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Abstract In the last decades, the Moore–Penrose
pseudoinverse has found a wide range of applica-
tions in many areas of science and became a useful
tool for physicists dealing, for instance, with opti-
mization problems, with data analysis, with the solu-
tion of linear integral equations, etc. The existence
of such applications alone should attract the inter-
est of students and researchers in the Moore–Penrose
pseudoinverse and in related subjects, such as the sin-
gular value decomposition theorem for matrices. In
this note, we present a tutorial review of the theory
of the Moore–Penrose pseudoinverse. We present the
first definitions and some motivations, and after ob-
taining some basic results, we center our discussion
on the spectral theorem and present an algorithmi-
cally simple expression for the computation of the
Moore–Penrose pseudoinverse of a given matrix. We
do not claim originality of the results. We rather in-
tend to present a complete and self-contained tutorial
review, useful for those more devoted to applications,
for those more theoretically oriented, and for those
who already have some working knowledge of the
subject.
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1 Introduction, Motivation, and Notation

In this paper, we present a self-contained review of
some of the basic results on the so-called Moore–
Penrose pseudoinverse of matrices, a concept that gen-
eralizes the usual notion of inverse of a square matrix,
but that is also applicable to singular square matrices
or even to non-square matrices. This notion is particu-
larly useful in dealing with certain linear least squares
problems, as we shall discuss in Section 6, i.e., problems
where one searches for an optimal approximation for
solutions of linear equations like Ax = y, where A is a
given m × n matrix, y is a given column vector with m
components, and the unknown x, a column vector with
n components, is the searched solution. In many situa-
tions, a solution is non-existing or non-unique, but one
asks for a vector x such that the norm of the difference
Ax − y is the smallest possible (in terms of least
squares).

Let us be a little more specific. Let A ∈ Mat (�, m,

n) (the set of all complex m × n matrices) and y ∈ �m

be given and consider the problem of finding x ∈ �n

satisfying the linear equation

Ax = y. (1)

If m = n and A has an inverse, the (unique) solution
is, evidently, x = A−1 y. In other cases the solution may
not exist or may not be unique. We can, however,
consider the alternative problem of finding the set of all
vectors x′ ∈ �n such that the Euclidean norm ‖Ax′ − y‖
reaches its least possible value. This set is called the
minimizing set of the linear problem (1). Such vectors
x′ ∈ �n would be the best approximants for the solution
of (1) in terms of the Euclidean norm, i.e., in terms
of “least squares.” As we will show in Theorem 6.1,
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the Moore–Penrose pseudoinverse provides this set of
vectors x′ that minimize ‖Ax′ − y‖: It is the set
{

A+y + (
�n − A+ A

)
z, z ∈ �

n
}

, (2)

where A+ ∈ Mat (�, n, m) denotes the Moore–
Penrose pseudoinverse of A. An important question for
applications is to find a general and algorithmically sim-
ple way to compute A+. The most common approach
uses the singular values decomposition and is described
in “Appendix 2.” Using the spectral theorem and
Tikhonov’s regularization method, we show that A+
can be computed by the algorithmically simpler formula

A+ =
s∑

b=1
βb �=0

1
βb

⎛
⎜⎝

s∏
l=1
l �=b

(
βb − βl

)−1

⎞
⎟⎠

×
⎡
⎢⎣

s∏
l=1
l �=b

(
A∗ A − βl�n

)
⎤
⎥⎦ A∗ , (3)

where A∗ denotes the adjoint matrix of A and βk,
k = 1, . . . , s, are the distinct eigenvalues of A∗ A. See
Theorem 5.1 for a more detailed statement. One of the
aims of this paper is to present a proof of (3) by com-
bining the spectral theorem with the a regularization
procedure due to Tikhonov [1, 2].

1.1 Some Applications of the Moore–Penrose
Pseudoinverse

Problems involving the determination of the minimiz-
ing set of (1) are always present when the number of
unknowns exceeds the number of values provided by
measurements. Such situations occur in many areas of
Applied Mathematics, Physics, and Engineering, rang-
ing from imaging methods, such as magnetic resonance
imaging (MRI) [3–5], functional MRI [6, 7], positron
emission tomography [8, 9], and magnetic source imag-
ing [10–12] to seismic inversion problems [13, 14].

The Moore–Penrose pseudoinverse and/or the sin-
gular values decomposition (SVD) of matrices (dis-
cussed in “Appendix 2”) are also employed in data
analysis, as in the treatment of electroencephalographic
source localization [15] and in the so-called principal
component analysis. Applications of this last method to
astronomical data analysis can be found in [16–19], and
applications to gene expression analysis can be found
in [20, 21]. Image compression algorithms using SVD
are known at least since [22], and digital image restora-
tion using the Moore–Penrose pseudoinverse has been
studied in [23, 24].

Problems involving the determination of the min-
imizing set of (1) also occur, for instance, in certain
numerical algorithms for finding solutions of linear
Fredholm integral equations of the first kind:

∫ b

a
k(x, y) u(y) dy = f (x) ,

where −∞ < a < b < ∞ and where k and f are given
functions. See Section 4 for a further discussion of this
issue. For an introductory account on integral equa-
tions, rich in examples and historical remarks, see [25].

Even this short list of applications should convince a
student of Physics or Applied Mathematics of the rele-
vance of the Moore–Penrose pseudoinverse and related
subjects, and our main objective is to provide a self-
contained introduction to the required theory.

1.2 Organization

In Section 2, we present the definition of the Moore–
Penrose pseudoinverse and obtain its basic properties.
In Section 3, we further develop the theory of the
Moore–Penrose pseudoinverses. In Section 4, we de-
scribe Tikhonov’s regularization method for the com-
putation of Moore–Penrose pseudoinverses and present
a first proof of existence. Section 5 collects the previous
results and derives expression (3), based on the spec-
tral theorem, for the computation of Moore–Penrose
pseudoinverses. This expression is algorithmically sim-
pler than the usual method based on the singular val-
ues decomposition (described in “Appendix 2”). In
Section 6, we show the relevance of the Moore–Penrose
pseudoinverse for the solution of linear least squares
problems, its main motivation. In “Appendix 1,” we
present a self-contained review of the results on linear
algebra and Hilbert space theory, not all of them ele-
mentary, that we need in the main part of this paper. In
“Appendix 2,” we approach the existence problem of
the Moore–Penrose pseudoinverse by using the usual
singular values decomposition method.

1.3 Notation and Preliminary Definitions

In the following, we fix the notation utilized through-
out the paper. We denote �n the vector space of all

n-tuples of complex numbers: �n :=
{( z1

...
zn

)
, with zk ∈

� for all k = 1, . . . , n

}
. We denote the usual scalar
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product in �n by 〈·, ·〉� or simply by 〈·, ·〉, where for

z =
( z1

...
zn

)
∈ �n and w =

(
w1

...
wn

)
∈ �n, we have

〈z, w〉� ≡ 〈z, w〉 :=
n∑

k=1

zkwk .

Note that this scalar product is linear in the second
argument and anti-linear in the first, in accordance with
the convention adopted in Physics. Two vectors u and
v ∈ �n are said to be orthogonal according to the scalar
product 〈·, ·〉 if 〈u, v〉 = 0. If W ⊂ �n is a subspace of
�n, we denote by W⊥ the subspace of �n composed by
all vectors orthogonal to all vectors of W. The usual
norm of a vector z ∈ �n will be denoted by ‖z‖� or
simply by ‖z‖ and is defined by ‖z‖� ≡ ‖z‖ = √〈z, z〉.
It is well known that �n is a Hilbert space with respect
to the usual scalar product.

The set of all complex m × n matrices (m rows and n
columns) will be denoted by Mat (�, m, n). The set of
all square n × n matrices with complex entries will be
denoted by Mat (�, n).

The identity matrix will be denoted by �. Given A ∈
Mat (�, m, n), we denote by AT the element of
Mat (�, n, m) whose matrix elements are (AT)ij = A ji

for all i ∈ {1, . . . , n}, j ∈ {1, . . . , m}. The matrix AT is
said to be the transpose of A. It is evident that (AT)T =
A and that (AB)T = BT AT for all A ∈ Mat (�, m, n)

and B ∈ Mat (�, n, p).
If A ∈ Mat (�, m, n), then its adjoint A∗ ∈ Mat (�,

n, m) is defined as the matrix whose matrix elements
(A∗)ij are given by A ji for all 0 ≤ i ≤ n and 0 ≤ j ≤ m.

Given a set α1, . . . , αn of complex numbers, we
denote by diag (α1, . . . , αn) ∈ Mat (�, n) the diagonal
matrix whose k-th diagonal entry is αk:

(
diag (α1, . . . , αn)

)
ij =

{
αi, for i = j ,

0, for i �= j .

The spectrum of a square matrix A ∈ Mat (�, n) coin-
cides with the set of its eigenvalues (see the definitions
in “Appendix 1”) and will be denoted by σ(A).

We denote by �a, b ∈ Mat (�, a, b) the a × b ma-
trix whose matrix elements are all zero. We de-
note by �l ∈ Mat (�, l) the l × l identity matrix. If
no danger of confusion is present, we will simplify
the notation and write � and � instead of �a, b and
�l , respectively. We will also employ the following

definitions: for m, n ∈ �, let Im, m+n ∈ Mat (�, m, m +
n) and Jm+n, n ∈ Mat (�, m + n, n) be given by

Im, m+n := (
�m �m, n

)
and Jm+n, n :=

(
�n

�m, n

)
.

(4)

The corresponding transpose matrices are

(
Im, m+n

)T : =
(
�m

�n, m

)
= Jm+n, m and

(
Jm+n, n

)T : = (
�n �n, m

) = In, m+n . (5)

The following useful identities will be used below:

Im, m+n
(
Im, m+n

)T = Im, m+n Jm+n, m = �m , (6)
(
Jm+n, n

)T
Jm+n, n = In, m+n Jm+n, n = �n , (7)

For each A ∈ Mat (�, m, n), we can associate a
square matrix A′ ∈ Mat (�, m + n) given by

A′ : = (
Im, m+n

)T
A

(
Jm+n, n

)T

= Jm+n, m AIn, m+n =
(

A �m, m

�n, n �n, m

)
. (8)

As one easily checks, we get from (6)–(7) the useful
relation

A = Im, m+n A′ Jm+n, n . (9)

The canonical basis of vectors in �n is

e1 =

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
...

0

⎞
⎟⎟⎟⎟⎟⎠

, e2 =

⎛
⎜⎜⎜⎜⎜⎝

0
1
0
...

0

⎞
⎟⎟⎟⎟⎟⎠

, . . . , en =

⎛
⎜⎜⎜⎜⎜⎝

0
0
...

0
1

⎞
⎟⎟⎟⎟⎟⎠

,

(10)

Let x1, . . . , xn be vectors, represented in the canonical
basis as

xa =
⎛
⎜⎝

xa
1
...

xa
n

⎞
⎟⎠ .

We will denote by
[[

x1, . . . , xn
]]

the n × n matrix con-
structed in such a way that its a-th column is the vector
xa, that means,

[[
x1, . . . , xn

]]
=

⎛
⎜⎝

x1
1 · · · xn

1
...

. . .
...

x1
n · · · xn

n

⎞
⎟⎠ . (11)
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It is obvious that � =
[[

e1, . . . , en

]]
. With this notation,

we write

B
[[

x1, . . . , xn
]]

=
[[

Bx1, . . . , Bxn
]]

, (12)

for any B ∈ Mat (�, m, n), as one easily checks. More-
over, if D is a diagonal matrix D = diag (d1, . . . , dn),
then
[[

x1, . . . , xn
]]

D =
[[

d1x1, . . . , dnxn
]]

. (13)

If v1, . . . , vk are elements of a complex vector space
V, we denote by [v1, . . . , vk] the subspace generated
v1, . . . , vk, i.e., the collection of all linear combina-
tions of the v1, . . . , vk: [v1, . . . , vk] :=

{
α1v1 + · · · +

αkvk, α1, . . . , αk ∈ �

}
. More definitions and general

results can be found in “Appendix 1.”

2 The Moore–Penrose Pseudoinverse: Definition and
First Properties

In this section, we define the notion of a Moore–
Penrose pseudoinverse and study its uniqueness. The
question of the existence of the Moore–Penrose
pseudoinverse of a given matrix is analyzed in other
sections.

2.1 Generalized Inverses, or Pseudoinverses

Let m, n ∈ � and let A ∈ Mat (�, m , n) be a m × n
matrix (not necessarily a square matrix). A matrix
B ∈ Mat (�, n, m) is said to be a generalized inverse,
or a pseudoinverse, of A if it satisfies the following
conditions:

1. ABA = A,
2. BAB = B.

If A ∈ Mat (�, n) is a non-singular square matrix, its
inverse A−1 satisfies trivially the defining properties of
the generalized inverse above. We will prove later that
every matrix A ∈ Mat (�, m , n) has at least one gen-
eralized inverse, namely the Moore–Penrose pseudoin-
verse. The general definition above is not enough to
guarantee uniqueness of the generalized inverse of any
matrix A ∈ Mat (�, m , n).

The definition above is too wide to be useful, and it
is convenient to narrow it in order to deal with certain
specific problems. In what follows, we will discuss the
specific case of the Moore–Penrose pseudoinverse and
its application to optimization of linear least squares
problems.

2.2 Defining the Moore–Penrose Pseudoinverse

Let m, n ∈ � and let A ∈ Mat (�, m , n). A ma-
trix A+ ∈ Mat (�, n, m) is said to be a Moore–
Penrose pseudoinverse of A if it satisfies the following
conditions:

1. AA+ A = A,
2. A+ AA+ = A+,
3. AA+ ∈ Mat (�, m) and A+ A ∈ Mat (�, n) are

self-adjoint.

It is easy to see again that if A ∈ Mat (�, n) is non-
singular, then its inverse satisfies all defining properties
of a Moore–Penrose pseudoinverse.

The notion of Moore–Penrose pseudoinverse was
introduced by E. H. Moore [26] in 1920 and redis-
covered by R. Penrose [27, 28] in 1955. The Moore–
Penrose pseudoinverse is a useful concept in dealing
with optimization problems, as the determination of a
“least squares” solution of linear systems. We will treat
such problems later (see Theorem 6.1), after dealing
with the question of uniqueness and existence of the
Moore–Penrose pseudoinverse.

2.3 The Uniqueness of the Moore–Penrose
Pseudoinverse

We will first show the uniqueness of the Moore–Penrose
pseudoinverse of a given matrix A ∈ Mat (�, m, n),
assuming its existence. Let A+ ∈ Mat (�, n, m) be a
Moore–Penrose pseudoinverse of A ∈ Mat (�, m, n)

and let B ∈ Mat (�, n, m) be another Moore–Penrose
pseudoinverse of A, i.e., such that ABA = A, BAB =
B with AB and BA self-adjoint. Let M1 := AB−
AA+ = A

(
B − A+) ∈ Mat (�, m). By the hypothesis,

M1 is self-adjoint (since it is the difference of two self-
adjoint matrices) and (M1)

2 = (
AB − AA+)

A
(
B−

A+)=(
ABA− AA+ A

)(
B− A+)=(A− A)

(
B− A+) =

0. Since M1 is self-adjoint, the fact that (M1)
2 = 0

implies that M1 = 0, since for all x ∈ �m one has
‖M1x‖2 =〈M1x, M1x〉= 〈

x, (M1)
2x

〉=0, implying M1 =
0. This showed that AB = AA+. Following the same
steps, we can prove that BA = A+ A (consider the
self-adjoint matrix M2 := BA − A+ A ∈ Mat (�, n)

and proceed as above). Now, all this implies that
A+ = A+ AA+ = A+(

AA+) = A+ AB = (
A+ A

)
B =

BAB = B, thus establishing uniqueness.
As we have already commented, if A ∈ Mat (�, n)

is a non-singular square matrix, its inverse A−1 trivially
satisfies the defining conditions of the Moore–Penrose
pseudoinverse, and therefore, we have in this case
A+ = A−1 as the unique Moore–Penrose pseudoin-
verse of A. It is also evident from the definition that
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for �mn, the m × n identically zero matrix, one has
(�mn)

+ = �nm.

2.4 Existence of the Moore–Penrose Pseudoinverse

We will present two proofs of the existence of the
Moore–Penrose pseudoinverse A+ for an arbitrary ma-
trix A ∈ Mat (�, m, n). Both proofs produce algo-
rithms for the explicit computation of A+. The first one
will be presented in Section 4 (Theorems 4.3 and 5.1)
and will follow from results presented below. Expres-
sions (39) and (40) furnish explicit expressions for the
computation of A+ in terms of A, A∗ and the eigen-
values of AA∗ or A∗ A (i.e., the singular values of A).

The second existence proof will be presented in
“Appendix 2” and relies on the singular values decom-
position presented in Theorem A.16. For this proof, the
preliminary results presented below are not required.
This second proof is the one more frequently found
in the literature, but we believe that expressions (39)
and (40) provide an algorithmically simpler way for the
determination of the Moore–Penrose pseudoinverse of
a given matrix.

2.5 Computing the Moore–Penrose Pseudoinverse
in Some Special Cases

If A ∈ Mat (�, m, 1), A =
( a1

...
am

)
, a non-zero column

vector, then one can easily verify that A+ = 1
‖A‖2 A∗ =

1
‖A‖2 ( a1 , ..., am ), where ‖A‖ = √|a1|2 + · · · + |am|2. In

particular, if z ∈ �, then (z)+ =
{

0, z = 0
1
z , z �= 0

, by taking

z as an element of Mat (�, 1, 1).
This can be further generalized. If A ∈ Mat (�, m,

n) and (AA∗)−1 exist, then

A+ = A∗(
AA∗)−1

, (14)

because we can readily verify that the right-hand side
satisfies the defining conditions of A+. Analogously, if
(A∗ A)−1 exists, one has

A+ = (
A∗ A

)−1
A∗ . (15)

For instance, for A = (
2 0 i
0 i 1

)
, one can check that AA∗

is invertible, but A∗ A is not, and we have A+ =
A∗(

AA∗)−1 = 1
9

( 4 −2i
1 −5i
−i 4

)
. Similarly, for A =

(
1 2
0 i
0 3

)
,

AA∗ is singular, but A∗ A is invertible and we have
A+ = (

A∗ A
)−1

A∗ = 1
10

( 10 2i −6
0 −i 3

)
.

The relations (14) and (15) are significant because
they will provide an important hint to find the Moore–
Penrose pseudoinverse of a general matrix, as we will

discuss later. In Proposition 3.2, we will show that one
has in general A+ = A∗(

AA∗)+ = (
A∗ A

)+
A∗, and in

Theorem 4.3, we will discuss what can be done in the
cases when A∗ A or A∗ A are not invertible.

3 Further Properties of the Moore–Penrose
Pseudoinverse

The following properties of the Moore–Penrose
pseudoinverse follow immediately from its definition
and from uniqueness. The proofs are elementary and
left to the reader: For any A ∈ Mat (�, m, n), one has

1.
(

A+)+ = A,

2.
(

A+)T = (
AT

)+, A+ =
(

A
)+

and, consequently
(

A+)∗ = (
A∗)+,

3. (zA)+ = z−1 A+ for all z ∈ �, z �= 0.

It is, however, important to remark that for A ∈
Mat (�, m, n) and B ∈ Mat (�, n, p), the Moore–
Penrose pseudoinverse (AB)+ is not always equal to
B+ A+, in contrast to what happens with the usual
inverse in the case m = n = p. A relevant exception
will be found in Proposition 3.2.

The next proposition lists some important properties
that will be used below.

Proposition 3.1 The Moore–Penrose pseudoinverse sat-
isf ies the following relations:

A+ = A+ (
A+)∗

A∗ , (16)

A = A A∗ (
A+)∗

, (17)

A∗ = A∗ A A+ , (18)

A+ = A∗ (
A+)∗

A+ , (19)

A = (
A+)∗

A∗ A , (20)

A∗ = A+ A A∗ , (21)

valid for all A ∈ Mat (�, m, n).

For us, the most relevant of the relations above is
relation (18), since we will make use of it in the proof
of Proposition 6.1 when deal with optimization of least
squares problems.

Proof of Proposition 3.1 Since AA+ is self-adjoint, one
has AA+ = (

AA+)∗ = (
A+)∗

A∗. Multiplying to the
left by A+, we get A+ = A+(

A+)∗
A∗, proving (16).

Replacing A → A+ and using the fact that A = (
A+)+,

one gets from (16) A = AA∗(
A+)∗, which is relation
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(17). Replacing A → A∗ and using the fact that(
A∗)+ = (

A+)∗, we get from (17) that A∗ = A∗ AA+,
which is relation (18).

Relations (19)–(21) can be obtained analogously
from the fact that A+ A is also self-adjoint, but they
follow more easily by replacing A → A∗ in (16)–(18)
and by taking the adjoint of the resulting expressions.

��

From Proposition 3.1, other interesting results can
be obtained, some of which are listed in the following
proposition:

Proposition 3.2 For all A ∈ Mat (�, m, n), one has
(

AA∗)+ = (
A∗)+

A+ . (22)

From this we get

A+ = A∗(
AA∗)+ = (

A∗ A
)+

A∗ , (23)

also valid for all A ∈ Mat (�, m, n).

Expression (23) generalizes (14) and (15) and can be
employed to compute A+ provided

(
AA∗)+ or

(
A∗ A

)+

were previously known.

Proof of Proposition 3.2 Let B = (
A∗)+

A+. One has

AA∗ (17)= A A∗ (A+)∗ A∗ (21)= A A∗ (A+)∗ A+ A A∗

= (AA∗)B(AA∗) ,

where we use that
(

A∗)+ = (
A+)∗. One also has

B = (
A∗)+

A+ (16)= (A+)∗ A+ A A+

(19)= (A+)∗ A+ A A∗ (A+)∗ A+ = B
(

A A∗)
B .

Notice that
(

A A∗)
B =

(
A A∗(A+)∗

)
A+ (18)= AA+

which is self-adjoint, by definition. Analogously,

B
(

A A∗) = (A+)∗
(

A+ A A∗
)

(20)= (A∗)+ A∗ ,

which is also self-adjoint. The facts exposed in the lines
above prove that B is the Moore–Penrose pseudoin-
verse of AA∗, establishing (22). Replacing A → A∗ in
(22), one also gets
(

A∗ A
)+ = A+(

A∗)+
. (24)

Notice now that

A∗(
AA∗)+ (22)= A∗(

A∗)+
A+ (19)= A+

and that

(
A∗ A

)+
A∗ (24)= A+(

A∗)+
A∗ (16)= A+ ,

establishing (23). ��

3.1 The Kernel and the Range of a Matrix
and the Moore–Penrose Pseudoinverse

The kernel and the range (or image) of a matrix
A ∈ Mat (�, m, n) are defined by Ker (A) := {u ∈
�n| Au = 0} and Ran (A) := {Au, u ∈ �n}, respec-
tively. It is evident that Ker (A) is a linear subspace of
�n and that Ran (A) is a linear subspace of �m.

The following proposition will be used below, but is
interesting by itself.

Proposition 3.3 Let A∈Mat (�, m, n) and let us def ine
P1 := �n − A+ A ∈ Mat (�, n) and P2 := �m − AA+ ∈
Mat (�, n). Then, the following claims are valid:

1. P1 and P2 are orthogonal projectors, that means,
they satisfy (Pk)

2 = Pk and P∗
k = Pk, k = 1, 2.

2. Ker (A)=Ran (P1), Ran (A)=Ker (P2), Ker (A+)=
Ran (P2) and Ran

(
A+) = Ker (P1).

3. Ran (A) = Ker
(

A+)⊥
and Ran

(
A+) = Ker (A)⊥.

4. Ker (A)⊕Ran
(

A+)=�n and Ker
(

A+)⊕Ran (A)=
�m, both being direct sums of orthogonal subspaces.

Proof Since AA+ and A+ A are self-adjoint, so
are P1 and P2. One also has (P1)

2 = �− 2A+ A +
A+ AA+ A=�− 2A+ A + A+ A=�− A+ A= P1 and
analogously for P2. This proved item 1.

Let x ∈ Ker (A). Since Ran (P1) is a closed linear
subspace of �n, the “Best Approximant Theorem,”
Theorem A.1, and the Orthogonal Decomposition The-
orem, Theorem A.3, guarantee the existence of a
unique z0 ∈ Ran (P1) such that ‖x − z0‖ = min

{‖x −
z‖, z ∈ Ran (P1)

}
. Moreover, x − z0 is orthogonal to

Ran (P1). Hence, there exists at least one y0 ∈ �m

such that x − P1 y0 is orthogonal to every element
of the form P1 y, i.e., 〈x − P1 y0, P1 y〉 = 0 for all y ∈
�m, what implies 〈P1(x − P1 y0), y〉 = 0 for all y ∈ �m

what, in turn, implies P1(x − P1 y0) = 0. This, how-
ever, says that P1x = P1 y0. Since x ∈ Ker (A), one has
P1x = x (by the definition of P1). We therefore proved
that if x ∈ Ker (A), then x ∈ Ran (P1), establishing that
Ker (A) ⊂ Ran (P1). On the other hand, the fact that
AP1 = A

(
�− A+ A

) = A − A = 0 implies Ran (P1) ⊂
Ker (A), establishing that Ran (P1) = Ker (A).

If z ∈ Ker (P1), then z = A+ Az, proving that z ∈
Ran

(
A+)

. This establishes that Ker (P1) ⊂ Ran
(

A+)
.

On the other hand, if u ∈ Ran
(

A+)
, then there exists



152 Braz J Phys (2012) 42:146–165

v ∈ �m such that u = A+v. Therefore, P1u = (
�n −

A+ A
)

A+v = (
A+ − A+ AA+)

v = 0, proving that u ∈
Ker (P1) and that Ran

(
A+) ⊂ Ker (P1). This estab-

lishes that Ker (P1) = Ran
(

A+)
.

P2 is obtained from P1 by the substitution A → A+
(recalling that

(
A+)+ = A). Hence, the results above

imply that Ran (P2) = Ker
(

A+)
and that Ker (P2) =

Ran (A). This proves item 2.
If M ∈ Mat (�, p) (with p ∈ �, arbitrary) is self-

adjoint, then 〈y, Mx〉 = 〈My, x〉 for all x, y ∈ �p.
This relation makes evident that Ker (M) = Ran (M)⊥.
Therefore, item 3 follows from item 2 by taking M = P1

and M = P2. Item 4 is evident from item 3. ��

4 Tikhonov’s Regularization and Existence Theorem
for the Moore–Penrose Pseudoinverse

In (14) and (15), we saw that if
(

AA∗)−1 exists, then

A+ = A∗(
AA∗)−1, and that if

(
A∗ A

)−1 exists, then

A+ = (
A∗ A

)−1
A∗. If those inverses do not exist, there

is an alternative procedure to obtain A+. We know
from Proposition A.4 that even if

(
AA∗)−1 does not

exist, the matrix AA∗ + μ� will be invertible for all
non-vanishing μ ∈ � with |μ| small enough. Hence, we
could conjecture that the expressions A∗(

AA∗ + μ�
)−1

and
(

A∗ A + μ�
)−1

A∗ are well-defined for μ �= 0 and
|μ| small enough and converge to A+ when the limit
μ → 0 is taken. As will now show, this conjecture is
correct.

The provisional replacement of the singular matrices
AA∗ or A∗ A by the non-singular ones AA∗ + μ� or
A∗ A + μ� (with μ �= 0 and |μ| “small”) is a regular-
ization procedure known as Tikhonov’s regularization.
This procedure was introduced by Tikhonov in [1]
(see also [2] and, for historical remarks, [25]) in his
search for uniform approximations for the solutions of
Fredholm’s equation of the first kind
∫ b

a
k(x, y) u(y) dy = f (x) , (25)

where −∞ < a < b < ∞ and where k and f are given
functions satisfying adequate smoothness conditions. In
operator form, (25) becomes Ku = f and K is well-
known to be a compact operator (see, e.g., [29]) if
k is a continuous function. By using the method of
finite differences or by using expansions in terms of
orthogonal functions, the inverse problem (25) can be
replaced by an approximating inverse matrix problem
Ax = y, like (1). By applying A∗ to the left, one gets
A∗ Ax = A∗y. Since the inverse of A∗ A may not exist,
one first considers a solution xμ of the regularized equa-

tion
(

A∗ A + μ�
)
xμ = A∗y, with some adequate μ ∈ �,

and asks whether the limit lim|μ|→0
(

A∗ A + μ�
)−1

A∗y
can be taken. As we will see, the limit exists and is
given precisely by A+y. In Tikhonov’s case, the regu-
larized equation

(
A∗ A + μ�

)
xμ = A∗y can be obtained

from a related Fredholm’s equation of the second kind,
namely K∗Kuμ + μuμ = K∗ f , for which the existence
of solutions, i.e., the existence of the inverse (K∗K +
μ�)−1, is granted by Fredholm’s alternative theorem
(see, e.g., [29]) for all μ in the resolvent set of K∗K
and, therefore, for all μ > 0 (since K∗K is a positive
compact operator)1. It is then a technical matter to
show that the limit lim

μ→0
μ>0

uμ exists and provides a uniform

approximation to a solution of (25).
Tikhonov, however, does not point to the relation

of his ideas to the theory of the Moore–Penrose in-
verse. This will be described in what follows. Our first
result, presented in the next two lemmas, establishes
that the limits lim

μ→0
A∗(

AA∗ + μ�m
)−1 and lim

μ→0

(
A∗ A+

μ�n
)−1

A∗, described above, indeed exist and are equal.

Lemma 4.1 Let A ∈ Mat (�, m, n) and let μ ∈ � be
such that AA∗ + μ�m and A∗ A + μ�n are non-singular
(that means μ �∈ σ

(
AA∗) ∪ σ

(
A∗ A

)
, a f inite set). Then,

A∗(
AA∗ + μ�m

)−1 = (
A∗ A + μ�n

)−1
A∗.

Recall that, by Proposition A.7, σ
(

AA∗)
and σ

(
A∗

A
)

differ at most by the element 0.

Proof of Lemma 4.1 Let Bμ := A∗(
AA∗ + μ�m

)−1

and Cμ := (
A∗ A + μ�n

)−1
A∗. We have

A∗ ABμ = A∗[
AA∗](

AA∗ + μ�m
)−1

= A∗[
AA∗ + μ�m − μ�m

](
AA∗ + μ�m

)−1

= A∗
(
�m − μ

(
AA∗ + μ�m

)−1
)

= A∗ − μBμ .

Therefore,
(

A∗ A + μ�n
)
Bμ = A∗, what implies Bμ =(

A∗ A + μ�n
)−1

A∗ = Cμ. ��

Lemma 4.2 For all A ∈ Mat (�, m, n) the limits
lim
μ→0

A∗(
AA∗+μ�m

)−1
and lim

μ→0

(
A∗ A+μ�n

)−1
A∗ exist

and are equal (by Lemma 4.1), def ining an element of
Mat (�, n, m).

1Tikhonov’s argument in [1] is actually more complicated, since
he does not consider the regularized equation

(
K∗K + μ�

)
uμ =

K∗ f , but a more general version where the identity operator � is
replaced by a Sturm–Liouville operator.
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Proof Notice first that A is an identically zero matrix
iff AA∗ or A∗ A are zero matrices. In fact, if, for
instance, A∗ A = 0, then for any vector x one has 0 =
〈x, A∗ Ax〉 = 〈Ax, Ax〉 = ‖Ax‖2, proving that A = 0.
Hence, we will assume that AA∗ and A∗ A are non-zero
matrices.

The matrix AA∗ ∈ Mat (�, m) is evidently self-
adjoint. Let α1, . . . , αr be its distinct eigenvalues. By
the spectral theorem for self-adjoint matrices (see
Theorems A.9 and A.13), we may write

AA∗ =
r∑

a=1

αa Ea , (26)

where Ea are the spectral projectors of AA∗ and
satisfy Ea Eb = δab Ea, E∗

a = Ea, and
∑r

a=1 Ea = �m.
Therefore,

AA∗ + μ�m =
r∑

a=1

(αa + μ)Ea

and, hence, for μ �∈ {α1, . . . , αr}, one has, by (50),

(
AA∗ + μ�m

)−1 =
r∑

a=1

1
αa + μ

Ea and

A∗(
AA∗ + μ�m

)−1 =
r∑

a=1

1
αa + μ

A∗Ea . (27)

There are now two cases to be considered: (1) zero is
not an eigenvalue of AA∗ and (2) zero is eigenvalue
of AA∗.

In case 1, it is clear from (27) that the limit
lim
μ→0

A∗(
AA∗ + μ�m

)−1 exists and

lim
μ→0

A∗(
AA∗ + μ�m

)−1 =
r∑

a=1

1
αa

A∗Ea . (28)

In case 2, let us have, say, α1 = 0. The corresponding
spectral projector E1 projects on the kernel of AA∗:
Ker

(
AA∗) := {u ∈ �n| AA∗u = 0}. If x ∈ Ker

(
AA∗)

,
then A∗x = 0 because 0 = 〈

x, AA∗x
〉 = 〈A∗x, A∗x〉 =∥∥A∗x

∥∥2. Therefore,

A∗E1 = 0 (29)

and, hence, we may write,

A∗(
AA∗ + μ�m

)−1 =
r∑

a=2

1
αa + μ

A∗Ea ,

from which we get

lim
μ→0

A∗(
AA∗ + μ�m

)−1 =
r∑

a=2

1
αa

A∗Ea . (30)

This proves that lim
μ→0

A∗(
AA∗ + μ�m

)−1 always exists.

By Lemma 4.1, the limit lim
μ→0

(
A∗ A + μ�n

)−1
A∗ also

exists and coincides with lim
μ→0

A∗(
AA∗ + μ�m

)−1. ��

The main consequence is the following theorem,
which contains a general proof for the existence of the
Moore–Penrose pseudoinverse:

Theorem 4.3 (Tikhonov’s Regularization) For all A ∈
Mat (�, m, n) one has

A+ = lim
μ→0

A∗(
AA∗ + μ�m

)−1 (31)

and

A+ = lim
μ→0

(
A∗ A + μ�n

)−1
A∗ . (32)

Proof The statements to be proven are evident if A =
�mn because, as we already saw, (�mn)

+ = �nm. Hence,
we will assume that A is a non-zero matrix. This is
equivalent (by the comments found in the proof o
Lemma 4.2) to assume that AA∗ and A∗ A are non-zero
matrices.

By Lemmas 4.1 and 4.2, it is enough to prove (31).
There are two cases to be considered: (1) zero is not
an eigenvalue of AA∗ and (2) zero is an eigenvalue of
AA∗. In case (1), we saw in (28) that

lim
μ→0

A∗(
AA∗ + μ�m

)−1 =
r∑

a=1

1
αa

A∗Ea =: B .

Notice now that

AB =
r∑

a=1

1
αa

AA∗Ea =
r∑

a=1

1
αa

(
r∑

b=1

αb Eb

)
Ea

=
r∑

a=1

r∑
b=1

1
αa

αb δab Ea =
r∑

a=1

Ea = �m, (33)

which is self-adjoint and that

BA =
r∑

a=1

1
αa

A∗Ea A , (34)

which is also self-adjoint because αa ∈ � for all a and
because (A∗Ea A)∗ = A∗Ea A for all a, since E∗

a = Ea.
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From (33), it follows that ABA = A. From (34), it
follows that

BAB =
(

r∑
a=1

1
αa

A∗Ea A

) (
r∑

b=1

1
αb

A∗Eb

)

=
r∑

a=1

r∑
b=1

1
αaαb

A∗Ea(AA∗)Eb .

Now, by the spectral decomposition (26) for AA∗, it
follows that (AA∗)Eb = αb Eb . Therefore,

BAB =
r∑

a=1

r∑
b=1

1
αa

A∗Ea Eb

=
(

r∑
a=1

1
αa

A∗Ea

) ( r∑
b=1

Eb

︸ ︷︷ ︸
�m

)
= B .

This proves that A = A+ when 0 is not an eigenvalue
of AA∗.

Let us now consider the case when AA∗ has a zero
eigenvalue, say, α1. As we saw in (30),

lim
μ→0

A∗(
AA∗ + μ�m

)−1 =
r∑

a=2

1
αa

A∗Ea =: B .

Using the fact that (AA∗)Ea = αa Ea (what follows
from the spectral decomposition (26) for AA∗), we get

AB =
r∑

a=2

1
αa

AA∗Ea =
r∑

a=2

1
αa

αa Ea

=
r∑

a=2

Ea = �m − E1, (35)

which is self-adjoint, since E1 is self-adjoint. We also
have

BA =
r∑

a=2

1
αa

A∗Ea A , (36)

which is also self-adjoint.
From (35), it follows that ABA = A − E1 A. Notice

now that (E1 A)∗ = A∗E1 = 0, by (29). This establishes

that E1 A = 0 and that ABA = A. From (36), it fol-
lows that

BAB =
(

r∑
a=2

1
αa

A∗Ea A

) (
r∑

b=2

1
αb

A∗Eb

)

=
r∑

a=2

r∑
b=2

1
αaαb

A∗Ea(AA∗)Eb .

Using again (AA∗)Eb = αb Eb , we get

BAB=
r∑

a=2

r∑
b=2

1
αa

A∗Ea Eb =
(

r∑
a=2

1
αa

A∗Ea

)(
r∑

b=2

Eb

)

︸ ︷︷ ︸
�m−E1

= B −
r∑

a=2

1
αa

A∗Ea E1 = B,

since Ea E1 = 0 for a �= 1. This shows that BAB = B.
Hence, we established that A = A+ also in the case
when AA∗ has a zero eigenvalue, completing the proof
of (31). ��

5 The Moore–Penrose Pseudoinverse and the Spectral
Theorem

The proof of Theorem 4.3 also establishes the following
facts:

Theorem 5.1 Let A ∈ Mat (�, m, n) be a non-zero
matrix and let AA∗ = ∑r

a=1 αa Ea be the spectral repre-
sentation of AA∗, where {α1, . . . , αr} ⊂ � is the set of
distinct eigenvalues of AA∗ and Ea are the correspond-
ing self-adjoint spectral projections. Then, we have

A+ =
r∑

a=1
αa �=0

1
αa

A∗Ea . (37)

Analogously, let A∗ A = ∑s
b=1 βb Fb be the spectral rep-

resentation of A∗ A, where {β1, . . . , βs} ⊂ � is the set of
distinct eigenvalues of A∗ A and Fb the corresponding
self-adjoint spectral projections. Then, we also have

A+ =
s∑

b=1
βb �=0

1
βb

Fb A∗ . (38)

Is it worth mentioning that, by Proposition A.7, the sets
of non-zero eigenvalues of AA∗ and of A∗ A coincide:
{α1, . . . , αr} \ {0} = {β1, . . . , βs} \ {0}).
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From (37) and (38) it follows that for a non-zero
matrix A, we have

A+ =
r∑

a=1
αa �=0

1
αa

⎛
⎜⎝

r∏
l=1
l �=a

(
αa − αl

)−1

⎞
⎟⎠

×A∗

⎡
⎢⎣

r∏
l=1
l �=a

(
AA∗ − αl�m

)
⎤
⎥⎦ , (39)

A+ =
s∑

b=1
βb �=0

1
βb

⎛
⎜⎝

s∏
l=1
l �=b

(
βb − βl

)−1

⎞
⎟⎠

×
⎡
⎢⎣

s∏
l=1
l �=b

(
A∗ A − βl�n

)
⎤
⎥⎦ A∗ . (40)

Expression (39) or (40) provides a general algorithm
for the computation of the Moore–Penrose pseudoin-
verse for any non-zero matrix A. Its implementation
requires only the determination of the eigenvalues of
AA∗ or of A∗ A and the computation of polynomials
on AA∗ or A∗ A.

Proof of Theorem 5.1 Equation (37) was established in
the proof of Theorem 4.3 (see (28) and (30)). Relation
(38) can be proven analogously, but it also follows
easier (see (37)), by replacing A → A∗ and taking the
adjoint of the resulting expression. Relations (39) and
(40) follow from Proposition A.11, particularly from
the explicit formula for the spectral projector given
in (52). ��

6 The Moore–Penrose Pseudoinverse and Least
Squares

Let us now consider one of the main applications
of the Moore–Penrose pseudoinverse, namely to op-
timization of linear least squares problems. Let A ∈
Mat (�, m, n) and y ∈ �m be given and consider the
problem of finding x ∈ �n satisfying the linear equation

Ax = y . (41)

If m = n and A has an inverse, the (unique) solution
is, evidently, x = A−1 y. In the other cases, the solution
may not exist or may not be unique. We can, however,
consider the alternative problem of finding the set of all
vectors x′ ∈ �n such that the Euclidean norm ‖Ax′ − y‖
reaches its least possible value. This set is called the

minimizing set of the linear problem (41). Such vectors
x′ ∈ �n would be the best approximants for the solution
of (41) in terms of the Euclidean norm, i.e., in terms of
“least squares.” As we will show, the Moore–Penrose
pseudoinverse provides this set of vectors x′ that min-
imize ‖Ax′ − y‖. The main result is condensed in the
following theorem:

Theorem 6.1 Let A ∈ Mat (�, m, n) and y ∈ �m be
given. Then, the set of all vectors of �n for which the
map �n � x �→ ‖Ax − y‖ ∈ [0, ∞) assumes a minimum
coincides with the set

A+y + Ker (A)

=
{

A+y + (
�n − A+ A

)
z, z ∈ �

n
}

. (42)

By Proposition 3.3, we also have A+y + Ker (A) =
A+y + Ran

(
A+)⊥

.

Theorem 6.1 says that the minimizing set of the
linear problem (41) consists of all vectors obtained by
adding to the vector A+y an element of the kernel
of A, i.e., of all vectors obtained adding to A+y a
vector annihilated by A. Notice that for the elements
x′ of the minimizing set of the linear problem (41),

one has
∥∥Ax′ − y

∥∥ =
∥∥∥(

AA+ − �m
)
y
∥∥∥ = ‖P2 y‖, which

vanishes if and only if y ∈ Ker (P2) = Ran (A) (by
Proposition 3.3), a rather obvious fact.

Proof of Theorem 6.1 The image of A, Ran (A), is a
closed linear subspace of �m. The best approximant
theorem and the orthogonal decomposition theorem
guarantee the existence of a unique y0 ∈ Ran (A) such
that ‖y0 − y‖ is minimal and that this y0 is such that
y0 − y is orthogonal to Ran (A).

Hence, there exists at least one x0 ∈ �n such that
‖Ax0 − y‖ is minimal. Such x0 is not necessarily unique,
and as one easily sees, x1 ∈ �n has the same properties
if and only if x0 − x1 ∈ Ker (A) (since Ax0 = y0 and
Ax1 = y0, by the uniqueness of y0). As we already ob-
served, Ax0 − y is orthogonal to Ran (A), i.e., 〈(Ax0 −
y), Au〉 = 0 for all u ∈ �n. This means that

〈(
A∗ Ax0 −

A∗y
)
, u

〉
= 0 for all u ∈ �n and, therefore, x0 satisfies

A∗ Ax0 = A∗y . (43)

Now, relation (18) shows us that x0 = A+y satisfies (43)

because A∗ AA+y
(18)= A∗y. Therefore, we conclude that

the set of all x ∈ �n satisfying the condition of ‖Ax − y‖
being minimal is composed by all vectors of the form
A+y + x1 with x1 ∈ Ker (A). By Proposition 3.3, x1
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is of the form x1 = (
�n − A+ A

)
z for some z ∈ �n,

completing the proof. ��
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Appendix 1: A Brief Review of Hilbert Space Theory
and Linear Algebra

In this appendix, we collect the more important
definitions and results on linear algebra and Hilbert
space theory that we used in the main part of this paper.
For the benefit of the reader, especially of students, we
provide all results with proofs.

Hilbert Spaces: Basic Definitions

A scalar product in a complex vector space V is a func-
tion V × V → �, denoted here by 〈·, ·〉, such that the
following conditions are satisfied: (1) For all u ∈ V , one
has 〈u, u〉 ≥ 0 and 〈u, u〉 = 0 if and only if u = 0; (2) for
all u, v1, v2 ∈ V and all α1, α2 ∈ �, one has

〈
u, (α1v1 +

α2v2)
〉 = α1〈u, v1〉 + α2〈u, v2〉 and

〈
(α1v1 + α2v2), u

〉 =
α1〈v1, u〉 + α2〈v2, u〉; and (3) 〈u, v〉 = 〈v, u〉 for all
u, v ∈ V .

The norm associated to the scalar product 〈·, ·〉 is
defined by ‖u‖ := √〈u, u〉, for all u ∈ V . As one eas-
ily verifies using the defining properties of a scalar
product, this norm satisfies the so-called parallelogram
identity: For all a, b ∈ V , one has

‖a + b‖2 + ‖a − b‖2 = 2‖a‖2 + 2‖b‖2 . (44)

We say that a sequence {vn ∈ V, n ∈ �} of vectors in
V converges to an element v ∈ V if for all ε > 0 there
exists a N(ε) ∈ � such that ‖vn − v‖ ≤ ε for all n ≥
N(ε). In this case, we write v = limn→∞ vn. A sequence
{vn ∈ V, n ∈ �} of vectors in V is said to be a Cauchy
sequence if for all ε > 0 there exists a N(ε) ∈ � such
that ‖vn − vm‖ ≤ ε for all n, m ∈ � such that n ≥ N(ε)

and m ≥ N(ε). A complex vector space V is said to be
a Hilbert space if it has a scalar product and if it is
complete, i.e., if all Cauchy sequences in V converge to
an element of V .

The Best Approximant Theorem

A subset A of a Hilbert space H is said to be convex
if for all u, v ∈ A and all μ ∈ [0, 1] one has μu + (1 −
μ)v ∈ A. A subset A of a Hilbert space H is said to be
closed if every sequence {un ∈ A, n ∈ �} of elements

of A that converges in H converges to an element of A.
The following theorem is of fundamental importance in
the theory of Hilbert spaces.

Theorem A.1 (Best Approximant Theorem) Let A be
a convex and closed subset of a Hilbert space H. Then,
for all x ∈ H there exists a unique y ∈ A such that ‖x −
y‖ equals the smallest possible distance between x and
A, that means, ‖x − y‖ = infy′∈A

∥∥x − y′∥∥.

Proof Let D ≥ 0 be defined by D = infy′∈A ‖x − y′‖.
For each n ∈ �, let us choose a vector yn ∈ A with
the property that ‖x − yn‖2 < D2 + 1

n . Such a choice is
always possible, by the definition of the infimum of a
set of real numbers bounded from below.

Let us now prove that the sequence yn, n ∈ �

is a Cauchy sequence in H. Let us take a = x − yn

and b = x − ym in the parallelogram identity (44).
Then,

∥∥2x − (ym + yn)
∥∥2 + ‖ym − yn‖2 = 2‖x − yn‖2 +

2‖x − ym‖2. This can be written as ‖ym − yn‖2 = 2‖x −
yn‖2 + 2‖x − ym‖2 − 4

∥∥x − (ym + yn)/2
∥∥2. Now, using

the fact that ‖x − yn‖2 < D2 + 1
n for each n ∈ �, we get

‖ym − yn‖2 ≤ 4D2 + 2
(

1
n

+ 1
m

)

− 4
∥∥x − (ym + yn)/2

∥∥2
.

Now (ym + yn)/2 ∈ A, since the left-hand side is a con-
vex linear combination of elements of the convex set
A. Hence, by the definition of D,

∥∥x − (ym + yn)/2
∥∥2 ≥

D2. Therefore, we have

‖ym − yn‖2 ≤ 4D2 + 2
(

1
n

+ 1
m

)
− 4D2

= 2
(

1
n

+ 1
m

)
.

The right-hand side can be made arbitrarily small, by
taking both m and n large enough, proving that {yn}n∈�
is a Cauchy sequence. Since A is a closed subspace of
the complete space H, the sequence {yn}n∈� converges
to y ∈ A.

Now we prove that ‖x − y‖ = D. In fact, for all n ∈
�, one has

‖x − y‖ = ∥∥(x − yn) − (y − yn)
∥∥

≤ ‖x − yn‖ + ‖y − yn‖

<

√
D2 + 1

n
+ ‖y − yn‖.
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Taking n → ∞ and using the fact that yn converges to
y, we conclude that ‖x − y‖ ≤ D. On the other hand,
‖x − y‖ ≥ D by the definition of D and we must have
‖x − y‖ = D.

At last, it remains to prove the uniqueness of y.
Assume that there is another y′ ∈ A such that

∥∥x −
y′∥∥ = D. Using again the parallelogram identity (44),
but now with a = x − y and b = x − y′, we get

∥∥2x − (y + y′)
∥∥2 + ∥∥y − y′∥∥2

= 2
∥∥x − y

∥∥2 + 2
∥∥x − y′∥∥2 = 4D2,

which means that

∥∥y − y′∥∥2 = 4D2 − ∥∥2x − (y + y′)
∥∥2

= 4D2 − 4
∥∥∥x − (

y + y′)/2
∥∥∥

2
.

Since (y + y′)/2 ∈ A (for A being convex), it follows
that

∥∥x − (y + y′)/2
∥∥2 ≥ D2 and, hence,

∥∥y − y′∥∥2 ≤ 0,
proving that y = y′. ��

Orthogonal Complements

If E is a subset of a Hilbert space H, we define its
orthogonal complement E⊥ as the set of vectors in H
orthogonal to all vectors in E: E⊥ =

{
y ∈ H

∣∣ 〈y, x〉 =
0 for all x ∈ E

}
. The following proposition is of funda-

mental importance:

Proposition A.2 The orthogonal complement E⊥ of a
subset E of a Hilbert space H is a closed linear subspace
of H.

Proof If x, y ∈ E⊥, then, for any α, β ∈ �, one has
〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉 = 0 for any z ∈ E,
showing that αx + βy ∈ E⊥. Hence, E⊥ is a linear sub-
space of H. If xn is a sequence in E⊥ converging to x ∈
H, then, for all z ∈ E, one has 〈x, z〉 =

〈
lim

n→∞ xn, z
〉
=

lim
n→∞ 〈xn, z〉 = 0, since 〈xn, z〉 = 0 for all n. Hence, x ∈
E⊥, showing that E⊥ is closed. Above, in the first
equality, we used the continuity of the scalar product.

��

The Orthogonal Decomposition Theorem

Theorem A.3 (Orthogonal Decomposition Theorem)
Let M be a closed and linear (and therefore convex)
subspace of a Hilbert space H. Then every x ∈ H can
be written in a unique way in the form x = y + z, with

y ∈ M and z ∈ M⊥. The vector y is such that ‖x − y‖ =
infy′∈M

∥∥x − y′∥∥, i.e., is the best approximant of x in M.

Proof Let x be an arbitrary element of H. Since M
is convex and closed, let us evoke Theorem 6.2 and
choose y as the (unique) element of M such that ‖x −
y‖ = infy′∈M

∥∥x − y′∥∥. Defining z := x − y, all we have
to do is to show that z ∈ M⊥ and to show uniqueness
of y and z. Let us first prove that z ∈ M⊥. By the
definition of y, one has ‖x − y‖2 ≤ ∥∥x − y − λy′∥∥2 for
all λ ∈ � and all y′ ∈ M. By the definition of z, it
follows that ‖z‖2 ≤ ∥∥z − λy′∥∥2 for all λ ∈ �. Writing
the right-hand side as

〈
z − λy′, z − λy′〉, we get ‖z‖2 ≤

‖z‖2 − 2Re
(
λ〈z, y′〉) + |λ|2∥∥y′∥∥2. Hence,

2Re
(
λ〈z, y′〉) ≤ |λ|2∥∥y′∥∥2

. (45)

Now, write
〈
z, y′〉 = ∣∣〈z, y′〉∣∣eiα , for some α ∈ �. Since

(45) holds for all λ ∈ �, we can pick λ in the form
λ = te−iα , t > 0, and (45) becomes 2t

∣∣〈z, y′〉∣∣ ≤ t2
∥∥y′∥∥2.

Hence,
∣∣〈z, y′〉∣∣ ≤ t

2

∥∥y′∥∥2, for all t > 0. But this is only
possible if the left-hand side vanishes:

∣∣〈z, y′〉∣∣ = 0.
Since y′ is an arbitrary element of M, this shows that
z ∈ M⊥.

To prove uniqueness, assume that x = y′ + z′ with
y′ ∈ M and z′ ∈ M⊥. We would have y − y′ = z′ − z.
But y − y′ ∈ M and z′ − z ∈ M⊥. Hence, both belong
to M ∩ M⊥ = {0}, showing that y − y′ = z′ − z = 0.

��

The Spectrum of a Matrix

The spectrum of a matrix A ∈ Mat (�, n), denoted by
σ(A), is the set of all λ ∈ � for which the matrix λ�− A
has no inverse.

The characteristic polynomial of a matrix A ∈
Mat (�, n) is defined by pA(z) := det(z�− A). It is
clearly a polynomial of degree n on z. It follows readily
from these definitions that σ(A) coincides with the
roots of pA. The elements of σ(A) are said to be the
eigenvalues of A. If λ is an eigenvalue of A, the matrix
A − λ� has no inverse, and therefore, there exists at
least one non-vanishing vector v ∈ �n such that (A −
λ�)v = 0, that means, such that Av = λv. Such a vector
is said to be an eigenvector of A with eigenvalue λ. The
set of all eigenvectors associated to a given eigenvalues
(plus the null vector) is a linear subspace of �n, as one
easily sees.

The multiplicity of a root λ of the characteristic poly-
nomial of a matrix A ∈ Mat (�, n) is called the alge-
braic multiplicity of the eigenvalue λ. The dimension of
the subspace generated by the eigenvectors associated
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to the eigenvalues λ is called the geometric multiplicity
of the eigenvalue λ. The algebraic multiplicity of an
eigenvalue is always larger than or equal to its geomet-
ric multiplicity.

The Neighborhood of Singular Matrices

Proposition A.4 Let A ∈ Mat (�, n) be arbitrary and
let B ∈ Mat (�, n) be a non-singular matrix. Then, there
exist constants M1 and M2 (depending on A and B) with
0 < M1 ≤ M2 such that A + μB is invertible for all μ ∈
� with 0 < |μ| < M1 and for all μ ∈ � with |μ| > M2.

Proof Since B has an inverse, we may write A + μB =(
μ�+ AB−1

)
B. Hence, A + μB has an inverse if and

only if μ�+ AB−1 is non-singular.
Let C ≡ −AB−1 and let {λ1, . . . , λn} ⊂ � be the

n not necessarily distinct roots of the characteristic
polynomial pC of C. If all roots vanish, we take
M1 = M2 > 0, arbitrary. Otherwise, let us define M1 :=
min{|λk|, λk �= 0} and M2 := max{|λk|, k = 1, . . . , n}.
Then, the sets {μ ∈ �| 0 < |μ| < M1} and {μ ∈ �| |μ| >

M2} do not contain roots of pC, and therefore, for μ

in these sets, the matrix μ�− C = μ�+ AB−1 is non-
singular. ��

Similar Matrices

Two matrices A ∈ Mat (�, n) and B ∈ Mat (�, n) are
said to be similar if there is a non-singular matrix
P ∈ Mat (�, n) such that P−1 AP = B. One has the
following elementary fact:

Proposition A.5 Let A and B ∈ Mat (�, n) be two sim-
ilar matrices. Then their characteristic polynomials coin-
cide, pA = pB, and therefore, their spectra also coincide,
σ(A) = σ(B), as well as the geometric multiplicities of
their eigenvalues

Proof Let P ∈ Mat (�, n) be such that P−1 AP = B.
Then, pA(z) = det(z�− A) = det

(
P−1(z�− A)P

)
=

det
(
z�− P−1 AP

) = det(z�− B) = pB(z), for al z ∈ �.
��

The Spectrum of Products of Matrices

The next proposition contains a non-evident conse-
quence of Propositions A.4 and A.5.

Proposition A.6 Let A, B ∈ Mat (�, n). Then, the
characteristic polynomials of the matrices AB and BA
coincide: pAB = pBA. Therefore, their spectra also co-

incide, σ(AB) = σ(BA), as well as the geometric multi-
plicities of their eigenvalues.

Proof If A or B (or both) are non-singular, then AB
and BA are similar. In fact, in the first case, we
can write AB = A(BA)A−1 and in the second one
has AB = B−1(BA)B. In both cases, the claim fol-
lows from Proposition A.5. Let us now consider the
case where neither A nor B are invertible. We know
from Proposition A.4 that there exists M > 0 such that
A + μ� is non-singular for all μ ∈ � with 0 < |μ| < M.
Hence, for such values of μ, we have by the argument
above that p(A+μ�)B = pB(A+μ�). Now the coefficient of
the polynomials p(A+μ�)B and pB(A+μ�) are polynomials
in μ and, therefore, are continuous. Hence, the equality
p(A+μ�)B = pB(A+μ�) remains valid by taking the limit
μ → 0, leading to pAB = pBA. ��

Proposition A.6 can be extended to products of non-
square matrices:

Proposition A.7 Let A ∈ Mat (�, m, n) and B ∈
Mat (�, n, m). Clearly, AB ∈ Mat (�, m) and BA ∈
Mat (�, n). Then, one has xn pAB(x) = xm pBA(x).
Therefore, σ(AB) \ {0} = σ(BA) \ {0}, i.e., the set of
non-zero eigenvalues of AB coincide with the set of
non-zero eigenvalues of BA.

Proof Consider the two (m + n) × (m + n) matrices
defined by

A′ :=
(

A �m, m

�n, n �n, m

)
and B′ :=

(
B �n, n

�m, m �m, n

)
.

See (8). It is easy to see that

A′ B′ =
(

AB �m, n

�n, m �n, n

)
and that B′ A′ =

(
BA �n, m

�m, n �m, m

)
.

From this, it is now easy to see that pA′ B′(x) =
xn pAB(x) and that pB′ A′(x) = xm pBA(x). By Proposi-
tion A.6, one has pA′ B′(x) = pB′ A′(x), completing the
proof. ��

Diagonalizable Matrices

A matrix A ∈ Mat (�, n) is said to be diagonalizable if
it is similar to a diagonal matrix. Hence, A ∈ Mat (�, n)

is diagonalizable if there exists a non-singular matrix
A ∈ Mat (�, n) such that P−1 AP is diagonal. The next
theorem gives a necessary and sufficient condition for a
matrix to be diagonalizable:

Theorem A.8 A matrix A ∈ Mat (�, n) is diagonal-
izable if and only if it has n linearly independent
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eigenvectors, i.e., if the subspace generated by its eigen-
vectors is n-dimensional.

Proof Let us assume that A has n linearly inde-
pendent eigenvectors {v1, . . . , vn}, whose eigenvalues
are {d1, . . . , dn}, respectively. Let P ∈ Mat (�, n) be

defined by P =
[[
v1, . . . , vn

]]
. By (12), one has

AP =
[[

Av1, . . . , Avn
]]

=
[[

d1v
1, . . . , dnv

n
]]

and by (13), one has
[[

d1v
1, . . . , dnv

n
]]

= PD. There-
fore, AP = PD. Since the columns of P are linearly
independent, P is non-singular and one has P−1 AP =
D, showing that A is diagonalizable.

Let us now assume that A is diagonalizable and
that there is a non-singular P ∈ Mat (�, n) such that
P−1 AP = D = diag

(
d1, . . . , dn

)
. It is evident that

the vectors of the canonical base (10) are eigenvectors
of D, with Dea = daea. Therefore, va = Pea are eigen-
vectors of A, since Ava = APea = PDea = P

(
daea

) =
da Pea = dava. To show that these vectors va are linearly
independent, assume that there are complex numbers
α1, . . . , αn such that α1v1 + · · · + αnvn = 0. Multiply-
ing by P−1 from the left, we get α1e1 + · · · + αnen = 0,
implying α1 = · · · = αn = 0, since the elements ea of the
canonical basis are linearly independent. ��

The spectral theorem is one of the fundamental re-
sults of functional analysis, and its version for bounded
and unbounded self-adjoint operators in Hilbert spaces
is of fundamental importance for the so-called proba-
bilistic interpretation of quantum mechanics. Here we
prove its simplest version for square matrices.

Theorem A.9 (Spectral Theorem for Matrices) A ma-
trix A ∈ Mat (�, n) is diagonalizable if and only if
there exist r ∈ �, 1 ≤ r ≤ n, scalars α1, . . . , αr ∈ �, and
non-zero distinct projectors E1, . . . , Er ∈ Mat (�, n)

such that

A =
r∑

a=1

αa Ea , (46)

and

� =
r∑

a=1

Ea , (47)

with Ei E j = δi, jE j. The numbers α1, . . . , αr are the
distinct eigenvalues of A.

The projectors Ea in (46) are called the spectral pro-
jectors of A. The decomposition (46) is called spectral
decomposition of A. In Proposition A.11, we will show

how the spectral projections Ea can be expressed in
terms of polynomials in A. In Proposition A.12, we
establish the uniqueness of the spectral decomposition
of a diagonalizable matrix.

Proof of Theorem A.9 If A ∈ Mat (�, n) is diagonaliz-
able, there exists P ∈ Mat (�, n) such that P−1 AP =
D = diag (λ1, . . . , λn), where λ1, . . . , λn are the
eigenvalues of A. Let us denote by {α1, . . . , αr}, 1 ≤
r ≤ n, the set of all distinct eigenvalues of A.

One can clearly write D = ∑r
a=1 αa Ka, where Ka ∈

Mat (�, n) are diagonal matrices having 0 or 1 as diag-
onal elements, so that

(Ka)ij =
⎧⎨
⎩

1 , if i = j and (D)ii = αa ,

0 , if i = j and (D)ii �= αa ,

0 , if i �= j .

Hence, (Ka)ij = 1 if i = j and (D)ii = αa and (Ka)ij = 0
otherwise. It is trivial to see that

r∑
a=1

Ka = � (48)

and that

Ka Kb = δa, b Ka. (49)

Since A = PDP−1, one has A = ∑r
a=1 αa Ea , where

Ea := PKa P−1. It is easy to prove from (48) that � =∑r
a=1 Ea and it is easy to prove from (48) that Ei E j =

δi, jE j.
Reciprocally, let us now assume that A has a rep-

resentation like (46), with the Ea’s having the above-
mentioned properties. Let us first notice that for any
vector x and for k ∈ {1, . . . , r}, one has by (46)

AEkx =
r∑

j=1

α jE jEkx = αk Ekx .

Hence, Ekx is either zero or is an eigenvalue of A.
Therefore, the subspace S generated by all vectors
{Ekx, x ∈ �n, k = 1, . . . , r} is a subspace of the space
A generated by all eigenvectors of A. However, from
(47), one has, for all x ∈ �n, x = �x = ∑r

k=1 Ekx, and
this reveals that �n = S ⊂ A. Hence, A = �n, and by
Theorem A.8, A is diagonalizable. ��

The spectral theorem has the following corollary,
known as the functional calculus:

Theorem A.10 (Functional Calculus) Let A ∈
Mat (�, n) be diagonalizable and let A =

r∑
a=1

αa Ea
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be its spectral decomposition. Then, for any polynomial

p, one has p(A) =
r∑

a=1

p(αa)Ea.

Proof By the properties of the spectral projec-

tors Ea, one sees easily that A2 =
r∑

a, b=1

αaαb Ea Eb =
r∑

a, b=1

αaαb δa, b Ea =
r∑

a=1

(αa)
2 Ea. It is then easy to prove

by induction that Am =
r∑

a=1

(αa)
m Ea, for all m ∈ �0 (by

adopting the convention that A0 = �, the case m = 0
is simply (47)). From this, the rest of the proof is
elementary. ��

One can also easily show that for a non-singular
diagonalizable matrix A ∈ Mat (�, n), one has

A−1 =
r∑

a=1

1
αa

Ea . (50)

Getting the Spectral Projections

One of the most useful consequences of the functional
calculus is an explicit formula for the spectral pro-
jections of a diagonalizable matrix A in terms of a
polynomial on A.

Proposition A.11 Let A ∈ Mat (�, n) be non-zero and
diagonalizable and let A = α1 E1 + · · · + αr Er be its
spectral decomposition. Let the polynomials p j, j =
1, . . . , r, be def ined by

pj(x) :=
r∏

l=1
l �= j

(
x − αl

α j − αl

)
. (51)

Then,

E j = pj(A) =
⎛
⎜⎝

r∏
k=1
k �= j

1
α j − αk

⎞
⎟⎠

r∏
l=1
l �= j

(
A − αl�

)
(52)

for all j = 1, . . . , r.

Proof By the definition of the polynomials pj, it is
evident that pj(αk) = δ j, k. Hence, by Theorem A.10,
pj(A) = ∑r

k=1 pj(αk)Ek = E j. ��

Uniqueness of the Spectral Decomposition

Proposition A.12 The spectral decomposition of a diag-
onalizable matrix A ∈ Mat (�, n) is unique.

Proof Let A =
r∑

k=1

αk Ek be the spectral decomposition

of A as described in Theorem A.9, where αk, k =
1, . . . , r, with 1 ≤ r ≤ n are the distinct eigenvalues of

A, Let A =
s∑

k=1

βk Fk be a second representation of A,

where the βk’s are distinct and where the Fk’s are non-

vanishing and satisfy F jFl = δ j, l Fl and � =
s∑

k=1

Fk. For

a vector x �= 0, it holds x = ∑s
k=1 Fkx, so that not all

vectors Fkx vanish. Let Fk0 x �= 0. One has AFk0 x =∑s
k=1 βk Fk Fk0 x = βk0 Fk0 x. This shows that βk0 is one

of the eigenvalues of A and, hence, {β1, . . . , βs} ⊂
{α1, . . . , αr} and we must have s ≤ r. Let us order both
sets such that βk = αk for all 1 ≤ k ≤ s. Hence,

A =
r∑

k=1

αk Ek =
s∑

k=1

αk Fk . (53)

Now, consider the polynomials pj, j = 1, . . . , r,
defined in (51), for which pj(α j) = 1 and pj(αk) = 0 for
all k �= j. By the functional calculus, it follows from (53)
that, for 1 ≤ j ≤ s,

pj(A) =
r∑

k=1

pj(αk)Ek

︸ ︷︷ ︸
=E j

=
s∑

k=1

pj(αk)Fk

︸ ︷︷ ︸
=F j

, ∴ E j = F j.

(The equality pj(A) = ∑s
k=1 pj(αk)Fk follows from the

fact that the Ek’s and the Fk’s satisfy the same algebraic
relations and, hence, the functional calculus also holds
for the representation of A in terms of the Fk’s). Since

� =
r∑

k=1

Ek =
s∑

k=1

Ek and E j = F j for all 1 ≤ j ≤ s, one

has
r∑

k=s+1

Ek = �. Hence, multiplying by El, with s +
1 ≤ l ≤ r, it follows that El = � for all s + 1 ≤ l ≤ r.
This is only possible if r = s, since the Ek’s are non-
vanishing. This completes the proof. ��

Self-Adjointness and Diagonalizability

Let A ∈ Mat (�, m, n). The adjoint matrix A∗ ∈
Mat (�, n, m) is defined as the unique matrix for which
the equality
〈
u, Av

〉 = 〈
A∗u, v

〉

holds for all u ∈ �m and all v ∈ �n. If Aij are the matrix
elements of A in the canonical basis, it is an easy
exercise to show that

(
A∗)

ij = A ji, where the bar de-
notes complex conjugation. It is trivial to prove that the
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following properties hold: 1.
(
α1 A1 + α2 A2

)∗ = α1 A∗
1 +

α2 A∗
2 for all A1, A2 ∈ Mat (�, m, n) and all α1, α2 ∈

�; 2.
(

AB
)∗ = B∗ A∗ for all A ∈ Mat (�, m, n) and

B ∈ Mat (�, p, m); 3. A∗∗ ≡ (
A∗)∗ = A for all A ∈

Mat (�, m, n).
A square matrix A ∈ Mat (�, n) is said to be self-

adjoint if A = A∗. A square matrix U ∈ Mat (�, n)

is said to be unitary if U−1 = U∗. Self-adjoint matri-
ces have real eigenvalues. In fact, if A is self-adjoint,
λ ∈ σ(A), and v ∈ �n is a normalized (i.e., ‖v‖ = 1)
eigenvector of A with eigenvalue λ, then λ = λ〈v, v〉 =
〈v, λv〉 = 〈v, Av〉 = 〈Av, v〉 = 〈λv, v〉 = λ〈v, v〉 = λ,
showing that λ ∈ �.

Projectors and Orthogonal Projectors

A matrix E ∈ Mat (�, n) is said to be a projector if
E2 = E, and it is said to be a orthogonal projector if
it is a self-adjoint projector: E2 = E and E∗ = E. An
important example of an orthogonal projector is the
following. Let v ∈ �n be such that ‖v‖ = 1 and define,

Pvu := 〈v, u〉 v , (54)

for each u ∈ �n. In the canonical basis, the matrix ele-
ments of Pv are given by

(
Pv

)
ij = v jvi, where the vk’s

are the components of v. One has,

P2
vu = 〈v, u〉 Pvv = 〈v, u〉 〈v, v〉 v = 〈v, u〉 v = Pvu ,

proving that P2
v = Pv . On the other hand, for any a, b ∈

�n, we get

〈a, Pvb〉 = 〈
a, 〈v, b〉 v

〉 = 〈v, b〉 〈a, v〉
= 〈〈a, v〉 v, b

〉 = 〈〈v, a〉 v, b
〉 = 〈Pva, b〉,

showing that P∗
v = Pv . Another relevant fact is that if

v1 and v2 are orthogonal unit vectors, i.e., 〈vi, v j〉 =
δij, then Pv1 Pv2 = Pv2 Pv1 = 0. In fact, for any a ∈ �n,
one has

Pv1

(
Pv2 a

) = Pv1

(〈v2, a〉 v2
) = 〈v2, a〉 Pv1v2

= 〈v2, a〉 〈v1, v2〉 v1 = 0.

This shows that Pv1 Pv2 = 0 and, since both are self-
adjoint, one has also Pv2 Pv1 = 0.

Spectral Theorem for Self-Adjoint Matrices

The following theorem establishes a fundamental fact
about self-adjoint matrices.

Theorem A.13 (Spectral Theorem for Self-Adjoint
Matrices) If A ∈ Mat (�, n) is self-adjoint, one can f ind
an orthonormal set {v1, . . . , vn} of eigenvectors of A

with real eigenvalues λ1, . . . , λn, respectively, and one
has the spectral representation

A = λ1 Pv1 + · · · + λn Pvn , (55)

where Pvk u := 〈vk, u〉vk satisfy P∗
vk

= Pvk and Pv j Pvk =
δ jk Pvk and one has

∑n
k=1 Pvk = �.

Therefore, if A ∈ Mat (�, n) is a self-adjoint matrix,
it is diagonalizable. Moreover, there is a unitary P ∈
Mat (�, n) such that P−1 AP = diag

(
λ1, . . . , λn

)
.

Proof Let λ1 ∈ � be an eigenvalue of A and let v1

be a corresponding eigenvector. Let us choose ‖v1‖ =
1. Define A1 ∈ Mat (�, n) by A1 := A − λ1 Pv1 . Since
both A and Pv1 are self-adjoint, so is A1, since λ1 is real.

It is easy to check that A1v1 = 0. Moreover, [v1]⊥,
the subspace orthogonal to v1, is invariant under the
action of A1. In fact, for w ∈ [v1]⊥, one has 〈A1w, v1〉 =
〈w, A1v1〉 = 0, showing that A1w ∈ [v1]⊥.

It is therefore obvious that the restriction of A1

to [v1]⊥ is also a self-adjoint operator. Let v2 ∈ [v1]⊥
be an eigenvector of this self-adjoint restriction with
eigenvalues λ2 and choose ‖v2‖ = 1. Define

A2 := A1 − λ2 Pv2 = A − λ1 Pv1 − λ2 Pv2 .

Since λ2 is real, A2 is self-adjoint. Moreover, A2 anni-
hilates the vectors in the subspace [v1, v2] and keeps
[v1, v2]⊥ invariant. In fact, A2v1 = Av1 − λ1 Pv1v1−
λ2 Pv2v1 =λ1v1−λ1v1−λ2〈v2, v1〉v2 =0, since 〈v2, v1〉 =
0. Analogously, A2v2 = A1v2−λ2 Pv2v2 =λ2v2−λ2v2 =
0. Finally, for any α, β ∈ � and w ∈ [v1, v2]⊥, one
has

〈
A2w, (αv1 + βv2)

〉 = 〈
w, A2(αv1 + βv2)

〉 = 0,
showing that [v1, v2]⊥ is invariant by the action of A2.

Proceeding inductively, we find a set of vectors
{v1, . . . , vn}, with ‖vk‖ = 1 and with va ∈ [v1, . . . ,

va−1]⊥ for 2 ≤ a ≤ n, and a set of real numbers
{λ1, . . . , λn} such that An = A − λ1 Pv1 − · · · − λn Pvn

annihilates the subspace [v1, . . . , vn]. But, since
{v1, . . . , vn} is an orthonormal set, one must have
[v1, . . . , vn] = �n, and therefore, we must have An =
0, meaning that

A = λ1 Pv1 + · · · + λn Pvn . (56)

One has Pvk Pvl = δk, l Pvk , since 〈vk, vl〉 = δkl. More-
over, since {v1, . . . , vn} is a basis in �n, one has

x = α1v1 + · · · + αnvn (57)

for all x ∈ �n. By taking the scalar product with vk, one
gets that αk = 〈vk, x〉 and, hence,

x = 〈v1, x〉v1 + · · · + 〈vn, x〉vn

= Pv1 x + · · · + Pvn x = (
Pv1 + · · · + Pvn

)
x.
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Since x was an arbitrary element of �n, we established
that Pv1 + · · · + Pvn = �.

It follows from (56) that Ava = λava. Hence, each
vk is an eigenvector of A with eigenvalue λk. By
Theorem A.8, A is diagonalizable: There is P ∈
Mat (�, n) such that P−1 AP = diag

(
λ1, . . . , λn

)
. As

we saw in the proof of Theorem A.8, we can choose

P =
[[
v1, . . . , vn

]]
. This is, however, a unitary matrix,

since, as one easily checks,

P∗ P =
⎛
⎜⎝

〈v1, v1〉 · · · 〈v1, vn〉
...

. . .
...

〈vn, v1〉 · · · 〈vn, vn〉

⎞
⎟⎠ = � ,

because 〈va, vb 〉 = δa, b . ��

The Polar Decomposition Theorem for Square
Matrices

It is well known that every complex number z can be
written in the so-called polar form z = |z|eiθ , where
|z| ≥ 0 and θ ∈ [−π, π), with |z| := √

zz and eiθ :=
z|z|−1. There is an analogous claim for square matrices
A ∈ Mat (�, n). This is the content of the so-called
Polar Decomposition Theorem, Theorem A.14, below.
Let us make some preliminary remarks.

Let A ∈ Mat (�, n) and consider A∗ A. One has
(A∗ A)∗ = A∗ A∗∗ = A∗ A, and hence, A∗ A is self-
adjoint. By Theorem A.13, we can find an orthonor-
mal set {vk, k = 1, . . . , n} of eigenvectors of A∗ A,
with eigenvalues dk, k = 1, . . . , n, respectively, with
the matrix

P :=
[[
v1, . . . , vn

]]
(58)

being unitary and such that P∗(
A∗ A

)
P = D :=

diag (d1, . . . , dn). One has dk ≥ 0 since dk‖vk‖2 =
dk〈vk, vk〉=〈vk, Bvk〉= 〈vk, A∗ Avk〉 = 〈Avk, Avk〉 =
‖Avk‖2 and, hence, dk = ‖Avk‖2/‖vk‖2 ≥ 0.

Define D1/2 := diag
(√

d1, . . . ,
√

dn
)
. One has(

D1/2
)2 = D. Moreover,

(
D1/2

)∗ = D1/2, since every√
dk is real. The non-negative numbers

√
d1, . . . ,

√
dn

are called the singular values of A.
Define the matrix

√
A∗ A ∈ Mat (�, n) by

√
A∗ A := PD1/2 P∗ . (59)

The matrix
√

A∗ A is self-adjoint, since
(√

A∗ A
)∗ =(

PD1/2 P∗)∗ = PD1/2 P∗ = √
A∗ A. Notice that

(√
A∗ A

)2 = P(D1/2)2 P∗ = PDP∗ = A∗ A. From this,
it follows that
(

det
(√

A∗ A
))2 = det

((√
A∗ A

)2
)

= det(A∗ A) = det(A∗) det(A)

= det(A) det(A) = | det(A)|2.

Hence, det
(√

A∗ A
)

= | det(A)| and, therefore,
√

A∗ A

is invertible if and only if A is invertible.
We will denote

√
A∗ A by |A|, following the analogy

suggested by the complex numbers. Now we can formu-
late the polar decomposition theorem for matrices:

Theorem A.14 (Polar Decomposition Theorem) If
A∈Mat(�, n), there is a unitary matrix U ∈Mat(�, n)

such that

A = U
√

A∗ A . (60)

If A is non-singular, then U is unique. The representa-
tion (60) is called the polar representation of A.

Proof As above, let dk, k = 1, . . . , n be the eigenval-
ues of A∗ A and let vk, k = 1, . . . , n be a correspond-
ing orthonormal set of eigenvalues: A∗ Avk = dkvk and
〈vk, vl〉 = δk l (see Theorem A.13).

Since dk ≥ 0 we order them in a way that dk > 0
for all k = 1, . . . , r and dk = 0 for all k = r + 1, . . . , n.
Hence,

Avk = 0 for all k = r + 1, . . . , n , (61)

because A∗ Avk = 0 implies 0 = 〈vk, A∗ Avk〉 = 〈Avk,

Avk〉 = ‖Avk‖2.
For k = 1, . . . , r, let wk be the vectors defined by

wk := 1√
dk

Avk , k = 1, . . . , r . (62)

It is easy to see that

〈wk, wl〉 = 1√
dkdl

〈Avk, Avl〉 = 1√
dkdl

〈A∗ Avk, vl〉

= dk√
dkdl

〈vk, vl〉 = dk√
dkdl

δk l = δk l,

for all k, l = 1, . . . , r. Hence, {wk, k = 1, . . . , r} is an
orthonormal set. We can add to this set an additional
orthonormal set {wk, k = r + 1, . . . , n} in the orthog-
onal complement of the set generated by {wk, k =
1, . . . , r} and get a new orthonormal set {wk, k =
1, . . . , n} as a basis for �n.
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Let P ∈ Mat (�, n) be defined as in (58) and let Q
and U be elements of Mat (�, n) defined by

Q :=
[[
w1, . . . , wn

]]
, U := QP∗ .

Since
{
vk, k = 1, . . . , n

}
and

{
wk, k = 1, . . . , n

}
are

orthonormal sets, one easily sees that P and Q are
unitary and, therefore, U is also unitary.

It is easy to show that AP = QD1/2, where D1/2 :=
diag

(√
d1, . . . ,

√
dn

)
, In fact,

AP
(58)= A

[[
v1, . . . , vn

]]
(12)=

[[
Av1, . . . , Avn

]]

(61)=
[[

Av1, . . . , Avr 0, . . . , 0
]]

(62)=
[[√

d1w1, . . . ,
√

drwr 0, . . . , 0
]]

(13)=
[[
w1, . . . , wn

]]
D1/2 = QD1/2.

Now, since AP = QD1/2, it follows that A =
QD1/2 P∗ = U PD1/2 P∗ (59)= U

√
A∗ A, as we wanted to

show.
To show that U is uniquely determined if A is

invertible, assume that there exists U ′ such that A =
U

√
A∗ A = U ′√A∗ A. We noticed above that

√
A∗ A

is invertible if and only if A is invertible. Hence, if A
is invertible, the equality U

√
A∗ A = U ′√A∗ A implies

U = U ′. If A is not invertible, the arbitrariness of U
lies in the choice of the orthonormal set {wk, k = r +
1, . . . , n}. ��

The following corollary is elementary:

Theorem A.15 Let A ∈ Mat (�, n). Then, there exists a
unitary matrix V ∈ Mat (�, n) such that

A = √
AA∗ V . (63)

If A is non-singular, then V is unique.

Proof For the matrix A∗, relation (60) says that A∗ =
U0

√
(A∗)∗ A∗ = U0

√
AA∗ for some unitary U0. Since√

AA∗ is self-adjoint, one has A = √
AA∗ U∗

0 . Identi-
fying V ≡ U∗

0 , we get what we wanted. ��

The polar decomposition theorem can be general-
ized to bounded or closed unbounded operators acting
on Hilbert spaces and even to C∗-algebras. See, e.g.,
[29] and [30].

Singular Values Decomposition

The polar decomposition theorem, Theorem A.14, has
a corollary of particular interest.

Theorem A.16 (Singular Values Decomposition The-
orem) Let A ∈ Mat (�, n). Then, there exist unitary
matrices V and W ∈ Mat (�, n) such that

A = VSW∗ , (64)

where S ∈ Mat (�, n) is a diagonal matrix whose di-
agonal elements are the singular values of A, i.e., the
eigenvalues of

√
A∗ A.

Proof The claim follows immediately from (60) and
from (59) by taking V = U P, W = P, and S = D1/2.

��

Theorem A.16 can be generalized to rectangular
matrices. In what follows, m, n ∈ � and we will use
definitions (4), (8), and relation (9) that allow to in-
jectively map rectangular matrices into certain square
matrices.

Theorem A.17 (Singular Values Decomposition The-
orem. General Form) Let A ∈ Mat (�, m, n). Then,
there exist unitary matrices V and W ∈ Mat (�, m + n)

such that

A = Im, m+nVSW∗ Jm+n, n , (65)

where S ∈ Mat (�, m + n) is a diagonal matrix whose
diagonal elements are the singular values of A′ (def ined
in (8)), i.e., are the eigenvalues of

√
(A′)∗ A′.

Proof The matrix A′ ∈ Mat (�, m + n) is a square ma-
trix, and by Theorem A.16, it can be written in terms
of a singular value decomposition A′ = VSW∗ with
V and W ∈ Mat (�, m + n), both unitary, and S ∈
Mat (�, m + n) being a diagonal matrix whose diagonal
elements are the singular values of A′. Therefore, (65)
follows from (9). ��

Appendix 2: Singular Values Decomposition
and Existence of the Moore–Penrose Pseudoinverse

We will now present a second proof of the existence of
the Moore–Penrose pseudoinverse of a general matrix
A ∈ Mat (�, m, n) making use of Theorem A.16. We
first consider square matrices and later consider general
rectangular matrices.
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The Moore–Penrose Pseudoinverse of Square
Matrices

Let us first consider square diagonal matrices. If D ∈
Mat (�, n) is a diagonal matrix, its Moore–Penrose
pseudoinverse is given by D+ ∈ Mat (�, n), where, for
i = 1, . . . , n, one has

(
D+)

ii =
{ (

Dii
)−1

, if Dii �= 0 ,

0 , if Dii = 0 .

It is elementary to check that DD+ D = D, D+ DD+ =
D+ and that DD+ and D+ D are self-adjoint. Actually,
DD+ = D+ D, a diagonal matrix whose diagonal ele-
ments are either 0 or 1:

(
DD+)

ii = (
D+ D

)
ii =

{
1 , if Dii �= 0 ,

0 , if Dii = 0 .

Now, let A ∈ Mat (�, n) and let A = VSW∗ be its
singular values decomposition (Theorem A.16). We
claim that its Moore–Penrose pseudoinverse A+ is
given by

A+ = WS+V∗ . (66)

In fact, AA+ A = (
VSW∗)(

WS+V∗)(
VSW∗) = VSS+

SW+ = VSW∗ = A and

A+ AA+ = (
WS+V∗)(

VSW∗)(
WS+V∗)

= WS+SS+V∗ = WS+V∗ = A+.

Moreover, AA+ = (
VSW∗)(

WS+V∗) = V
(
SS+)

V∗ is
self-adjoint, since SS+ is a diagonal matrix with diag-
onal elements 0 or 1. Analogously, A+ A = (

WS+V∗)
(
VSW∗) = W

(
S+S

)
W∗ is self-adjoint.

The Moore–Penrose Pseudoinverse of Rectangular
Matrices

Consider now A ∈ Mat (�, m, n) and let A′ ∈ Mat (�,

m + n) be the (m + n) × (m + n) defined in (8). Since
A′ is a square matrix, it has, by the comments above, a
unique Moore–Penrose pseudoinverse (A′)+ satisfying

1. A′(A′)+
A′ = A′,

2.
(

A′)+
A′(A′)+ = (

A′)+,
3. A′(A′)+ and

(
A′)+

A′ are self-adjoint.

In what follows, we will show that A+ ∈ Mat (�, n, m)

is given by

A+ := In, m+n
(

A′)+
Jm+n, m , (67)

with the definitions (4) and (5), i.e.,

A+ = In, m+n

(
Jm+n, m AIn, m+n

)+
Jm+n, m . (68)

The starting point is the existence of the Moore–
Penrose pseudoinverse of the square matrix A′.
Relation A′(A′)+

A′ = A′ means, using definition

(8), that Jm+n, m A
[

In, m+n
(

A′)+
Jm+n, m

]
AIn, m+n =

Jm+n, m AIn, m+n and from (6) and (7) it follows, by
multiplying to the left by Im, m+n and to the right by
Jm+n, n, that AA+ A = A, one of the relations we
wanted to prove.

Relation
(

A′)+
A′(A′)+ = (

A′)+ means, using de-
finition (8), that

(
A′)+

Jm+n, m AIn, m+n
(

A′)+ = (
A′)+.

Multiplying to the left by In, m+n and to the right by
Jm+n, m, this establishes that A+ AA+ = A+.

Since A′(A′)+ is self-adjoint, it follows from
the definition (8) that Jm+n, m AIn, m+n

(
A′)+ is self-

adjoint, i.e.,

Jm+n, m AIn, m+n
(

A′)+ =
(

AIn, m+n
(

A′)+)∗
Im, m+n .

Therefore, multiplying to left by Im, m+n and to the right
by Jm+n, m, it follows from (6) that

AIn, m+n
(

A′)+
Jm+n, m = Im, m+n

(
AIn, m+n(A′)+

)∗

=
(

AIn, m+n
(

A′)+
Jm+n, m

)∗
,

proving that AA+ is self-adjoint
Finally, since

(
A′)+

A′ is self-adjoint, it follows
from definition (8) that

(
A′)+

Jm+n, m AIn, m+n is self-
adjoint, i.e.,

(
A′)+

Jm+n, m AIn, m+n = Jm+n, n

((
A′)+

Jm+n, m A
)∗

.

Hence, multiplying to the left by In, m+n and to the right
by Jm+n, n, if follows from (7) that

In, m+n(A′)+ Jm+n, m A =
((

A′)+
Jm+n, m A

)∗
Jm+n, n

=
(

In, m+n
(

A′)+
Jm+n, m A

)∗
,

establishing that A+ A is self-adjoint. This proves that
A+ given in (67) is the Moore–Penrose pseudoinverse
of A.
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