|n̂(r)|�n〉〈�n|n̂(r′)|�gs〉
ω −�n + iη

−〈�gs|n̂(r′)|�n〉〈�n|n̂(r)|�gs〉
ω +�n + iη

}
,(90)

where the limit η → 0+ is understood. Here,

�n = En − E0 (91)

is the nth excitation energy of the many-body system. This
shows explicitly that the response function has poles at the
exact excitation energies of the system. This makes sense: if
we apply a perturbation v1(r, ω) whose frequency matches
one of the excitation energies, the response of the system is
very large (we see a peak in the spectrum).
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Fig. 8 (Colored online) Two snapshots of the time-dependent electron
localization function for a CO2 molecule, excited by a laser pulse of
photon energy 20 eV and intensity 1.2 × 1015 W/cm2. Insets: density
isosurfaces

If we knew the response function χ of the many-body
system, calculating the density response would be easy and
straightforward: all we have to do is evaluate expression
(89). From the density response, spectroscopic observables
of interest can then be calculated. For instance, one often
considers a monochromatic dipole field along, say, the z

direction,

v1(r, t) = Ez sin(ωt) . (92)

The dynamic dipole polarizability follows as

α(ω) = − 2

E
∫

d3r zn1(r, ω) , (93)

and the photoabsorption cross section σ(ω) is given by

σ(ω) = 4πω

c
�α(ω) . (94)

In TDDFT, the linear density response can be calculated,
in principle exactly, as the response of the noninteracting
Kohn–Sham system to an effective perturbation [107]:

n1(r, t) =
∫

dt ′
∫

d3r ′χs(r, t, r′, t ′)v1s(r′, t ′) . (95)

Here, χs(r, r′, t − t ′) is the density–density response func-
tion of the Kohn–Sham system. The effective perturbation

is given as the sum of the real external perturbation plus the
linearized Hartree and xc potentials:

vs1(r, t) = v1(r, t)+
∫

d3r ′
n1(r′, t)
|r − r′|

+
∫

dt ′
∫

d3r ′fxc(r, t, r′, t ′)n1(r′, t ′) . (96)

The so-called xc kernel is defined as the functional deriva-
tive of the time-dependent xc potential with respect to
the time-dependent density, evaluated at the ground-state
density:

fxc(r, t, r′, t ′) = δvxc[n](r, t)
δn(r′, t ′)

∣∣∣∣
n0(r)

. (97)

The effective perturbation (96) depends on the density
response, so the TDDFT response equation (95) has to
be solved self-consistently. Again, we are usually more
interested in the frequency-dependent response, given by

n1(r, ω) =
∫

d3r ′χs(r, r′, ω)v1s(r′, ω) , (98)

and

vs1(r, ω) = v1(r, ω) (99)

+
∫

d3r ′
{

1

|r − r′| + fxc(r, r′, ω)
}
n1(r′, ω) .

The frequency-dependent xc kernel is the Fourier transform
of fxc(r, t, r′, t ′) with respect to (t − t ′).

The Kohn–Sham response function is given by

χs(r, r′, ω) =
∞∑

j,k=1

(fk − fj )
ϕj (r)ϕ∗

k (r)ϕ
∗
j (r

′)ϕk(r′)
ω− ωjk + iη

,

(100)

where fj and fk are occupation numbers referring to the
configuration of the Kohn–Sham ground state (1 for occu-
pied and 0 for empty Kohn–Sham orbitals), and the ωjk are
defined as

ωjk = εj − εk . (101)

Thus, χs(r, r′, ω) has poles at the excitation energies of the
noninteracting Kohn–Sham system. Naively, one might con-
clude from this that the TDDFT linear response must be
wrong, since it contains a response function with the wrong
pole structure (we pointed out above that the exact response
function has poles at the exact excitation energies �n). The
resolution to this apparent contradiction lies in the self-
consistent nature of the TDDFT response equation, which
“cancels out” the wrong poles and restores the correct poles
of the many-body system.
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The TDDFT linear response formalism can be general-
ized to a spin-dependent form. The response equation is then
given by

n1σ (r, t) =
∑

σ ′

∫
dt ′

∫
d3r ′χsσσ ′(r, t, r′, t ′)v1sσ (r′, t ′) ,

(102)

where the Kohn–Sham response function is diagonal in the
spin index:

χsσσ ′(r, r′, ω) = δσσ ′
∞∑

j,k=1

(fkσ − fjσ )

×ϕjσ (r)ϕ∗
kσ (r)ϕ

∗
jσ (r

′)ϕkσ (r′)
ω − ωjkσ + iη

, (103)

and ωjkσ = εkσ − εjσ . The effective perturbation is

vs1σ (r, ω) = v1σ (r, ω)+
∑

σ ′

∫
d3r ′

×
{

1

|r − r′| + fxcσσ ′(r, r′, ω)
}
n1σ ′(r′, ω),

(104)

featuring the spin-dependent xc kernel fxcσσ ′ .

6.2 How to Calculate Excitation Energies

The excitation energies of a many-body system are defined
as the differences between the ground-state energy E0 and
the energies of higher-lying eigenstates, En, see (91). In
other words, they are obtained by comparing the ener-
gies of stationary states. Why, then, would one want to
use a time-dependent approach such as TDDFT? Isn’t that
unnecessarily complicated?

It helps to think of an excitation in a different way,
namely, as a dynamical process where the system transi-
tions between two eigenstates; the excitation energy then
corresponds to a characteristic frequency, which describes
the rearrangements of probability density during the tran-
sition process. In other words, each excitation corresponds
to a characteristic eigenmode of the interacting N -electron
system.

The concept of electronic eigenmodes has a familiar ana-
log in classical mechanics [108]. A system of s coupled
oscillators carrying out small oscillations is described by the
homogeneous linear system of equations

s∑

j=1

(kij −�2mij )Aj = 0 , i = 1, . . . , s, (105)

where the matrices kij and mij determine the potential and
kinetic energy of the system, respectively:

U = 1

2

s∑

ij

kij qiqj (106)

T = 1

2

s∑

ij

mij qiqj (107)

(the qj are generalized coordinates). Clearly, kij and mij

generalize the concept of spring constant and mass of a sim-
ple harmonic oscillator. The solutions of (105) are obtained
by finding the roots of the determinant,

det|kij −�2mij | = 0 . (108)

The s solutions �2
α, α = 1, . . . , s, are the eigenfrequencies

of the system, and the associated eigenvectors Ajα indicate
the profile of the eigenmode, and can be used to determine
the normal modes of the system.

It turns out that calculating excitation energies with
TDDFT is very similar to describing the small oscillations
of a classical system. Starting point is the TDDFT response
equation, (98), but without any external perturbation:

n1(r, ω) =
∫
d3r ′χs(r, r′, ω)

∫
d3r ′′fHxc(r′, r′′, ω)n1(r′′, ω) (109)

where we define the combined Hartree-xc kernel as
fHxc(r, r′, ω) = |r − r′|−1 + fxc(r, r′, ω). Equation (109)
has the trivial solution n1 = 0 for all frequencies ω, but at
certain special frequencies �, there are also nontrivial solu-
tions where the density response is finite and self-sustained,
despite the fact that there is no external perturbation. These
frequencies correspond to the excitation energies of the sys-
tem, and n(r, �) is the profile of the associated electronic
eigenmode.

To illustrate how this works, consider the simple case
of two electrons in a two-level system with Kohn–Sham
orbitals ϕ1(r) and ϕ2(r), assumed to be real. Each level is
twofold degenerate, and the lower level is doubly occupied.
Dropping the infinitesimal iη, the Kohn–Sham response
function (100) then simplifies to

χs(r, r′, ω) = 4ω21

ω2 − ω2
21

ϕ1(r)ϕ2(r)ϕ1(r′)ϕ2(r′). (110)

We substitute this into (109), and after a few simple manip-
ulations we find the condition

ω2 = ω2
21 + 4ω21K(ω) , (111)

where

K(ω) =
∫
d3r

∫
d3r ′ϕ1(r)ϕ2(r)fHxc(r, r′, ω)ϕ1(r′)ϕ2(r′).

(112)
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It is a simple exercise to repeat the above example using
the spin-dependent response formalism. Assuming that the
ground state is not spin-polarized (i.e., the spin-up and
spin-down orbitals are the same), one finds the following
solutions for the eigenmodes:

ω2± = ω2
21 + 2ω21[Kσσ (ω)±Kσσ̄ (ω)]. (113)

The plus sign represents a singlet excitation, and the minus
sign represents a triplet excitation.

The simple examples for two-level systems are instruc-
tive, but turn out not to be quantitatively accurate in practice
[109–111]. The eigenmodes can be calculated, in principle
exactly, using the so-called Casida equation [112]:
(

A K
K A

)(
X
Y

)
= �

(−1 0
0 1

)(
X
Y

)
, (114)

where the matrix elements of A and K are given by

Aiaσ,i ′a′σ ′(ω) = δii ′δaa′δσσ ′ωaiσ +Kiaσ,i ′a′σ ′(ω) (115)

Kiaσ,i ′a′σ ′(ω) =
∫

d3r

∫
d3r ′ϕ∗

iσ (r)ϕaσ (r)

×fHxcσσ ′(r, r′, ω)ϕi ′σ ′(r′)ϕ∗
a′σ ′(r′) (116)

and i, i ′ and a, a′ run over occupied and unoccupied Kohn–
Sham orbitals, respectively. A detailed derivation of (114)
can be found in Ref. [1].

If one assumes that the Kohn–Sham orbitals are real and
that the xc kernel is frequency-independent (more about this
assumption in Section 6.4), it is possible to recast the Casida
equation into the following form:

∑

i ′a′σ ′

[
δii ′δaa′δσσ ′(ω2

iaσ −�2)

+ 2
√
ωiaσωi ′a′σ ′Kiaσ,i ′a′σ ′

]
Zi ′a′σ ′ = 0 . (117)

This equation can be viewed as the TDDFT counterpart
of the eigenvalue equation (105) for classical small oscil-
lations. Hence, (117) yields the excitation energies and
eigenmodes of the given system.

Equation (114) mixes excitations and de-excitations (X
and Y, respectively). One may simplify (114) by setting the
off-diagonal K matrix to zero, which decouples excitations
and de-excitations. This so-called Tamm–Dancoff approxi-
mation (TDA) is valid if the excitation frequencies are not
close to zero, which is the case for molecules, semiconduc-
tors, and insulators. The TDA often helps to compensate
for deficiencies that arise because the xc functionals are not
exactly known and have to be approximated; the TDA can
therefore be preferable over the full calculation (in the sense
of getting qualitatively correct results) in certain situations
(e.g., triplet instabilities [113], conical intersections [114],
and excitons [115]).

6.3 Charge-Transfer Excitations

An important class of excitations are those in which
charge physically moves from one region (the donor) to
a second region (the acceptor) which is spatially sepa-
rated from the first. Such processes can occur in a wide
range of systems, such as in complexes of two or more
molecules, or between different functional groups within
the same molecule. Unfortunately, the standard approx-
imations in TDDFT fail for charge-transfer excitations
[116–118].

Consider the case where the donor and acceptor subsys-
tems are separated by a large distance R. The minimum
energy required to remove an electron from the donor is
given by the donor’s ionization potential Id . When the elec-
tron attaches to the acceptor, some of that energy is regained
via the acceptor’s electron affinity Aa . Once the electron
has moved from donor to acceptor, the two systems feel
the electrostatic interaction energy −1/R of the induced
electron–hole pair. The exact charge-transfer energy is
therefore

�exact
ct = Id −Aa − 1

R
. (118)

Now, let us compare this with TDDFT. To make our point, it
is sufficient to consider the two-level approximation, (111).
After linearization, we obtain

�ct = εaL − εdH + 2
∫
d3r

∫
d3r ′ ϕa

L(r)ϕ
d
H (r)

× fHxc(r, r′, ω)ϕa
L(r

′)ϕd
H (r′) , (119)

where ϕd
H (r) is the highest occupied donor orbital and ϕa

L(r)
is the lowest unoccupied acceptor orbital, which have expo-
nentially vanishing overlap in the limit of large separation.
Hence, the double integral in (119) becomes zero (assum-
ing that the xc kernel remains finite, which is certainly the
case for all standard approximations), and TDDFT simply
collapses to the difference between the bare Kohn–Sham
eigenvalues,

�ct −→ εaL − εdH . (120)

This explains why TDDFT often drastically underestimates
charge-transfer excitations when conventional xc function-
als are used. Hybrid xc functionals [119, 120], in particular
the range-separated hybrids of Section 2.5, offer a solu-
tion to this problem, and have been successfully used to
describe charge-transfer excitations in a variety of systems
[121–123].

6.4 Beyond the Adiabatic Approximation

The exact excitation spectrum of a physical system is deter-
mined by the poles of the full response function χ , (90). All
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of the excitation energies �n of the many-body system are,
in principle, obtained by solving the Casida equation (114).
But it is found that within the adiabatic approximation for
fxc, some of the excitations are missing [124–126]! The
missing excitations turn out to be those that have the char-
acter of double (or multiple) excitations, i.e., the associated
many-body excited states, if expanded in a basis of Kohn–
Sham Slater determinants, contain dominant contributions
of doubly excited configurations.

The Kohn–Sham noninteracting response function χs
(100) has poles at the Kohn–Sham single excitations. Com-
pared with the many-body response function (90), χs has
fewer poles, since a noninteracting system cannot have dou-
ble and multiple excitations in linear response. Solving
the Casida equation in a finite basis and using the adia-
batic approximation for fxc, as is done in practice, will
not change the number of poles, but just shift them. To
obtain double excitations, a frequency-dependent fxc(ω)

is needed which will generate additional solutions, since
the Casida equation then becomes a nonlinear eigenvalue
problem.

Thus, we can say the following about the adiabatic
approximation in TDDFT:

• The adiabatic approximation works well for those
excitations of the physical system for which a cor-
respondence to a single excitation in the Kohn–
Sham system exists. The Casida equation then shifts
the Kohn–Sham excitations towards the true single
excitations.

• The frequency dependence of fxc must kick in for those
excitations of the physical system that are missing in
the Kohn–Sham system, namely, double or multiple
excitations.

Several nonadiabatic TDDFT approaches for the descrip-
tion of molecular double excitations have been explored in
the literature. One of them is known as dressed TDDFT
[127], where a frequency-dependent xc kernel is explic-
itly constructed within a small subspace. Other nonadiabatic
approaches are based on many-body theory [128–131].
However, none of these approaches is sufficiently straight-
forward to be part of mainstream TDDFT.

6.5 Periodic Systems and Long-Range Behavior

As seen from (115 and 116), the Casida equation is
expressed in the space spanned by one-particle Kohn–Sham
transitions [132]. Real-space kernels are suitable for calcu-
lations of finite systems such as atoms and molecules. For
periodic systems like solids, the momentum space repre-
sentation of the Hartree-xc kernel is more convenient. In
Section 7.4, we will use this approach to describe the optical
properties of insulating solids.

The real-space representation of the kernel is related to
the momentum space representation as

fHxcσσ ′(r, r′, ω) = 1

V

∑

q∈FBZ

∑

G,G′
ei(q+G)·r

×fHxcσσ ′(q,G,G′, ω)e−i(q+G′)·r′,
(121)

where G, G′ are reciprocal lattice vectors. With (121), the
Hartree-xc kernel in transition space, (116), becomes

Kiaσ,i ′a′σ ′ = 1

V

∑

q∈FBZ

∑

G,G′
〈ikiσ |ei(q+G)·r|akaσ 〉

× fHxcσσ ′(q,G,G′)〈a′ka′σ
′|e−i(q+G′)·r′ |i ′ki ′σ

′〉
× δka−ki+q,G0δka′−ki′ +q,G′

0
, (122)

with the matrix elements defined as

〈ikiσ |ei(q+G)·r|akaσ 〉 ≡
∫
d3rφ∗

ikiσ (r)e
i(q+G)·rφakaσ (r),

(123)

where k’s are the Bloch wavevectors of the corresponding
wavefunctions, and G0, G′

0 can be any reciprocal lattice vec-
tor. The Kronecker-δs in (122) are a consequence of Bloch’s
theorem.

The Hartree part of fHxc can be shown to be largely irrel-
evant for the optical properties of insulators close to the gap
[133]; we therefore focus on the xc part in the following.
For G = G′ = 0 (the so-called head of fxc) in the impor-
tant limit of q → 0, which corresponds to infinite range in
real space, both matrix elements in (122) behave as O(q1).
All the local and semilocal xc kernels (derived from LDA
and GGA in the adiabatic approximation) have finite val-
ues for the head. Since the two matrix elements in (122)
together vanish as O(q2), the head contribution to the sum
of (122) is zero for all (semi)local kernels. For these ker-
nels, all changes to the Kohn–Sham spectrum come from
the body of fxc (where G �= 0, G′ �= 0).

Gonze et al. [134, 135] pointed out that the head of fxc

has to diverge as q−2 for q → 0 to correctly describe the
polarization of periodic insulators. With the q−2 divergence,
the head of fxc contributes in the sum of (122), dominating
the other parts of fxc [wings (G = 0,G′ �= 0 or vice versa)
and body]. Local and semilocal xc kernels do not have this
long-range behavior, and there is no obvious and consistent
way of modifying them to include the long range.

The long-range behavior of the xc kernel is unimportant
for low-lying excitations in finite systems such as atoms and
molecules, which means that local and semilocal xc kernels
will work reasonably well. However, for extended and peri-
odic systems, it is crucial to have xc kernels with the proper
long-range behavior to obtain correct optical spectra [133,
136]. We will discuss this further in Section 7.4.
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7 Applications in Linear Response

Linear response TDDFT has been implemented in many
computer codes in quantum chemistry and materials sci-
ence. In this section, we will give an overview of some of
the most important areas of application.

7.1 Standard Approximations for the xc Kernel

To carry out a TDDFT calculation in the linear response for-
malism, one must know the xc kernel. The simplest thing to
do is to use the random phase approximation (RPA), where
the xc kernel is set to zero:

f RPA
xc (r, r′, ω) = 0. (124)

This seemingly trivial kernel originates from many-body
theory, where one sums up all the ‘bubble’ type diagrams
[18]. Though the form is similar to time-dependent Hartree,
TDDFT RPA is fundamentally different due to the use of the
Kohn–Sham system. The RPA kernel has seen applications
for molecules and is known to produce reasonably good
results. For insulating solids, the RPA spectra are missing
important features such as excitonic effects (see below).

The proper way to obtain fxc is via (97): first
approximate the time-dependent xc potential, calculate
fxc(r, t, r′, t ′) by taking the functional derivative, and then
get the frequency-dependent kernel fxc(r, r′, ω) via Fourier
transform. However, these steps are rarely carried out in
practice, since most of the xc kernels in use are adia-
batic kernels. Recall the adiabatic approximation for the xc
potential, (69), which uses the ground-state functional and
evaluates it at the time-dependent density. The adiabatic
approximation for the xc kernel is

f A
xc(r, r′) = δv

gs
xc[n0](r)
δn0(r′)

= δ2Exc[n0]
δn0(r)δn0(r′)

, (125)

which is frequency-independent.
An important example is the ALDA xc kernel:

f ALDA
xc (r, r′) = d2ehxc(n̄)

dn̄2

∣∣∣∣
n̄=n0(r)

δ(r − r′) , (126)

whose exchange part is explicitly given by

f ALDA
x (r, r′) = −[9πn2

0(r)]−1/3δ(r − r′), (127)

and the correlation part can be obtained by using (126) on
any of the interpolations of eLDA

c [19–21].
This xc kernel is not only frequency-independent, it

is also local. One can derive adiabatic-GGA kernels in a
similar fashion, starting from any of the standard GGA func-
tionals such as those discussed in Section 2.5. Adiabatic
hybrid kernels, most notably B3LYP, are very widely used

and have contributed much to the success of TDDFT in
quantum chemistry.

7.2 Molecular Excitations

As an example, let us consider the benzene molecule.
Table 3 shows eight low-lying singlet and triplet excitation
energies of benzene, calculated with various xc function-
als [137]. As an overall measure of the accuracy of the
calculations, the mean absolute error (MAE) was also cal-
culated for each functional. Based on this measure, the
nonhybrid xc functionals (LSD, PBE, and TPSS) perform
at about the same level, with an MAE of 0.3–0.4 eV. The
hybrid functionals (PBE0 and B3LYP) used in this study
perform somewhat better, with an MAE ranging from 0.18
to 0.27 eV. As we will see in the following examples, these
findings are quite typical.

Figure 9 shows the MAE for 28 xc functionals and
for HF, obtained by calculating 103 low-lying vertical
excitation energies for a test set of 28 medium-sized
organic molecules [139], compared against accurate the-
oretical benchmarks. The Kohn–Sham ground states were
obtained with the same xc functionals that were used,
in the adiabatic approximation, for the TDDFT calcula-
tions. Identical molecular geometries were used for each xc
functional.

TDHF gives very large errors (over 1 eV), almost always
overestimating the transition energies; any TDDFT calcu-
lation reduces the error by at least a half. Among the xc
functionals, we can distinguish between pure density func-
tionals (LDA and GGA), meta-GGAs, hybrid GGAs, and
long-range-corrected hybrids (the first eight functionals in

Table 3 Low-lying excitation energies (in eV) of the benzene
molecule (C6H6) calculated with TDDFT using various xc functionals
with the basis set 6-31++G(3df,3pd), and geometry optimized using
the respective functionals with the same basis [137]

LDA PBE TPSS PBE0 B3LYP Ref TDHF Exp

3B1u 4.47 3.98 3.84 3.68 3.84 3.89 – 3.94
3E1u 4.82 4.61 4.67 4.75 4.72 4.49 4.70 4.76
1B2u 5.33 5.22 5.32 5.52 5.41 4.84 5.82 4.90
3B2u 5.05 4.89 4.98 5.12 5.07 5.49 5.57 5.60
1B1u 6.07 5.94 6.00 6.18 6.05 6.30 5.88 6.20
1E1g 6.12 5.89 5.99 6.38 6.11 6.38 6.54 6.33
1A2u 6.70 6.43 6.50 6.90 6.62 6.86 6.94 6.93
1E2u 6.71 6.44 6.50 6.95 6.65 6.91 7.11 6.95

MAE 0.30 0.37 0.33 0.18 0.27 0.09 0.26∗

CASPT2 reference results (Ref), TDHF, and experimental results from
Packer et al. [138]. The mean average error (MAE) for TDHF excludes
the lowest (3B1u) triplet transition, which comes out unstable
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Fig. 9 Mean absolute error for
the lowest vertical excitation
energies of a test set of 28
medium-sized organic molecules
(103 excited states). Reproduced
with permission from ACS from
Ref. [139] ©2009
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Fig. 9). The LDA and GGAs all give an MAE of order
0.5 eV. Meta-GGAs (VSXC and TPSS) give better agree-
ment (about 0.4 eV). But the best choice are clearly the
hybrid GGAs (B3LYP, X3LYP, B98, mPW1PW91, and
PBE0). In this case, the MAE is reduced to less than
0.25 eV. Similar findings were also reported in a more recent
benchmark study [140].

The long-range-corrected hybrids such as CAM-B3LYP
give a slightly higher error, owing to a general overesti-
mation of the transition energies. This is mainly due to
the choice of the test set, in which charge-transfer exci-
tations are not significantly represented. The advantage of
long-range-corrected hybrids emerges for such excitations
in larger molecules.

As these examples illustrate, TDDFT offers an excel-
lent compromise between computational efficiency and
accuracy. TDDFT scales as N2 to N3, depending on the
implementation; wave-function-based methods of compara-
ble accuracy scale at least one or two orders of magnitude
worse. The current limit of high-end wave-function-based
methods is about 50 atoms [139, 141, 142]. By contrast,
TDDFT allows the treatment of molecules containing hun-
dreds of atoms. Examples of medium-sized systems are
shown in Figs. 10 and 11.

Figure 10 shows the circular dichroism spectrum of a
large chiral fullerene molecule. TDDFT was able to resolve
a debate regarding the molecular configuration of this sys-
tem [143]. Figure 11 shows the absorption spectrum of an
Iridium(III) cyclometallated complex [144].

Fig. 10 Circular dichroism spectrum of D2-C84, comparing TDDFT
with experiment. (ε: molar decadic absorption coefficient; R: rotatory
strength; �E: excitation energy). Reproduced with permission from
ACS from Ref. [143] ©2002
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Fig. 11 (Colored online) Calculated (blue line) and experimental (red
line) absorption spectra of a Iridium(III) cyclometallated complex.
Blue vertical lines correspond to the unbroadened oscillator strength of
the calculated singlet–singlet transitions. Reproduced with permission
from Elsevier from Ref. [144] ©2009

7.3 Potential Energy Surfaces

Consider a system with Ne electrons and Nn nuclei, with
nuclear masses Mj and charges Zj , where j = 1, . . . , Nn.
Formally, all electrons and all nuclei are quantum mechani-
cal particles, forming an interacting Ne + Nn-body system.
For instance, the H2 molecule depends on the coordinates
of the two electrons, r1 and r2, and on the coordinates
of the two protons, R1 and R2: hence, it is a four-body
problem.

We denote the sets of electronic and nuclear spatial coor-
dinates by r ≡ {r1, . . . , rNe} and R ≡ {R1, . . . ,RNn},
respectively. The many-body eigenstates of the system are a
function of the two sets of coordinates, �j (r,R), and obey
the following many-body Schrödinger equation

Ĥ (r,R)�i(r,R, t) = Ei�i(r,R, t) . (128)

In the absence of any external potentials, the Hamiltonian of
the coupled electron-nuclear system is given by

Ĥ (r,R) = −
Ne∑

j=1

∇2
rj

2
+ 1

2

Ne∑

j,k
j �=k

1

|rj − rk| −
Nn∑

j=1

∇2
Rj

2Mj

+ 1

2

Nn∑

j,k
j �=k

ZjZk

|Rj − Rk| −
Ne∑

j=1

Nn∑

k=1

Zk

|rj − Rk|

≡ T̂e + Ŵee + T̂n + Ŵnn + Ŵen . (129)

As can be seen, Ĥ (r,R) is the sum of an electronic Hamilto-
nian containing kinetic energy and electron–electron inter-
action, T̂e + Ŵee, a similar nuclear Hamiltonian T̂n + Ŵnn,
and an electron-nuclear coupling term Ŵen.

The full coupled electron-nuclear many-body problem
is too difficult to solve in general; one usually works in
the Born–Oppenheimer (BO) approximation to obtain the
structure of molecules and solids. The central idea of the
BO approximation is that because of the large difference
between the electronic and nuclear masses (the proton is
1,836 times more massive than the electron), the two sets of
degrees of freedom are essentially decoupled.

The BO Hamiltonian is defined as the full Hamiltonian
(129) minus the nuclear kinetic energy term:

ĤBO(r,R)= −
Ne∑

j=1

∇2
rj

2
+ 1

2

Ne∑

j,k
j �=k

1

|rj − rk|

+1

2

Nn∑

j,k
j �=k

ZjZk

|Rj − Rk|−
Ne∑

j=1

Nn∑

k=1

Zk

|rj − Rk| .(130)

This Hamiltonian depends parametrically on the nuclear
coordinates: this means that the nuclear positions R1, . . . ,

RNn are just treated as a set of given numbers, indicating
a given nuclear configuration; they are no longer quantum
mechanical operators. For each configuration, one solves
the Schrödinger equation

ĤBO(r,R)�j (r,R) = Ej(R)�j (r,R) . (131)

The energy eigenvalues Ej(R) define the landscape of
potential energy surfaces, whose dimensionality depends on
the degrees of freedom of the molecule. Thus, for a diatomic
molecule, Ej(R) can be represented simply by a curve as a
function of the internuclear distance, whereas for Nn ≥ 3
it is a function of 3Nn − 6 coordinates (3Nn − 5 for lin-
ear molecules) and should therefore more appropriately be
called a “hypersurface;” the potential energy surface is a
2D section through this higher-dimensional space. In com-
mon usage, however, the distinction between a surface and
a hypersurface is usually not made.

The ground-state potential energy surface E0(R) is of
particular interest because its minimum defines the molec-
ular equilibrium position. However, excited-state potential
energy surfaces are important too, and play a crucial role
in chemical reactions, photochemical processes, and in
spectroscopy.

All potential energy surfaces following from (131) are
called adiabatic, indicating a complete decoupling of elec-
tronic and nuclear degrees of freedom. The calculation of
adiabatic potential energy surfaces is one of the key tasks of
computational chemistry. The lowest potential energy sur-
face can be obtained exactly, in principle, using ground-state

Braz J Phys (2014) 44:154–188176



DFT; for excited-state potential energy surfaces, forces, and
vibrational frequencies, the appropriate method is TDDFT
[143, 145].

Figure 12 shows the 1A1 manifold of the CO-stretch
potential energy curves of planar formaldehyde [146].
These are excited states, several eV above the ground-state
potential energy curve (whose minimum is set at 0 eV).
The dashed lines are results from a multireference doubles
CI benchmark calculation; the full lines were obtained with
TDDFT, using the ALDA with an asymptotic correction. An
xc functional with the correct asymptotics is important here
because these are high-lying (Rydberg) excitations.

A prominent feature in Fig. 12 is the avoided crossing
between the states labeled (π, π∗) and (n, 3py). TDDFT
reproduces this avoided crossing qualitatively correctly,
thanks to the configuration mixing of individual single-
particle transitions induced by the off-diagonal matrix ele-
ments Kiaσ,i ′a′σ ′ in the Casida equation (114) [147].

The (n, 3py) curve is almost on top of the exact curve,
at least for C–O distances before the avoided crossing. On
the other hand, the (n, 3dyz) curve comes out about 1 eV
too high, primarily owing to limitations of the xc functional
used in this calculation.

There are many TDDFT studies in organic and inorganic
photochemistry calculating excited-state potential energy
surfaces [148–152]. The performance of TDDFT depends
strongly on the xc functional used (choosing appropriate
basis sets is another important factor). Complications can

arise for potential energy surfaces associated with excita-
tions that have a long-range, charge-transfer character [153,
154]. In that case, local or semilocal xc functionals will
fail, and one needs to use xc functionals with the correct
long-range behavior, see Section 6.3.

Another source of complications are situations in which
the ground state has an intrinsically multiconfigurational
character. This can lead to circumstances in which two
potential energy surfaces become degenerate and touch
each other, which gives rise to so-called conical intersec-
tions. The name reflects the topology in the vicinity of
the point of degeneracy, which looks like an inverted cone
balancing on the tip of another cone. TDDFT has seri-
ous problems with conical intersections [114, 155, 156]:
it typically produces the wrong topology in the vicinity of
the intersection point. These difficulties have a lot to do
with the problems of TDDFT to describe double excita-
tions: an explicitly frequency-dependent xc kernel fxc(ω)

is required for a proper description of conical intersections
[147].

7.4 Optical Properties of Solids

At present, the majority of applications of TDDFT are in
the area of computational (bio)chemistry. However, appli-
cations in solid-state physics and materials science are
emerging at a rapid rate. In this section, we will highlight
some of the most important issues for TDDFT in solids: the

Fig. 12 1A1 CO-stretch
potential energy curves of planar
formaldehyde (CH2O). Full
lines: TDDFT. Dashed lines:
multireference doubles CI.
Reproduced with permission
from Wiley from [146] ©1998
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band-gap problem, excitons in insulators, and plasmons in
metals.

7.4.1 The Band Gap versus the Optical Gap

The fundamental band gap Eg is a key quantity that charac-
terizes insulating materials. It is defined as follows:

Eg(N) = I (N)−A(N), (132)

where I (N) and A(N) are the ionization potential and the
electron affinity of the N -electron system, see (24) and (25).
Hence, we obtain

Eg(N) = εN+1(N + 1)− εN(N) . (133)

It is important to note that the right-hand side of (133) con-
tains the highest occupied Kohn–Sham eigenvalues of two
different systems, namely with N and with N + 1 elec-
trons. In a macroscopic solid with 1023 electrons, it would
of course be impossible to calculate the band gap according
to this definition.

The band gap in the noninteracting Kohn–Sham system,
also known as the Kohn–Sham gap, is defined as

Eg,s(N) = εN+1(N)− εN(N) . (134)

In contrast with the interacting gap Eg , the Kohn–Sham gap
Eg,s is simply the difference between the highest occupied
and lowest unoccupied single-particle levels in the same N -
particle system. This quantity is what is usually taken as the
band gap in standard DFT band structure calculations. We
can relate the two gaps by

Eg = Eg,s +�xc, (135)

which defines �xc as a many-body correction to the Kohn–
Sham gap. By making use of the previous relations, we
find �xc = εN+1(N + 1) − εN+1(N). It turns out that
the many-body gap correction �xc can be related to a
very fundamental property of density functionals, known as
derivative discontinuities [157–160].

The so-called band-gap problem of DFT reflects the fact
that in practice, Eg,s is often a poor approximation to Eg ,
typically underestimating the exact band gap by as much
as 50 %. The reason for this is twofold: commonly used
approximate xc functionals (such as LDA and GGA) tend
to underestimate the exact Kohn–Sham gap Eg,s , and they
do not yield any discontinuity correction �xc. An extreme
example for the second failure are Mott insulators, which
are typically predicted to be metallic by DFT. This is no
accident: in Mott insulators, the exact Kohn–Sham system is
metallic (i.e., Eg,s = 0) so that Eg = �xc. Clearly, standard
xc functionals (where �xc vanishes) are unfit to describe
Mott insulators.

It is important to distinguish between the fundamental
band gap and the optical gap [123]. The band gap describes

the energy that an electron must have so that, when added to
an N -electron system, the result is an N+1 electron system
in its ground state. The total charge of the system changes by
−1 in this process. By contrast, the optical gap describes the
lowest neutral excitation of an N -electron system: here, the
number of electrons remains unchanged. The two gaps are
schematically illustrated in Fig. 13 together with the Kohn–
Sham gap.

The band gap of insulators can be accurately obtained
from the so-called quasiparticle energies, which are defined
as the single-particle energies of a noninteracting system
whose one-particle Green’s function is the same as that of
the real interacting system (note how this is different from
the definition of the Kohn–Sham system). In practice, this is
often done using the GW method [133, 161, 162]. GW cal-
culations are more demanding than DFT, but they produce
band structures of solids that agree very well with experi-
ment. Generalized Kohn–Sham schemes [27, 28] can also
give good band gaps.

While the band gap can be measured using techniques in
which electrons are added or removed from the system (such
as photoemission spectroscopy), the optical gap refers to the
lowest neutral excitation. The difference between quasipar-
ticle band gap and optical gap is the lowest exciton binding
energy,Eex

0 . Excitons can be viewed as bound electron–hole
pairs, whose bound states form a Rydberg series, analogous
to the hydrogen atom [115]. The band gap is given by the
asymptotic limit of the excitonic Rydberg series [163] (at
least for direct-gap insulators and semiconductors).

TDDFT can be used to calculate optical spectra of mate-
rials in principle exactly. In the case of insulators and

E
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y

N

1N

Kohn-Sham gap
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Band gap
(QP gap)

Optical gap

exE0

Fig. 13 Schematic illustration of the different types of gaps in DFT
and TDDFT. The Kohn–Sham gap is defined as the difference of
the highest occupied and lowest unoccupied Kohn–Sham eigenvalues
of the N-electron system, see (134). The fundamental band gap [or
quasiparticle (QP) gap] is the Kohn–Sham gap plus the derivative dis-
continuity, see (135). The optical gap is the band gap minus the lowest
exciton binding energy Eex

0 . The Kohn–Sham gap can be viewed as an
approximation for the optical gap
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semiconductors, this means that it should, in principle, yield
the correct optical gap, the correct excitonic Rydberg series
(if the material under study has one), and hence the correct
band gap (obtained as the limit of the excitonic Rydberg
series). We will discuss in detail in the following section
how optical spectra of insulators and semiconductors are
calculated with TDDFT in practice.

As always in TDDFT, the burden rests on the xc kernel.
In the case of bulk insulators, fxc needs to accomplish two
things: it needs to “open up” the gap (i.e., compensate the
fact that the Kohn–Sham gap underestimates the band gap),
and it needs to produce the electron–hole interaction that is
responsible for the formation of excitons. Formally, we can
write this as follows [164]:

fxc = f
qp
xc + f ex

xc . (136)

The xc kernel is written as the sum of a quasiparticle part
f

qp
xc (which opens up the gap) and an excitonic part f ex

xc
(which causes excitonic effects). The excitonic part turns
out to be easier to approximate than the quasiparticle part
(see below). In fact, no suitable approximations to f

qp
xc exist

at present. To a large extent, this is due to the fact that the
quasiparticle part is intrinsically nonadiabatic [165]: the fre-
quency dependence is essential to shift the Kohn–Sham gap,
and to produce an excitonic Rydberg series [115]. In view
of this, one usually ignores the quasiparticle part of fxc and
starts from a band structure in which the gap has been cor-
rected by other means (such as via GW, or with a simple
scissor operator [166]).

7.4.2 Optical Spectra Of Semiconductors and Insulators

In the optical spectroscopy of solids, a central quantity is the
complex index of refraction ñ, defined as [167]

ñ2 = εmac(ω) , (137)

where εmac(ω) is the macroscopic dielectric function. The
imaginary part of εmac(ω) hence describes the photoabsorp-
tion of a solid, as illustrated in Fig. 14 for the case of silicon.
To calculate the macroscopic dielectric function from first
principles, we need to take a detour and first calculate the
microscopic dielectric matrix, ε(q,G,G′, ω), where G and
G′ are reciprocal lattice vectors. The macroscopic dielectric
function then follows as the limit [133]

εmac(ω) = lim
q→0

1

ε−1(q,G = 0,G′ = 0, ω)
. (138)

In turn, the inverse dielectric function of a periodic system
can be obtained from the response function as

ε−1(q,G,G′, ω) = δGG′ + vG(q)χ(q,G,G′, ω) , (139)

where vG(q) = 4π/|q + G|2. In TDDFT, the full response
function is expressed as

χ(q,G,G′, ω) =
∑

G′′

[
δG1G2−

∑

G3

χs(q,G1,G3, ω)

×fHxc(q,G3,G2, ω)

]−1

GG′′
χs(q,G′′,G′, ω),(140)

where the xc kernel in reciprocal space was defined in (121).
By calculating χ on a frequency grid, one thus obtains
the optical spectrum (including a finite broadening in order
to make the spectrum smooth). The size of the matrices
involved are determined by the number of k points asso-
ciated with the numerical discretization scheme employed.
The spectral contribution from large G and G′ elements in
χ typically decays rapidly, so only few reciprocal lattice
vectors need to be considered.

As discussed in Section 6.5, the head of the xc kernel
plays a dominant role in periodic solids. Figure 14 shows
the experimental spectrum of Si together with the calcu-
lated spectrum of ALDA, which has a vanishing head of
the xc matrix. Besides producing a red-shifted spectrum due
to the band-gap problem, the ALDA spectrum lacks the
strong excitonic peak near the gap. As expected, local and
semilocal functionals such as the ALDA break down for
the highly nonlocal excitonic effects. Big improvements can
be achieved by having a finite head in the xc kernel. We
now list a few xc kernels which have the proper long-range
behavior that is required for a finite head of the xc matrix.

The long-range corrected (LRC) kernel [135] is a sim-
ple ad hoc approximation developed mainly for studying the
effect of the long-range behavior. It has the form

f LRC
xc (q,G,G′, ω) = − α

|q + G|2 δG,G′ , (141)

where α is a system-dependent fitting parameter. Despite its
simple form, LRC spectra (with properly chosen α) can be
in good agreement with experiments [136, 168] since the
head contribution of the kernel usually overwhelms the body
contributions (sometimes called local field effects). A sim-
ple connection of the parameter α with the high-frequency
dielectric constant has been suggested [136]. This xc ker-
nel should not be confused with the long-range correction
in ground-state DFT, where it means a correction term to fix
the rapid decay of local and semilocal xc potentials away
from nuclei [169].

The Bethe–Salpeter equation (BSE) [133, 170] is a
many-body equation for a two-particle polarization func-
tion (which is closely related to the two-particle Green’s
function) [171]. Today, the BSE, combined with the GW
method, is the most accurate approach to calculating optical
properties of materials. However, the scaling of the com-
putational cost versus system size is not favorable; the use
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Fig. 14 Optical absorption
spectrum of bulk Si. RPA and
TDLDA fail to reproduce the
optical gap and the excitonic
peak. Reproduced with
permission from APS from
[136] ©2004

3 4 5 6
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of GW-BSE has therefore been limited to moderate sys-
tem sizes, despite recent progress [172–175]. From the point
of view of TDDFT, the BSE has been an important guide
towards the development of very accurate excitonic xc ker-
nels. The idea is to construct f ex

xc via an integral equation
that features the same four-point response functions that
are featured in the BSE [133, 176]. The resulting xc kernel
reproduces the results of the full BSE [168, 177–183]. How-
ever, the computational cost is essentially as high as that of
solving the full BSE; therefore, this xc kernel has mainly
served as a proof of concept that TDDFT is capable of pro-
ducing accurate excitonic effects. Furthermore, the LRC xc
kernel can be shown to emerge from this BSE-based xc
kernel in the long-range limit [184].

A computationally much simpler alternative is the
recently proposed ‘bootstrap’ kernel [185, 186], defined as

f boot
xc (q,G,G′, ω) = ε−1(q,G,G′, ω = 0)

χ0(q,G = 0,G′ = 0, ω = 0)
. (142)

Due to the inclusion of vG′(q) in the numerator, the boot-
strap kernel has the correct O(q−2) long-range behavior.
The bootstrap kernel performs well for a wide range of
solids, as illustrated in Fig. 15, and even works for the case
of strongly bound excitons such as in solid argon or LiF
(note that the noninteracting response function χ0 typically
contains a band-gap correction such as a scissor operator or
GW).

We also briefly mention that the VS98 meta-GGA [187]
has recently shown some promise for calculating optical
spectra of insulators with TDDFT [188].

As an alternative to obtaining optical spectra via the
dielectric matrix, a direct calculation of excitonic binding
energies of insulators and semiconductors via the Casida
equation is also possible [53, 189–191]. The advantage of
this approach is that excitonic binding energies—which can
be in the meV range for materials such as GaAs—can be
numerically well-resolved; this is much more difficult to
do from the dielectric function, which typically yields rela-
tively low-resolution optical spectra such as in Figs. 14 and
15. It is found that the bootstrap kernel yields good results
for strongly bound excitons, but is less accurate for the more
weakly bound cases [190]. Accurate triplet exciton binding
energies are even more difficult to obtain. The development
of xc kernels for excitonic effects in solids thus remains an
important task for future research.

It should be noted that (138) and (139) imply that the
eigenvalues in the Casida equation approach are the poles
in ε−1 instead of εmac, so that the absorption peaks are not
given directly. This problem is solved through a modifica-
tion of the Hartree kernel:

f̄H(q,G,G′) =
{

0 G = G′ = 0,
4π

|q+G|2 δGG′ otherwise. (143)
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Fig. 15 (Colored online)
Optical absorption spectra of
various bulk semiconductors
calculated with TDDFT using
the bootstrap xc kernel, (142).
Reproduced with permission
from APS from [185] ©2011
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By using f̄H instead of fH in TDDFT, εmac becomes [133]

εmac(ω) = lim
q→0

[1 − vG=0(q)χ̄ (q,G = 0,G′ = 0, ω)],
(144)

where χ̄ is the modified response function resulting from
TDDFT with f̄H. Thus, the Casida equation with f̄H yields
eigenvalues corresponding to the peaks in the optical spec-
tra. Since (144) avoids the matrix inversion involved in
(138), the use of f̄H is also a standard practice in the
response function approach of TDDFT.

7.4.3 Metallic Systems

The optical properties of metallic systems (bulk metals or
metallic nanoparticles) are strongly determined by the fact
that they have a sea of delocalized conduction electrons with
a Fermi surface. Hence, their low-energy elementary exci-
tation are quite different compared to systems with a gap
(insulators and semiconductors). Whereas the outstanding
features of the optical spectra of insulators are the excitons,
metallic systems are dominated by plasmons.

Excitons and plasmons are observed using different
experimental techniques: excitons are seen in optical
absorption spectra (i.e., via coupling to transverse optical
fields); on the other hand, plasmons couple to longitudi-
nal fields, and are thus observed using electron energy
loss spectroscopy or inelastic light (or X-ray) scattering
spectroscopy [192–195].

From a TDDFT perspective, both excitons and plasmons
are collective excitations of the many-body system. How-
ever, there is a big difference as to what causes the collective

behavior in the Kohn–Sham system. Excitons can be viewed
as a coherent superposition of a large number of individual
particle-hole excitations between valence and conduction
band, mediated via long-range dynamical xc effects [115]
(see Fig. 16). As we discussed in the previous subsection,

c 

v 

k
qk

q

q

qkk

a

b

Fig. 16 (Colored online) a Excitons arise from a coupling of single-
particle excitations between valence and conduction band in an insula-
tor, mediated by dynamical xc effects. b Particle-hole excitations with
momentum transfer q across the Fermi surface of a simple metal. A
plasmon is a coherent superposition of many such excitations, coupled
by Coulomb interactions
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it is not easy to find xc kernels which reproduce exci-
tonic effects: all electron gas-based approximations (such as
ALDA) will fail.

On the other hand, plasmon excitations in metallic sys-
tems are relatively easy to capture within TDDFT. The
reason is that plasmons can be viewed as collective charge–
density oscillations, and it is a straightforward textbook
exercise in electromagnetism to show that such oscilla-
tions arise already from classical electrostatic (RPA-type)
interactions; many-body xc effects only cause relatively
minor corrections (but are important and subtle for plasmon
damping, see below). One thus derives the classical plasma
frequency as

ωpl =
√

4πne2

m
. (145)

The plasmon dispersion of a homogeneous electron liq-
uid can be calculated using TDDFT linear response theory,
along similar lines as finding the zeros of the Lindhard
dielectric function [18]. The analytic form of the plasmon
dispersion up to order q2 is given by

�(q) = ωpl

[
1 +

(
3k2

F

10ω2
pl

+ 1

8π
fxc(q = 0, ωpl)

)
q2

]
,

(146)

where the terms without fxc are the RPA result. For small
q , the plasmon lies outside the particle-hole continuum, as
illustrated in Fig. 17. As soon as the plasmon dispersion
enters the particle-hole continuum, it becomes subject to
Landau damping (decay into incoherent particle-hole exci-
tations). This damping occurs already in RPA [197]. But
outside the particle-hole continuum, the only source of plas-
mon damping comes from the imaginary part of the xc
kernel. The physical origin of the low-q plasmon damping is

Fkq

F
E

Re

Im

Fig. 17 (Colored online) Schematic illustration of the particle-hole
continuum of a 3D homogeneous electron liquid, and the RPA plas-
mon dispersion. In RPA, the plasmon is undamped until it enters the
particle-hole continuum, where it decays into incoherent particle-hole
excitations (Landau damping). TDDFT gives very similar results [196]

decay into multiple particle-hole excitations. A frequency-
independent fxc (such as the ALDA) has no imaginary part
and hence leaves the plasmon undamped.

Figure 18 shows a comparison of experimental and the-
oretical results for the plasmon dispersions of bulk sodium
and aluminum [195]. The agreement is very good for
small plasmon wavevectors, but for larger wavevectors, all
TDDFT approaches fail (even the nonadiabatic xc kernel of
Gross and Kohn [107]). Good agreement is achieved by a
hybrid approach in which many-body quasiparticle lifetimes
are put by hand into the response formalism (TDLDA-LT).

Plasmonic effects are found not only in bulk metals, but
also in many types of nanostructures. TDDFT has been
extensively used for collective excitations in metallic clus-
ters and nanoparticles. In general, the results are excellent:
plasmon peaks and line shapes for simple metal clusters
are very well reproduced, even at the ALDA level [91,
198]. Applications to gold and silver clusters have also been
quite successful, and nicely demonstrate the evolution from
atomic-like discrete spectra to plasmon spectra as the cluster
size increases [199–201].

A similar picture holds for doped semiconductor nanos-
tructures such as quantum wells, wires, or dots. Here, col-
lective excitations in the charge and spin channel have been
well studied using TDDFT methods; in general, plasmon
dispersions are well reproduced [64]. The issue of plasmon
damping in quantum wells has received a good deal of atten-
tion; in particular, intersubband plasmons in quantum wells
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Fig. 18 (Colored online) Plasmon dispersions of bulk sodium and
aluminum: comparison of experiment and TDDFT. Reproduced with
permission from APS from [195] ©2011)
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have been used to test the Vignale-Kohn approximation of
TDCDFT [62, 63, 203], with considerable success [204,
205, 207].

8 The Future of TDDFT

In the final section of our overview, we attempt a forecast
of the directions in which the field of TDDFT will be
progressing. We will highlight some areas in which appli-
cations of TDDFT are likely to see a lot of activity because
of their practical importance. We will also give a list of
issues and challenges—some of them formal, some of them
practical—which will keep the TDDFT community busy
for years to come.

Biological Systems. It has been said that “if the 20th
century was the century of physics, the 21st century will
be the century of biology” [208]. Without doubt, DFT and
TDDFT methods will play a key role in the scientific effort
to understand the links between structure and functionality
in biochemistry and biology. This is due to the fact that DFT
is the only method capable of delivering ab initio descrip-
tions of the electronic structure of systems with tens of
thousands of atoms; thanks to the development of linear-
scaling methods, even systems with millions of atoms are
now within reach [209–211].

Applications of TDDFT for large biomolecules have
begun to emerge at a rapid rate [90, 212–218]. Many of
these studies are concerned with the electronic and optical
properties of DNA fragments, or the properties of light-
harvesting complexes. Apart from the availability of the
necessary computer power (hardware as well as software),
there are several developments in DFT which facilitate this
trend towards large organic systems:

• With the range-separated hybrid functionals, we now
have the tools for describing charge-transfer excitations
with TDDFT (see Section 6.3).

• A new generation of DFT approaches for van der
Waals interactions has emerged [219–225], which allow
for first-principles calculations of the structure of
sparse matter, adsorption on surfaces, and many other
applications.

Coupled electron-nuclear dynamics. The coupling of
electronic and structural degrees of freedom is a deciding
factor in many functionalities of biological systems. An
example are photoinduced processes such as photoisomer-
ization. As discussed in Section 7.3, TDDFT gives access
to excited-state potential energy surfaces. But things get
really interesting when the dynamics goes beyond the Born–
Oppenheimer approximation, giving rise to effects such
as structural relaxation or ultrafast laser-driven molecular
reorganization or dissociation. In such situations, TDDFT

can be combined with molecular dynamics, at various lev-
els of sophistication [226–228]. For a recent review of
nonadiabatic dynamics, see Ref. [229].

The most straightforward TDDFT approach for cou-
pling electronic and nuclear dynamics is via the Ehrenfest
approximation, which is a mixed quantum-classical treat-
ment where forces on the classical ions result from a
mean-field average over the electronic states. Ehrenfest
dynamics works well in many situations [230–233], but has
its clear limitations for situations where a branching of ionic
trajectories occurs, and where the excited states involve
multiple pathways. Such phenomena can be described with
the so-called surface-hopping schemes [234–236], in which
multiple excited-state potential energy surfaces can partic-
ipate in the dynamics, governed by a stochastic hopping
algorithm.

But all of these approaches are based on classical nuclear
dynamics and are thus missing out on nuclear quantum
effects. Important effects of nuclear dynamics such as inter-
ference, decoherence, or tunneling are therefore not cap-
tured. There are already some efforts underway to develop
approaches that combine electronic TDDFT with nuclear
quantum dynamics [237–243]. It can be expected that the
field will continue to advance towards a comprehensive and
practical treatment of electronic and nuclear degrees of free-
dom. This would open up a large area of interesting new
applications of TDDFT.

Linear and nonlinear optics in materials. In Section 7.4,
we discussed how linear response TDDFT is applied to
describe optical properties of materials (insulators and met-
als). It can be expected that this will remain a highly active
area of research. Significant progress can be expected along
several directions.

There is a need for better xc kernels for solids. It is very
likely that these kernels will be expressed in terms of occu-
pied and unoccupied orbitals, rather than the density. The
bootstrap kernel, (142), is an important step in the right
direction, but it is not so clear how it can be systematically
improved. For instance, a spin-dependent generalization of
the bootstrap kernel (which would allow a description of
singlet and triplet excitons) is problematic [190].

A particularly hot area of research are photovoltaic pro-
cesses in organic systems (polymers or biological light-
harvesting complexes) [244–247]. There is a rich variety
of photophysical processes involved, such as formation and
diffusion of excitons, formation of charge-transfer com-
plexes, relaxation, and charge separation. At present, no
comprehensive ab initio picture of these processes exists.
This represents one of the major challenges for TDDFT, and
should soon be within reach, based on existing methodolo-
gies and new developments. A promising idea is the recently
proposed real-time visualization of exciton dynamics using
the time-dependent transition density matrix [80].
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In the majority of applications of TDDFT in peri-
odic solids, the dielectric function (or related response
properties) are calculated, which yield optical spectra or
scattering cross sections. But there are many nonlinear
or explicitly time-dependent processes of interest, which
go beyond response theory and require, in principle, a
time-dependent calculation. Real-time TDDFT calculations
for periodic solids are beginning to emerge [248–251] to
simulate hot carrier generation, dielectric breakdown, and
coherent phonons in semiconductors and insulators. Such
calculations, in particular if light propagation effects are
included via a coupling with Maxwell’s equation, pose
a significant computational challenge and call for the
development of new multiscale or multidomain approaches
[252, 253].

Other developments. Let us conclude with a mixed bag
of various formal and practical challenges and unsolved
problems for present and future TDDFT research.

• Nonadiabatic xc functionals. Nonadiabatic xc function-
als are needed for double excitations in finite systems,
for dissipation in extended systems, for exciton Ryd-
berg series, for conical intersections, and many other
important phenomena. Electron gas-based function-
als [62, 63] are of limited use [254]; a connection
with many-body approaches seems the most promising
avenue towards the development of simple, practically
useful nonadiabatic functionals [128–131]. Another
possibility could be via reduced density matrix func-
tional theory [255–258].

• Open systems. TDDFT for open systems is of inter-
est for the description of transport through nano- or
mesoscopic systems, where a region of interest (e.g., a
molecule) is connected to energy and particle reservoirs
via metallic leads [259]. It is also of interest for treat-
ing dissipative dynamics. The coupling to a reservoir
can be formally treated within TDDFT in various ways:
with a master equation approach [260], using stochastic
methods [261–263], and by mapping the open physical
system onto a noninteracting closed system [264–266].
The formal aspects are complicated and subject of
ongoing debate [267]; practical xc functionals for open
systems and applications beyond simple model systems
can be expected in the future.

• Strongly correlated systems. There has been some inter-
esting recent work in which TDDFT methods were suc-
cessfully applied to the transport in strongly correlated
model lattice systems exhibiting Coulomb blockade and
the Kondo effect [268–271]. A subtle feature of the
xc potential, its derivative discontinuity upon change
of particle number (briefly mentioned in Section 7.4),
turns out to be crucial for capturing these effects. Most
of these studies are for one-dimensional Hubbard-type

lattice systems [272, 273], but three-dimensional sys-
tems were also considered [274, 275]. In the future,
work along these lines is likely to make an impact in the
description of realistic strongly correlated systems and
materials, which so far have remained problematic for
(TD)DFT.

• Extensions of the formalism. Ground-state DFT has
long ago been extended to finite temperatures [276]
and to relativistic systems [14]. The corresponding
TDDFT versions are not yet available, but would be
of great interest for matter under extreme conditions.
Finite-temperature TDDFT, which might include ele-
ments of nonequilibrium thermodynamics and time-
dependent thermal ensembles, could also be of inter-
est for thermal transport and thermoelectric prop-
erties. Relativistic TDDFT has been used for cal-
culating molecular excitation energies and response
properties [277–281], and real-time Dirac–Kohn–Sham
calculations have been explored [282], but formally
rigorous general existence proofs have yet to be
worked out. Some promising developments have
recently occurred in the application of TDDFT methods
for quantum electrodynamics [283, 284].
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Theory Comput. 5, 2420 (2009)
140. S.S. Leang, F. Zahariev, M.S. Gordon, J. Chem. Phys. 136,

104101 (2012)
141. S. Grimme, in Reviews in Computational Chemistry, vol 20,

ed. by K.B. Lipkowitz, R. Larter, T.R. Cundari (Wiley-VCH,
Hoboken, 2004), pp. 153–218

142. A. Dreuw, M. Head-Gordon, Chem. Rev. 105, 4009 (2005)
143. F. Furche, R. Ahlrichs, J. Am. Chem. Soc. 124, 3804 (2002)
144. F. De Angelis, L. Belpassi, S. Fantacci, J. Mol. Struct.:

THEOCHEM 914, 74 (2009)
145. J. Liu, W.Z. Liang, J. Chem. Phys. 134, 044114 (2011)
146. M.E. Casida, K.C. Casida, D.R. Salahub, Int. J. Quantum Chem.

70, 933 (1998)
147. N.T. Maitra, J. Chem. Phys. 125, 014110 (2006)
148. A.L. Sobolewski, W. Domcke, Phys. Chem. Chem. Phys. 1, 3065

(1999)
149. M. Wanko, M. Garavelli, F. Bernardi, T.A. Niehaus, T.

Frauenheim, M. Elstner, J. Chem. Phys. 120, 1674 (2004)
150. H. Tachikawa, T. Iyama, J. Photochem. Photobiol. B: Biol. 76,

55 (2004)
151. F. Cordova, L. Joubert Doriol, A. Ipatov, M.E. Casida, C. Filippi,

A. Vela, J. Chem. Phys. 127, 164111 (2007)
152. H.-H. Gavin Tsai, H.-L. Sara Sun, C.-J. Tan, J. Phys. Chem. A

114, 4065 (2010)
153. P. Wiggins, J.A.G. Williams, D.J. Tozer, J. Chem. Phys. 131,

091101 (2009)
154. J. Plötner, D.J. Tozer, A. Dreuw, J. Chem. Theory Comput. 6,

2315 (2010)
155. B.G. Levine, C. Ko, J. Quenneville, T.J. Martinez, Mol. Phys.

104, 1039 (2006)
156. B. Kaduk, T. van Voorhis, J. Chem. Phys. 133, 061102

(2010)
157. J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Phys. Rev. Lett. 49,

1691 (1982)
158. J.P. Perdew, M. Levy, Phys. Rev. Lett. 51, 1884 (1983)
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