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Abstract
The rise in individuals living alone in ageing societies raises concerns about social isolation and associated health risks, 
notably lonely deaths among the elderly. Traditional electrocardiogram (ECG) monitoring systems, reliant on intrusive and 
potentially irritating electrodes, pose practical challenges. This study examines the efficacy of conductive textile electrodes 
(CTEs) vis-á-vis conventional electrodes (CEs) in ECG monitoring, along with the effect of electrode positioning. Twenty 
subjects without cardiovascular conditions, were monitored using a commercial ECG device (HiCardi+) with both CEs and 
CTEs. The CTEs were tested in two experiments: at the nape and left hand (position 1), and at the nape and legs (position 
2). Each experiment placed one HiCardi + SmartPatch with CE at its standard position, while the other used CTEs. ECG 
signals were processed using the Pan-Tompkins algorithm, and heart rate variability (HRV) metrics were analysed. Significant 
improvements in signal-to-noise ratio (SNR) were observed after filtering. There were no significant differences (p > 0.05) 
in time-domain HRV metrics between CEs and CTEs, though CTEs showed superior R peak characteristics and reduced 
noise sensitivity. Additionally, no significant position effect (p > 0.05) was noted within the CTE group. Nonlinear analysis 
further confirmed the efficacy of the CTEs. Our findings suggest that CTEs offer a comfortable, non-intrusive alternative to 
conventional ECG electrodes, enhancing ECG monitoring and contributing to the development of a “lonely death preven-
tion system”.
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1  Introduction

As societies witness an increasing trend of people living 
alone, concerns arise regarding potential social isolation 
and health hazards, especially the risk of lonely deaths. 
This demographic shift is becoming more pronounced with 

ageing populations, emphasising the need to address unique 
healthcare challenges faced by those living alone. Lonely 
deaths, also known as solitary deaths, occur when an indi-
vidual dies in isolation and their remains are not discovered 
for an extended duration [1]. This phenomenon has sparked 
discourse in Western societies, on whether it should be 
regarded as an unfavourable end or a demonstration of self-
determination [2–4].

In Asia, particularly in Japan (referred to as “孤独死” 
(kodokushi)) and South Korea (“고독사” (godoksa)), these 
occurrences are common. In recent times, the issue of lonely 
deaths has surged as a notable social concern in South Korea 
[5–7]. Individuals in this group, especially the elderly, often 
exhibit low awareness of healthcare needs or limited access 
to medical services. Among the health-related factors this 
demographic grapples with, cardiovascular health is critical, 
worsened by the prevalence of sleep-related cardiac issues. 
Despite advancements in healthcare technology, detecting 
and addressing these matters remain challenging.
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Current approaches to cardiovascular monitoring and 
management often rely on conventional electrocardiogram 
(ECG) monitoring systems. However, such methods may 
pose practical difficulties due to their intrusive nature and 
requirement for adhesive electrodes. Electrodes, pivotal 
components of the ECG system [8], translate physiological 
signals into meaningful data. In clinical settings, disposable 
silver/silver chloride (Ag/AgCl) wet electrodes are com-
monly used due to their high signal quality. Nonetheless, 
these electrodes are prone to drying out over time, increas-
ing the risk of data loss [9], diminished signal quality and 
could also induce dermatitis [10]. These limitations neces-
sitate frequent replacements and specific skin preparation 
procedures [11, 12].

Given the intertwined relationship between living alone, 
social isolation, and cardiovascular health, there is a pressing 
need for innovative monitoring and management solutions. 
Wearable health monitoring technologies have driven the 
demand for more comfortable and user-friendly electrodes, 
such as ECG patch monitors. Yet, these devices can some-
times be difficult to apply correctly, potentially compromis-
ing measurement accuracy.

Conductive textile electrodes (CTEs) have recently gar-
nered attention as prospective solutions for ECG monitor-
ing. Composed of conductive fibres or coatings integrated 
into textile substrates, CTEs have been used for wearable 
biopotential signal monitoring owing to their breathabil-
ity, flexibility and comfortability [13, 14]. They exhibit low 
impedance and stable electrical properties, ensuring reliable 
signal acquisition over extended periods.

While literature have illustrated the efficacy of CTEs in 
physiological signal acquisition [15–17], a notable paucity 
exists in understanding their signal disparities compared to 
conventional electrodes (CEs). In this study, we assess the 
efficacy of CTEs for ECG measurement compared to CEs by 
analysing their ECG morphologies and time-series heart rate 
variability (HRV) data. We further identify the most suitable 
electrode position for CTEs. This work aims to contribute 
to advancements in ECG electrode technology, particularly 
in developing an integrated system to prevent lonely deaths 
among the elderly population.

2 � Materials and methods

2.1 � Subjects

Twenty subjects (6 females and 14 males), devoid of pre-
existing cardiovascular pathologies or factors possibly 
influencing ECG measurements, were enlisted for the 
study. Their demographic characteristics were, mean age of 
28.10 ± 6.46 years, average weight of 73.92 ± 16.45 kg and 
mean height of 170.18 ± 8.95 cm. Prior to commencing, each 

subject provided their informed consent in compliance with 
ethical procedures. This process provided detailed informa-
tion regarding the experimental procedures to ensure com-
prehension and voluntary participation.

2.2 � ECG recording device

ECG signals were acquired using a commercial device—
HiCardi+ (MEZOO Co. Ltd., Gangwon-do, Korea). The 
HiCardi+ is a two-point leadless, single-channel ECG 
monitoring device accredited by the Ministry of Food and 
Drug Safety of Korea. With a weight of 18 g and dimen-
sions, 6 cm × 4 cm × 1 cm, its signal acquisition occurs at a 
sampling frequency of 250 Hz and a resolution of 16 bits. 
The HiCardi+ ECG monitoring patch is capable of detect-
ing arrhythmias, temperature, activity, respiration, and body 
posture of neonates, infants, paediatrics and adults. Utilising 
Bluetooth low energy, data captured by the device are seam-
lessly transmitted to a mobile gateway, integrated within the 
SmartView smartphone application. Subsequently, all data 
are forwarded by the mobile gateway to a cloud-based moni-
toring server, LiveStudio, for analysis.

2.3 � Electrode placement

Each subject assumed a supine posture with their arms 
slightly extended from their bodies at about an angle of 
10°. Two types of electrodes were subjected to comparison: 
Ag/AgCl ECG electrode (MEZOO Co. Ltd., Gangwon-do, 
Korea) referred herein as CE and CTE (Cellogin Co., Ltd., 
Wonju, Korea). The CTE has a thickness of 0.025 cm and 
is made from a combination of graphite and graphene com-
posite powder—thus, it is known to have excellent electri-
cal and thermal conductivity. Skin-preparations were carried 
out to ensure the adherence of the CEs. Two experiments 
were conducted, each utilising two HiCardi+ devices. Each 
experiment involved the placement of one HiCardi+ Smart-
Patch with CE at its standard position, while the other was 
affixed with CTEs at the nape and left hand (position 1), 
and subsequently at the nape and legs (position 2). The 
dimensions of the CTEs were customised as follows: pil-
low (103 cm × 50 cm), left-hand (75 cm × 41 cm), and legs 
(149 cm × 41 cm). After positioning the CTEs, the subjects 
laid on them, and adjustments were made individually to 
ensure proper contact.

2.4 � ECG experimental design

Standard protocols for short-term HRV assessment recom-
mend a 5-min recording period, preceded by a 5-min stabili-
sation phase in the supine position [18]. This phase is critical 
for stabilising heart rate, reducing the impact of prior physi-
cal activity, and ensuring accurate HRV measurements by 
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minimising potential confounding variables. Following the 
electrode attachments, subjects remained still for approxi-
mately 5  min before ECG data collection commenced. 
Throughout the 20-min recording session, subjects closed 
their eyes to simulate a sleep-like state. This approach was to 
minimise visual distractions and mental activity. In addition 
to being informed beforehand, the brief duration and con-
trolled environment were designed to further minimise the 
likelihood of actual sleep. The experiment concluded after 
data collection, with an additional 5-min break provided if 
any signs of dizziness indicative of orthostatic hypotension 
were observed.

2.5 � ECG measurement

ECG data was collected concurrently using CEs and CTEs 
in both experiments as illustrated in Fig. 1. To extend the 
connection from the HiCardi+ device to the CTEs, alliga-
tor clips with wires were stuck into the device’s attachment 

points. Secure connections and insulated wires were imple-
mented to prevent noise, while careful positioning reduced 
movement. Preliminary testing confirmed signal reliability 
and consistency. The ECG signals were recorded in a quiet 
environment with regulated lighting and temperature to 
reduce the impact of outside factors.

2.6 � Signal processing and analysis

With the assistance of MEZOO Co. Ltd., the raw ECG data 
from the HiCardi + devices were retrieved. The files con-
tained the timestamps and their corresponding voltage val-
ues representing the ECG signals. HRV data retrieval and 
denoising of ECG signals were handled in the pre-process-
ing phase. The Pan-Tompkins algorithm [19] was applied 
to identify the QRS complexes using MATLAB (version 
R2023b, MathWorks, Natick, MA, USA). This involved 
applying a sequence of filters to reduce noise and highlight 
the quick changes of voltage in the QRS phase.

Fig. 1   Schematic representation of the a ECG measurement setup and data acquisition using CEs and CTEs in the two positions. b Electrode 
positions c Digital photo of the CTE
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The first stage of this sequence was filtering. In our analy-
sis, a second-order Butterworth infinite impulse response 
filter with a passband between 5 and 15 Hz was applied to 
improve the signal quality using:

where, H(s) is the transfer function of the filter, s is the com-
plex frequency variable, ωc is the cut-off frequency and n is 
the order of the filter.

The peaks in the ECG waveform were then located by 
computing the derivative of the filtered signal using Eq. (2). 
A polynomial regression within a moving window of data 
points was employed to approximate the derivative of the 
original signal using a Savitzky-Golay filter [20].

where, dy
dt
[n] is the derivative of the signal at time index n

C[i] is the i − th coefficients of the polynomial regression 
obtained through least squares fitting.

y[n − i] is the value of the signal at time index n − i

The square of the derivative signal was then computed 
using Eq. (3) to amplify the amplitude of peaks in the ECG 
waveform.

The squared derivative signal was then subjected to a 
moving average window to smooth out variations and iden-
tify significant peaks. In our analysis, we used a window 
length corresponding to 5% of the sampling rate (250 Hz). 

(1)
H(s) =

1

1 +
(

s

�c

)2n

(2)
dy

dt
[n] =

N−1
∑

i=0
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(3)y(t) =

(

dy

dt

)2

The moving average of signal y(t) over a window of size N 
was calculated as:

where, MA(t) is the moving average at time t, and y(n − i) 
are the signal values within the window centered at time, t.

2.7 � HRV feature extraction

To calculate the HRV parameters, RR intervals were first 
determined by measuring the geometric angle between two 
successive samples of the ECG signal. RR interval time 
series was then obtained using the identified R peaks. Qual-
ity control procedures were implemented to identify and 
exclude any data segments affected by artefacts or technical 
issues, ensuring that only reliable data were used in the anal-
yses. Figure 2 depicts the framework for feature extractions.

2.7.1 � Time‑domain indices of HRV

HRV is predominantly evaluated in the time-domain using 
statistical metrics derived from inter-beat intervals [21] or 
RR intervals. The analysis was performed using the Python 
programming language, specifically BioSPPy and SciPy 
packages, and the Hamilton-Tompkins algorithm [22]. Time-
domain indices used in this study are discussed below:

The average RR interval (AvgRR) represents the average 
time between successive heartbeats (R waves in an ECG) 
and is calculated by dividing the mean value of the sum of 
the RR intervals by the total number of RR intervals.

(4)MA(t) =
1

N

N−1
∑

i=o

y(n − i)

Fig. 2   Schematic diagram of the 
signal processing using the Pan-
Tompkins algorithm and HRV 
feature extraction
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where, N is the total number of elements of RRi during the 
time period.

The average heart rate (AvgHR), denoted as the mean 
value of heartbeats per minute within a specified time frame, 
is calculated by converting the reciprocal of the mean RR 
interval into beats per minute (bpm).

Here, N represents the count of RR intervals and RRj sig-
nifies the j-th RR interval.

The standard deviation of average normal-to-normal 
(NN) intervals (SDNN), is calculated as the square root of 
the mean of the squared differences between consecutive 
NN intervals.

where, N is the count of RRi values, RRij is the j-th RRi 
value, and RRi is the average value of the RRi series.

pNN20, the percentage of successive NN intervals 
exceeding 20 ms is the proportion of NN intervals that dif-
fer by more than 20 ms (nRRi20) to the total number of RRi 
(nRRi).

The pNN50 akin to pNN20, quantifies the percentage of 
successive intervals exceeding 50 ms (nRRi50) to the total 
number of RRi (nRRi).

2.7.2 � Quantitative beat‑to‑beat analysis of HRV

The correlation between successive RR intervals (RRn) is 
shown graphically in two dimensions by the Poincaré plot. 
On the x-axis, each interval is plotted against the succeeding 
(RRn + 1) on the y-axis. It has been demonstrated that this 
plot is useful in offering qualitative insights into the com-
plexity level of RR intervals in heart failure patients [23]. 
The Poincaré plot offers a quantitative assessment of HRV 
[24] defined by SD1, SD2 and SD1/SD2.

(5)AvgRR(ms) =
1

N

N
∑

i=1

RRi

(6)AvgHR(bpm) =

N
∑

i=1

(

60000

RRj

)

× 60

(7)SDNN(ms) =

√

1

N − 1

∑N

j=1

(

RRij − RRi
)2

(8)pNN20(%) =
nRRi20

nRRi
× 100%

(9)pNN50(%) =
nRRi50

nRRi
× 100%

(10)SD1 =

√

Var
(

x1
)

where, x1 =
(RRi+−RRi−)

√

2
 , x2 =

(RRi++RRi−)
√

2

RRi+ is defined as (RR1, R2, …, RRN-1) and RRi− as (RR2, 
RR3, …, RRN).

The parasympathetic modulation marker, SD1, denotes 
the instantaneous beat-to-beat variability [25]. Conversely, 
the variability in long-term continuous RR intervals is 
reflected by SD2, which serves as a marker for both sym-
pathetic and parasympathetic regulation [26, 27]. Increased 
sympathetic modulation during progressive physical exer-
cise is indicated by the SD1/SD2 ratio [21].

2.8 � Statistical analysis

All continuous variables and demographic information 
were analysed using central tendency measures and fre-
quency lists. A paired sample t-test was conducted to com-
pare results from CEs and CTEs in both experiments. The 
position effect within the CTEs group was also analysed. 
For each time-domain index, normality of values in CTEs 
positions 1 and 2 was assessed using the Shapiro–Wilk test. 
If p > 0.05, normal distribution was assumed, and a one-
sample t-test with a hypothetical mean of zero was selected 
to evaluate deviations from this baseline. This helped deter-
mine significant difference in time-domain indices relative 
to the reference, supporting the study’s objective of assess-
ing relative changes. For non-normal distributions, the 
Wilcoxon signed-rank test was applied. Statistical analyses 
were performed using IBM SPSS v.26.0 (IBM Corporation, 
Armonk, New York, USA), with significance set at p < 0.05 
(two-sided). ECG signals and bar graphs were plotted using 
MATLAB and Prism 8 for Windows (GraphPad Software, 
Inc., La Jolla, CA, USA) respectively.

3 � Results

3.1 � ECG morphologies using CEs and CTEs

The first step in extracting relevant data from the ECG 
signals involved implementing noise reduction techniques 
to minimise extraneous interference. Hence, we focused on 
improving the signal-to-noise ratio (SNR) to enhance the 
fidelity of the acquired ECG waveform. Previous studies 
[28, 29] have shown that noise present in ECG record-
ings can markedly impact the precision of extracted HRV 
features. In light of this, the measured ECG signals under-
went systematic signal processing methods using the Pan-
Tompkins algorithm to elucidate the characteristic peaks 

(11)SD2 =

√

Var
(

x2
)
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of the waveforms. Notably, no skin preparations were 
conducted before applying our proposed CTEs. Figures 3 
and 4 show the resulting ECG morphologies using CTEs 
after signal processing. Moreover, the raw signals obtained 
using CEs are also shown.

3.2 � Sensor effect of CEs and CTEs

The results in the present study were analysed using time-
domain indices of HRV. The results (mean ± standard devia-
tion) for each metric are displayed in Table 1, along with the 

Fig. 3   Results of the signal processing of ECG waveforms obtained 
using CTEs in position 1. a Overall recorded ECG signal for a dura-
tion of 1200 s. Signals from the raw data for b CE and c CTEs. Sig-

nals from the processed data using the Pan-Tompkins algorithm for 
d filtered e derivative f derivative squared and g rolling mean. The R 
peaks are indicated by blue dots whilst the T peaks, red

Fig. 4   Results of the signal processing of ECG waveforms obtained 
using CTEs in position 2. a Overall recorded ECG signal for a dura-
tion of 1200 s. Signals from the raw data for b CE and c CTEs. Sig-

nals from the processed data using the Pan-Tompkins algorithm for 
d filtered e derivative f derivative squared and g rolling mean. The R 
peaks are indicated by blue dots whilst the T peaks, red
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results of the paired t-tests. A comparative analysis of the 
means are presented in Fig. 5.

3.2.1 � CEs vs CTEs in position 1

The AvgRR was calculated for both electrodes in position 
1. The results indicated no significant differences between 
CEs (857.88 ± 144.74 ms) and CTEs (830.25 ± 353.32 ms) 
with p = 0.72. Similarly, there was no significant difference 
in the AvgHR values between CEs (71.94 ± 12.92 bpm) 
and CTEs (73.51 ± 30.12 bpm) with p = 0.82. There was 
no significant difference for the SDNN between CEs 
(116.58 ± 61.11 ms) and CTEs (111.85 ± 156.90 ms) with 
p = 0.89. Likewise, pNN20 and pNN50 had no significant 
differences between CEs (75.95 ± 23.23%; 53.35 ± 20.57%) 
and CTEs (77.50 ± 13.38%; 55.10 ± 33.08%) with p = 0.73 
and p = 0.83, respectively.

3.2.2 � CEs vs CTEs in position 2

For position 2, AvgRR had no significant differ-
ence between CEs (814.73 ± 302.05  ms) and CTEs 
(911.52 ± 695.72 ms) with p = 0.51. AvgHR showed no sig-
nificant difference between CEs (60.66 ± 22.35 bpm) and 
CTEs (56.02 ± 27.02 bpm) with p = 0.49. SDNN exhibited 
no significant difference between CEs (88.99 ± 38.84 ms) 
and CTEs (68.46 ± 77.61 ms) with p = 0.26. For pNN20 
and pNN50, no significant differences were found 
between CEs (71.35 ± 21.75%; 45.90 ± 24.70%) and 
CTEs (74.65 ± 20.52%; 47.30 ± 31.19%) with p = 0.59 and 
p = 0.87, respectively.

3.3 � Nonlinearity

We also show the efficiency of CTEs, in acquiring data by 
comparing it with CEs from a nonlinear perspective, using 

Table 1   Time-domain indices 
of HRV recorded using CEs and 
CTEs in positions 1 and 2

Position 1 p value Position 2 p value

CEs CTEs CEs CTEs

AvgRR (ms) 857.88 ± 144.74 830.25 ± 353.32 0.72 814.73 ± 302.05 911.52 ± 695.72 0.51
AvgHR (bpm) 71.94 ± 12.92 73.51 ± 30.12 0.82 60.66 ± 22.35 56.02 ± 27.02 0.49
SDNN (ms) 116.58 ± 61.11 111.85 ± 156.90 0.89 88.99 ± 38.84 68.46 ± 77.61 0.26
pNN20 (%) 77.50 ± 13.38 75.95 ± 23.23 0.73 71.35 ± 21.75 74.65 ± 20.52 0.59
pNN50 (%) 53.35 ± 20.57 55.10 ± 33.08 0.83 45.90 ± 24.70 47.30 ± 31.19 0.87

Fig. 5   Comparative analysis of mean data using CEs and CTEs in position 1 (P1) and position 2 (P2) in the time-domain of HRV a AvgRR b 
AvgHR c SDNN d pNN20 e pNN50
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a Poincaré plot (Fig. 6) for one subject. We conducted a 
quantitative analysis of the R-R interval time series using 
the Poincaré plot, and the results of the determined param-
eters are presented in Table 2.

Visually, the Poincaré plots were narrower when CE 
was used in positions 1 and 2 compared to CTEs. How-
ever, similar patterns of scatter are observed with both 
electrodes in the two positions. Minimal differences are 
also observed in the dispersion and clustering of points.

3.4 � Position effect of the CTEs group

An evaluation of the position effect within the CTEs group 
was considered. Comparison between positions 1 and 2 

revealed no significant differences (Table 3) in the time-
domain HRV indices (p > 0.05 for all parameters).

4 � Discussion

Herein, CTEs were quantitatively compared to CEs via their 
ECG morphologies and time-series HRV analysis. The posi-
tions for the CTEs were varied in two experiments. Our find-
ings affirm the potential of CTEs for ECG acquisition and 
also identifies the most suitable electrode position for the 
application of CTEs.

A fundamental feature of a quality ECG signal is one that 
is free from any erroneously detected R peaks caused by 
significant distortion or contains no absent R peaks. From 
Figs. 3 and 4, CTEs exhibited superior R peak characteristics 

Fig. 6   Poincaré plots using a CE and b CTEs in position 1 (P1) c CE and d CTEs in position 2 (P2)

Table 2   Quantitative results of the Poincaré analysis

Position 1 Position 2

CE CTEs CE CTEs

SD1 (ms) 78.04 61.48 87.07 76.20
SD2 (ms) 49.38 33.78 76.74 84.46
SD1/SD2 1.58 1.82 1.13 0.90

Table 3   Results of the position effect between the CTE groups

Parameter AvgRR 
(ms)

AvgHR 
(bpm)

SDNN 
(ms)

pNN20 
(%)

pNN50 
(%)

p value 0.97 0.07 0.57 0.54 0.22
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in ECG waveforms compared to CEs. The enhanced R peak 
amplitude and clarity observed in CTE-based ECG record-
ings suggest improved signal quality and accuracy. This is 
particularly useful as R peak identification is key for reli-
able cardiac monitoring and arrhythmia diagnosis [30–32]. 
Previous research has highlighted the limitations of CEs, 
including motion artefacts [17, 33] and signal degradation 
[34–36], which can compromise R peak detection and anal-
ysis. In contrast, the CTEs exhibit improved conductivity 
and reduced noise sensitivity, resulting in an enhanced ECG 
signal quality.

The R peak, indicative of ventricular depolarisation and 
the onset of ventricular contraction, was clearly discern-
ible in ECG signals recorded using CTEs, as illustrated in 
Figs. 3 and 4. The waveforms obtained from CTEs showed 
well-defined P, QRS, and T points, which were more prom-
inent compared to those captured by CEs. This clarity is 
fundamental for accurate HRV analysis, as it helps in dis-
tinguishing the R peak from other waveforms and minimises 
processing errors. Following filtering, substantial improve-
ments in SNR were observed: for the CE in position 1, SNR 
improved from 8.71 dB to 17.50 dB; for the CTEs in position 
1, SNR increased from 6.95 dB to 15.39 dB; for the CE in 
position 2, SNR increased from 9.31 dB to 17.97 dB and for 
the CTEs in position 2, SNR rose from 8.71 dB to 16.78 dB. 
These results affirm the effectiveness of the filtering tech-
niques and validate the data provided by the CTEs, proving 
the efficacy of our material.

The heart’s ability to adapt to changing circumstances by 
quickly identifying and responding to unpredictable stimuli 
is measured by HRV [37]. Time-domain indices of HRV 
serve as an indicator of autonomic homeostasis, particu-
larly in evaluating the mental and metabolic well-being of 
an individual. In this study, time-domain indices of HRV 
were used to compare CTEs and CEs (Table 1). Despite the 
distinct material compositions and observable variations in 
mean values, the paired t-test failed to detect significant dif-
ferences (p > 0.05) in AvgRR, AvgHR, SDNN, pNN20 and 
pNN50 between the two electrodes in positions 1 and 2. This 
outcome may seem counterintuitive, given our expectation 
that CTEs would outperform CEs. However, these results 
actually reveal that CTEs are as equally competent as CEs 
in terms of these specific HRV parameters. This indicates 
that CTEs serve as a viable alternative to CEs for HRV 
assessments, offering advantages such as cost-effectiveness 
and enhanced comfort without compromising measurement 
accuracy. Generally, Ag/AgCl electrodes have been regarded 
as the gold standard in ECG recordings due to their reliabil-
ity and accuracy. In contrast, the utilisation of CTEs offer 
not only the supplementary benefit of enhanced comfort but 
also demonstrates notable advancements in accuracy and 
reliability, as corroborated by the ECG morphologies.

The derivation of HRV stems from the intricate interplay 
of diverse physiological mechanisms, signifying the involve-
ment of nonlinear systems in the regulation of heart rate 
[37–39]. Thus, it stands to reason that, assessing the efficacy 
of CTEs involves a comprehensive examination of its impact 
on nonlinearity. Consequently, an analysis employing Poin-
caré plots was conducted to explore the nonlinear dynamics 
governing heart rate regulation and to elucidate any discern-
ible variations facilitated by the use of the CTEs. In com-
paring the performance of CEs to CTEs across positions 1 
and 2 from the Poincaré plots (Fig. 6), it is apparent that 
both electrodes exhibit scatters characterised by analogous 
patterns. Also, minimal disparities are noted in terms of the 
dispersion and clustering of data points. These observations 
suggest that, in terms of nonlinearity, CTEs perform compa-
rably to CEs, indicating the robustness and consistency of its 
performance across different electrode positions. This fur-
ther highlights the potential efficacy of CTEs in impacting 
physiological responses, and overall wellbeing. Moreover, it 
suggests that the electrical conductivity and signal quality of 
CTEs are sufficient to capture subtle beat-to-beat variability 
in heart rate, akin to CEs. Through these, we can intuitively 
confirm that our CTE is capable of ECG measurement and 
that the obtained data are reliable.

Another important implication of our findings is the 
stability of the CTEs across different electrode positions. 
The lack of significant differences between the two posi-
tions (Table 3) reveal that CTE maintains its performance 
irrespective of placement variability. Nonetheless, based on 
literature and practical considerations, we opt for position 2. 
Previous studies using CTEs in the pillow (nape/head) and 
foot mat (leg) [40, 41] have yielded favourable outcomes. 
During long-term ECG monitoring, specifically during 
sleep, individuals change positions, causing frequent move-
ment of the hands, which can lead to electrode displace-
ment and signal distortion. The nape provides a relatively 
stationary surface due to the position of the head through-
out most sleep stages, ensuring consistent electrode contact. 
Similarly, while leg movements may occur, they are often 
less disruptive to electrode placement compared to hand 
movements, and may be helpful predictors of cardiovascu-
lar diseases caused by periodic limb movement during sleep 
[42–44], especially in the elderly. From a practical stand-
point, selecting the nape and legs for electrode placement 
eases the integration of monitoring systems into bedding. 
Integrating electrodes into pillows and bedding allows for 
unobtrusive and continuous monitoring, without the need 
for additional wearable devices. This promotes user com-
fort and compliance. Furthermore, this configuration enables 
seamless data collection in research and clinical settings, 
enhancing the feasibility and reliability of sleep studies and 
diagnostic assessments.
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ECG signals are instrumental in assessing physiological states 
and predicting health risks. CTEs improve upon traditional 
electrodes by reducing inconvenience and signal variability, 
allowing for easier ECG monitoring from various body parts 
without complex attachment procedures. Their deformable 
nature supports better integration into daily life and encour-
ages consistent monitoring. Beyond these advantages, CTEs 
have potential for broader applications, such as developing 
a “lonely death prevention system” that monitors health and 
issues emergency alerts. Future research should focus on 
incorporating advanced algorithms for real-time analysis and 
predictive modelling. Additionally, integrating CTEs with 
other wearable technologies and telehealth platforms could 
further enhance remote monitoring and patient outcomes.
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