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AI processing, which minimizes privacy and latency issues 
via the direct execution of computations on the devices. 
Lightweight model technologies, such as pruning [1], quan-
tization [2], and knowledge distillation [3], as well as light-
weight models, such as DenseNet [4], SqueezeNet [5], and 
MobileNet [6] have been extensively studied for on-device 
operation.

On-device processing enables AI applications to oper-
ate locally, thereby leveraging the computing power of the 
device. Moreover, on-device AI can significantly enhance 
user privacy and data security by processing data locally. In 
addition, it improves the response time and power efficiency 
while reducing latency because it preempts the necessity of 
the data to travel over the network to a server for processing. 
These advantages have propelled on-device AI to change the 
paradigm and pave the way for personalized applications.

Research on neuromorphic systems, which differ from 
the traditional von Neumann-structured computing systems, 
has been actively conducted along with the advancement 
of on-device AI. Neuromorphic systems are designed to 
physically implement neural networks in a way that imi-
tates the operational principles of biological brains. By 
designing hardware that mimics the structure of biological 
neurons and synapses, these systems process information 
asynchronously through discrete spike events. This allows 

1 Introduction

Artificial intelligence (AI) has developed rapidly, and it 
plays a pivotal role in driving innovation in various fields 
and has become a significant part of our daily lives. AI, 
which processes data by imitating the neurons of the human 
brain, exhibits excellent performance in learning and rea-
soning and is supported by the advancement of hardware 
and algorithms. Although AI exhibits superior performance 
in many problems, it incurs considerable computation and 
resource demands; furthermore, the sizes of the associated 
models are increasing.

In general, developed AI models are used as a method 
of delivering model output values for incoming data based 
on the cloud. Cloud-based AI models require communi-
cation with servers for data processing, and they encoun-
ter challenges, such as privacy concerns, communication 
delays, infrastructure costs, and high energy consumption. 
These limitations have prompted a shift toward on-device 
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neuromorphic systems to handle event-driven sparse data 
more efficiently, offering significant improvements in pro-
cessing speed and power efficiency for tasks. Several neu-
romorphic hardware systems have been developed over the 
years such as Intel’s Loihi [7], IBM’s TrueNorth [8], SpiN-
Naeker [9], and Neurogrid [10], providing real-time pro-
cessing along with high energy efficiency.

Spiking neural networks (SNNs), which are called the 
next generation of AI models, are also being studied along 
with the development of neuromorphic systems. SNNs pro-
vide algorithms suitable for neuromorphic hardware and 
neuromorphic hardware provides a platform to run these 
networks efficiently. Neuromorphic computing and SNNs 
represent the forefront of creating computing systems that 
replicate the functionality of the human brain as well as 
their energy efficiency. Algorithms for SNNs include input 
encoding methods, neuron models, network architectures, 
and training methods. SNNs use biological neuron model 
and offers a more dynamic and energy-efficient approach 
compared to deep neural networks. These studies have 
aimed to overcome the limitations of traditional computing 
architectures by introducing models capable of real-time 
processing with minimal energy requirements.

In biomedical engineering, advancements of AI have 
significantly influenced many research areas, especially 
changing the analysis of biomedical signals such as elec-
troencephalograms (EEG), electrocardiograms (ECG), and 
electromyograms (EMG). The transition from manual fea-
ture engineering to deep learning-based automatic feature 
extraction has facilitated significant advancements, con-
sequently enabling more precise and efficient analysis of 
biological signals. In addition, AI enables the identification 
of relevant health indicators from complex biological data, 
thereby offering insights that can drive personalized health-
care solutions.

Healthcare AI models are implemented to process data 
by sending it to a model developed based on a cloud server. 
However, the server-based approach has several limita-
tions, including the risk of user’s health data privacy and 
slow response times in emergencies, where rapid reac-
tion is crucial. Additionally, the maintenance costs associ-
ated with servers can be substantial. Consequently, a shift 
towards on-device processing, where data is managed and 
analyzed directly on the device, can address these issues. 
The shift towards on-device AI and neuromorphic comput-
ing in healthcare underscores the broader trend of migrat-
ing towards personalized, efficient, and privacy-preserving 
technology solutions. This approach addresses the limita-
tions of centralized data processing and paves the way for 
new possibilities for real-time personalized health monitor-
ing and interventions.

From this perspective, research on SNNs, which offer 
faster real-time processing speeds and higher energy effi-
ciency on-device compared to traditional deep learning 
models, is gaining interest in the field of biomedical sig-
nal analysis. This article reviews recent studies on SNNs 
models in the domain of biomedical signals, focusing the 
following parts: (1) background of SNNs architectures and 
training approaches; (2) review of SNNs studies in EEG 
signals; (3) review of SNNs studies in ECG signals; (4) 
review of SNNs studies in EMG signals; (5) a performance 
comparison of SNNs models in biomedical signal analysis. 
By comparing the characteristics of SNNs with those of tra-
ditional deep-learning models, this review highlighted the 
potential of SNNs to revolutionize the analysis and interpre-
tation of biomedical signals in healthcare applications. This 
review will help researchers to develop SNNs model and 
provide a future direction for biomedical signals processing 
systems with power and energy-efficient models.

2 Spiking neural networks

The field of neuromorphic computing in computer science 
and engineering aims to create more efficient computing 
systems that mimic the structure and functionality of the 
human brain.  A key aspect of neuromorphic computing 
is the use of SNNs, which model neuron behavior more 
closely with biological neurons by representing the infor-
mation as discrete spikes.

SNNs provide a unique approach to the temporal dynam-
ics of signals by using spikes, and spike neuron models 
generate spikes in response to input signals. This facilitates 
SNNs to process information in a time-dependent man-
ner, rendering them particularly suitable for tasks involv-
ing temporal sequences or real-time processing. A notable 
advantage of SNNs is their high energy efficiency, due to 
the nature of their neurons being selectively activated in 
response to specific events. This spiking mechanism ensures 
that not all the neurons are concurrently active, thereby 
reducing power consumption. This feature is particularly 
advantageous for on-devices that necessitate energy conser-
vation. By contrast, neurons in deep-learning networks are 
continuously operational, necessitating higher energy con-
sumption, particularly in large-scale networks engaged in 
complex computations.

The key elements constituting SNNs include spike neu-
ron models, spike encoding methods, and learning methods 
for encoded spike trains, as shown in Fig. 1. First of all, 
there are several models for representing spiking neurons. 
The Hodgkin-Huxley model [11] is a highly detailed and 
biophysically accurate representation of the electrical prop-
erties of excitable cells like neurons. This model explains 
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the initiation and propagation of action potentials in neurons 
through the dynamics of ion channels.

The Integrate-and-Fire (IF) model [12] is a simple and 
idealized model of neuron dynamics, where the membrane 
potential integrates incoming signals until a threshold is 
reached, causing the neuron to fire a spike and then reset its 
potential.  The Leaky IF (LIF) model extends the basic IF 
model by including a “leak” term that models the passive 
decay of the membrane potential over time. The inclusion of 
the leak term means that the membrane potential will natu-
rally decay towards the resting potential if no input is pres-
ent, making it a more realistic representation of biological 
neurons. The following equation represents the dynamics of 
the LIF neuron:

c
dV (t)

dt
= − (V (t)− Vreset) + RI (t)  (1)

Where c  represents the membrane time constant, V (t) indi-
cates the membrane potential of the neuron at the time t
, Vreset  is the resting membrane potential, R  indicates the 
membrane resistance, and I (t)  represents the input to the 
neuron at the time t . When V (t) reaches the threshold Vth , 
the neuron fires and the membrane potential V (t) is reset to 
Vreset . The Izhikevich model [13] is another neuron model 
that effectively combines biological plausibility with com-
putational efficiency.  By using a set of relatively simple dif-
ferential equations, it can replicate a wide range of neuronal 
firing patterns, making it a valuable tool in both theoretical 
studies and practical applications of neural dynamics.

Spike-encoding methods are crucial for translating data 
into spike patterns that can be processed using SNNs. Spike 
encoding methods capture complex temporal relationships 

while reducing computational resources by encoding infor-
mation using data patterns and timing. The representative 
spike-encoding methods include rate, temporal coding, delta 
modulation, and encoding layer. The rate encoding [14] is 
among the simplest and most intuitive methods, wherein the 
frequency of spikes represents the input signal magnitude. 
In this encoding method, an increased input value leads to 
a higher spike firing rate, while a lower input value results 
in a decreased firing rate. Temporal coding [15] represents 
information through the exact timing of spikes rather than 
their firing rate, relying on the relative timing of spikes to 
transmit information. This approach depends on the relative 
timing of spikes to transmit information. For instance, in a 
time-to-first spike mechanism, bright pixels are encoded as 
initial spikes, whereas dark inputs either spike later or not 
at all. The temporal encoding mechanisms allocate much 
more meaning to each individual spike compared to rate 
encoding.

 The spike-timing-dependent plasticity (STDP) algorithm 
[16, 17] serves as a representative example, functioning as 
a learning rule in SNNs based on biological mechanisms 
seen in the brain. Synaptic weights are adjusted by the 
STDP mechanism based on the precise timing of incom-
ing spikes.  The STDP adjusts the synaptic weights based 
on the timing of the incoming spikes. This contrasts with 
the backpropagation algorithm utilized in deep learning, 
wherein the error gradients are calculated to optimize the 
network weights. Backpropagation provides a powerful and 
generalizable framework for deep learning; however, it is 
difficult to use for the training of spiking neurons. Spiking 
neurons communicate through discrete spikes or impulses, 
which are essentially binary events (neurons either fire 
or do not fire at a given time). This spiking mechanism is 

Fig. 1 Overview of spiking neural networks architecture for biomedical signal analysis
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research and control signals in brain-computer interfaces 
(BCIs).

EEG-based SNNs algorithms are being studied in vari-
ous fields such as epileptic detection, emotional recognition, 
auditory attention detection, and BCI. Table 1 summarizes 
the EEG-based SNNs studies. In studies related to the epilep-
tic seizure detection research, Zhang et al. [19] introduced 
an EEG-based SSN (EESNN), which features a recurrent 
spiking convolution structure. This model was designed to 
capture the inherent temporal and biological characteristics 
of EEG signals, aiming to enhance the detection of epileptic 
seizures in different patients. EESNN achieved comparable 
or even better performance in cross-patient epileptic seizure 
detection than traditional artificial neural networks (ANNs), 
while also significantly reducing energy consumption.  
Burelo et al. [20] introduced a custom-designed SNNs for 
the detection of high-frequency oscillations (HFO) in scalp 
EEG recordings. The SNNs model features a two-layer net-
work utilizing LIF neurons and synapses, employing delta 
modulator-based spike encoding method. The proposed 
SNNs achieved an 80% accuracy in associating HFO occur-
rences with active epilepsy and found a strong correlation 
between the HFO rate detected by the SNNs and seizure 
frequency. These results demonstrated the potential of 
SNNs for non-invasive epilepsy monitoring using compact, 
energy-efficient devices.

. Li et al. [21] introduced a fractal-SNNs scheme for rec-
ognizing emotions from EEG data, incorporating multi-scale 
temporal, spectral, and spatial (TSS) information. Their key 
innovation, the Fractal-SNN block, mimics biological neu-
ral structures with spiking neurons and a novel fractal rule, 
efficiently extracting distinctive TSS features. They also 
proposed the inverted drop-path training technique, enhanc-
ing generalization by allowing the network to learn from 
various sub-networks. Extensive experiments on public 
benchmark databases showed that their model outperforms 
other advanced methods in EEG-based emotion recogni-
tion, particularly under subject-dependent protocols.  Xu 
et al. [22] proposed the Emo-EEGSpikeConvNet (EESCN) 
model featuring neuromorphic data generation and a neu-
rospiking framework to classify EEG-based emotions. EEG 
signals are converted into 2D frames by the neuromorphic 
data generation module, which captures spatial and tempo-
ral information and reduces computational costs. Within 
the neurospiking framework, there is an encoding layer to 
convert EEG data into spikes, a spike convolution layer 
to extract features, and a fully connected layer to perform 
classification. The EESCN demonstrated high accuracy on 
the DEAP and SEED-IV datasets, outperforming existing 
SNNs methods. This model also achieved faster computa-
tion and lower memory usage, making it suitable for practi-
cal applications.  Xu et al. [23] demonstrated that SNNs can 

inherently nondifferentiable, rendering its direct application 
to the backpropagation algorithm challenging. Therefore, 
the STDP algorithm and various methods for spike learning 
have been proposed.

The fundamental principle of STDP is that changes in 
synaptic strength (synaptic weight) are determined by the 
time difference between presynaptic and postsynaptic 
spikes. When a presynaptic neuron fires just prior to a post-
synaptic neuron within a specific time window, the synaptic 
strength is enhanced, referred to as long-term potentiation 
(LTP). When a presynaptic neuron fires just after a post-
synaptic neuron, the synaptic strength is reduced, referred 
to as long-term depression (LTD).  The change of synaptic 
weight is represented by the following equation:

∆w =





A+exp

(
− tpost−tpre

τ+

)
if tpost > tpre

−A−exp
(
tpost−tpre

τ−

)
if tpost < tpre

 (2)

Here, ∆w  represents the change in synaptic weight,  A+and 
A−are learning rate constants for potentiation and depres-
sion, respectively, τ+and τ−  are the time constants for the 
decay of the learning window.

3 SNNs in biomedical signals

A type of artificial neural network, SNNs mimics the way 
biological neurons communicate, using discrete events 
referred to as spikes.  Time series data inherently contains 
temporal patterns, and SNNs can encode information in the 
timing of spikes, thus having strength in capturing and pro-
cessing these time patterns. The temporal and event-driven 
processing capabilities of SNNs have been studied in vari-
ous fields of biosignals; in particular, many studies have 
been conducted based on EEG signals, which are closely 
related to spiking neurons in the brain. This section reviews 
research related to the application of SNNs to EEG, ECG, 
and EMG biosignals.

3.1 Electroencephalogram signal

The electrical activity of the brain is represented by the EEG 
signal, which is measured with electrodes positioned on the 
scalp and EEG signals reflect the aggregated synchronous 
activities of numerous neurons that have similar spatial 
orientations  [18]. When neurons in the brain fire electrical 
impulses, they generate electrical fields that can be detected 
and recorded using these electrodes. EEG is used in numer-
ous applications, from diagnosing neurological conditions 
like epilepsy and sleep disorders to cognitive neuroscience 
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Table 1 Research on SNNs application based on EEG signals
Ref Neuron model / Input coding Performance

Learning rule / Network architecture
Epileptic seizure detection
[19] LIF / LIF CHB-MIT dataset [36] seizure detection (AUC / RACC)

Proposed: 96.64%/90.80%, AAN: 90.95%/81.53%
Energy Consumption
Proposed: 1.4 × 10− 1 mJ, AAN: 7.2 × 100 mJ

IDE [37] / Recurrent spiking convolution structure

[20] LIF / Threshold-based encoding Epilepsy state prediction ACC: 80%
Correlation between HFO and seizure frequency
Rho: 0.90, p < 0.0001

- / Core SNN + Artifcat SNN

Emotion recognition
[21] Predefined synapse and neuron / Temporal coding DREAMER dataset [38] ACC (Valence/Arousal/Dominance)

Proposed: 71.01/78.50/80.92%, BiSMSM: 65.45/66.43/76.23%
SEED-IV dataset [39] Overall ACC – 4 class
Proposed: 68.33%, BiSMSM: 58.90%

Inverted drop-path / Fractal SNN

[22] LIF / LIF SEED-IV dataset [39] Overall ACC – 4 class
Proposed: 79.65%, RGNN: 79.37%
Memory cost 50 times more memory saving than CNN + RNN
CPU running time 3 times faster than CNN + RNN

Using dynamic model of LIF (external 
input + firing threshold + output spike) / 
Emo-EEGSpikeConvNet

[23] LIF / Threshold-based encoding ACC (Fear/Sadness/Happiness)
Proposed: 86.36% / 95.18% / 89.09%,
CNN + LSTM: 89.25% / 82.50% / 89.38%

STDP / Spatiotemporal self-backpropagation 
SNNs (3 layers)

[24] LIF / Temporal coding DEAP dataset [38] ACC (Valence/Arousal/Dominance/Liking)
Proposed: 78/74/80/86.27%, SVM: 64.3/66.2/68.9/70.2%
SEED dataset [40] Overall ACC (Positive/Neutral/Negative)
Proposed: 96.67%, Hierarchical networks: 93.26%

STDP / NeuCube [25] (1000 neurons)

Auditory attention detection
[26] LIF / Encoding layer KUL dataset [41] ACC Proposed: 95.2%, CNN: 86.2%

Computational cost 83.9% reduction over the CNN modelBPTT / Bio-inspired spiking attentional neural 
network

[27] IF / Threshold based representation Left/Right audio stream classification ACC: 90%
STDP / SNNs (3 layers)

Brain-computer interfaces
[28] IF, LIF / Encoding layer MI classification – 2 class (left hand/right hand)

BCI IV-2b dataset [42] ACC Proposed: 85.18%, CNN-SAE: 77.6%
BCI II-III dataset [43] ACC Proposed: 90.96%, CNN-SAE: 90.00%

Surrogate-Gradient descent / SNNs with CNN (3 
Conv + FC layer)

[29] LIF / Encoding layer DEAP dataset [38] ACC – 2 class (Arousal / Valence)
Proposed: 90.01%/89.41%, DGCNN: 82.05%/77.85%
PhysioNet dataset [38] Overall ACC – 4 tasks
Proposed: 84.15%, DGCNN: 75.40%

Surrogate-Gradient descent / Spike-based adaptive 
graph convolution and long short-term memory

[30] LIF / Temporal coding DEAP dataset [38] ACC (Arousal / Valence)
Proposed: 78.97%/67.76%, Simple SNNs: 63.84%/64.73%
MAHNOB- HCI dataset [44] ACC (Arousal / Valence)
Proposed: 79.39%/70.68%, Simple SNNs: 64.73%/72.12%

STDP / 3D SNN reservoir + dynamic evolving 
SNN (1471 neurons)

[31] LIF / Bens Spiker algorithm [45] MI classification − 4 class (left hand/right hand/feet/tongue)
BCI IV-2a dataset [42] ACC
Proposed: 81.4%, CNN: 76.5%, LSTM: 78.8%

STDP / NeuCube [25] reservoir (1471 neu-
rons) + Weighted transfer SVM

[34] LIF / Poisson encoding MI classification − 2 class (left hand/right hand)
BCI IV dataset [42] + Group data ACC (Original / Synthethic)
LDA: 70.78%/72.71%, SVM: 70.51%/73.48%,
KNN: 68.58%/73.76%, Gaussian: 66.30%/73.29%

Surrogate-Gradient descent / SNNs with neural 
perturbation (3 FC layer)

[35] IZ / IZ MI classification − 2 class combination from five tasks:
(Rest / left hand / right hand / feet / tongue)
BCI IV dataset [42] ACC
Proposed: 83.16%, KNN: 70.22%, MLP: 80.54%

Particle Swarm Optimization /
SNNs (2 FC layer)

LIF Leaky Integrate-and-Fire, AUC Area Under the Curve, ACC Accuracy, IDE Implicit Differentiation on the Equilibrium state, AAN Aug-
mented Adversarial Network, SSN Spiking Neural Network, HFO High Frequency Oscillations, MLP Multilayer Perceptron, BiSMSM Bi-
Stream MLP-SA Mixer, RGNN Regularized Graph Neural Networks, CNN Convolutional Neural Networks, RNN Recurrent Neural Networks, 
STDP Spiking-time-dependent plasticity, BPTT Back Propagation Through Time, MI Motor Imagery, SVM Support Vector Machine, SBP Self-
Back Propogation, LDA Linear discriminant analysis, KNN K-nearest neighbor, IZ Izhikevich, BCI Brain Computer Interface

1 3

959



Biomedical Engineering Letters (2024) 14:955–966

includes a direct learnable spike encoding mechanism that 
converts EEG signals into spike trains effectively. In addi-
tion, proposed architecture effectively captures both the 
spatial topological relationships and temporal relationships 
in EEG signals, which are crucial for accurate BCI appli-
cations. Consequently, SGLNet enhanced the classification 
performance in emotion recognition and MI tasks compared 
to representative baseline models. Tan et al. [30] introduced 
SNNs framework for short-term emotion recognition mod-
eling of spatiotemporal EEG patterns without relying on 
handcrafted features. In this study, model was proposed 
that combined the SNN reservoir module (SNNr) based on 
the NeuCube framework with the deSNN representation, 
which allows the spatio-temporal activation pattern gener-
ated through the trained SNNr to generate output neurons. 
In this study, when the deSNN representation was added to 
the basic SNNs model, improved results were obtained in 
arousal and valence classification of the emotion classifica-
tion dataset.

Wu et al. [31] enhanced EEG-based patter recognition in 
NeuCube [32] SNNs model, by addressing limited labeled 
data and distribution variability through transfer learning. To 
optimize the hyperparameters of the NeuCube reservoir, an 
improved cuckoo search algorithm [33] was developed aim-
ing to extract the best spatio-temporal features from EEG 
data. NeuCube’s output classifier was improved by trans-
ferring weights to the support vector machine model, and 
as a result, performance in MI recognition was siginifi-
cantly improved compared to other deep learning models. 
Singanamalla et al. [34] introduced SNNs that is adaptable 
to different EEG signal modalities, such as MI and Steady-
State Visually Evoked Potentials (SSVEP), without needing 
extensive adjustments in hyperparameters. In addition, they 
proposed a method for generating synthetic EEG data using 
neural perturbation and synaptic filter in SNNs, which can 
enhance classifier performance with only a limited number 
of original data samples. Antelis et al. [35] proposed SNNs 
model for MI tasks recognition. SNNs model consists of an 
Izhikevich neuron model [13] that is biologically realistic 
and requires little computation, and was trained using the 
Particle Swarm Optimization algorithm [32], which opti-
mizes a problem by iteratively enhancing a candidate solu-
tion according to a defined quality metric.  They conducted 
a comparative analysis demonstrating the advantages of 
SNNs over traditional neural network models, particularly 
in terms of handling dynamic, time-sensitive data inherent 
to EEG signals used for BCI.

3.2 Electrocardiogram signal

An ECG signal represents the heart’s electrical activity over 
time in a graphical format, recorded and displayed through 

effectively decode emotional brain networks from EEG data 
related to the viewing of emotional videos. The study found 
high decoding accuracies for these emotions using the SNNs 
with self-backpropagation, highlighting specific frequency 
bands as biological markers. By analyzing EEG signals while 
participants watched emotional videos, it identified distinct 
brain network activations for fear, sadness, and happiness. 
These findings support the potential of SNNs for effective 
emotion recognition and BCI applications.  Luo et al. [24] 
proposed a novel approach for identifying emotional states 
based on EEG signals. EEG signal features were extracted 
using discrete wavelet transform, variance, and fast fou-
rier transform algorithms, and extracted features were then 
used to train NeuCube [25]-based SNNs model. NeuCube, 
an architecture for spatio- and spectro-temporal brain data, 
includes a 3D SNN reservoir module, an input data module, 
and an output function module. When compared to existing 
benchmark methods, the proposed method achieved high 
accuracy in emotion recognition classification.

Studies have also been conducted on SNNs for detecting 
auditory attention. Cai et al. [26] introduced BSAnet, which 
is an innovative end-to-end modular architecture designed 
to decode auditory attention using EEG signals. BSAnet 
consists of biologically plausible LIF neurons along with an 
event-driven neural encoder. In addition, it incorporates a 
temporal attention mechanism and a recurrent spiking layer, 
which enhance its ability to represent detailed temporal pat-
terns in brain signals. This architecture achieved improved 
performance in auditory spatial attention detection tasks 
compared to other state-of-the-art systems, confirming 
its efficacy in realistic brain-like information process-
ing.  Faghihi et al. [27] presented a neuroscience-inspired 
SNNs for detecting auditory spatial attention from EEG 
data. The model utilized biologically realistic IF neurons 
and employed sparse coding through synaptic pruning to 
enhance classification accuracy. Remarkably, the proposed 
SNNs achieved an average accuracy of 90% with only 10% 
of the EEG signals used as training data, demonstrating its 
efficiency and robustness with minimal data.

Finally, research on SNNs has also seen in the field of 
BCI. Liao et al. [28] proposed SCNet, a novel SNNs with 
convolutional neural networks (CNN) for motor imagery 
(MI) classification. SCNet used an adaptive coding mecha-
nism that reduces information loss during the encoding pro-
cess. This mechanism improves the model’s capacity to learn 
from the data, enhancing both the accuracy and efficiency of 
processing EEG signals. SCNet showed classification per-
formance improvements compared to several state-of-the-
art SNNs and traditional machine learning models in motor 
imagery tasks. Gong et al. [29] introduced SGLNet, an inno-
vative SNNs that combines adaptive graph convolution with 
Long Short-Term Memory (LSTM) units. Proposed model 
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application-specific integrated circuit, achieved high clas-
sification accuracy with low power operation in MIT-BIH 
database.    Xing et al. [47] introduced ECG classifica-
tion approach using SNNs integrated with a channel-wise 
attention mechanism specifically designed for real-time 
applications on personal portable devices. The proposed 
model positioned the channel attention mechanism between 
SNN layers to incorporate channel information, enhancing 
the model’s ability to capture relevant features. Addition-
ally, wavelet threshold denoising method was employed 
to reduce ECG signal noise. The proposed algorithm was 
implemented on FPGA and achieved improved results 
in terms of arrhythmia automatic classification accuracy, 
energy consumption, and real-time functionality compared 
to state-of-the-art methods. Feng et al. [48] introduced a 
deep SNNs for ECG classification comprising a 14-layer 
deep layer using ANN-to-SNNs conversion. By transfer-
ring the trained parameters from an ANN to SNNs and 
employing ReLU activation functions during the ANN-to-
SNN transformation, proposed model achieved the highest 

a medical device known as an electrocardiograph. This sig-
nal is acquired by placing electrodes on the patient’s body, 
which detect tiny electrical changes on the skin arising 
from the electrophysiological pattern of depolarization and 
repolarization during each heartbeat [18]. ECG signals are 
essential for diagnosing and monitoring a range of cardiac 
conditions, including arrhythmias, heart attacks, and other 
heart diseases.

Most SNNs research based on ECG signals has focused 
on arrhythmia detection. Table 2 summarizes the ECG-based 
SNNs studies. Chu et al. [46] introduced a neuromorphic 
processing system using a spike-driven SNNs processor 
for ECG classification. Proposed neuromorphic system 
includes a novel Level-crossing sampling methodto encode 
temporal ECG signals with a single-bit representation, an 
enhanced hardware-aware spatio-temporal backpropagation 
training method to minimize firing rates, and a specialized 
SNNs processor design for energy-efficient ECG classi-
fication. The proposed SNNs processor, validated on field 
programmable gate array (FPGA) and implemented to an 

Table 2 Research on SNNs application based on ECG signals
Ref Neuron model / Input coding Performance

Learning rule / Network architecture
ECG arrhythmia classification
[46] LIF / LIF MIT-BIH dataset 5-class ACC

Proposed: 98.22%, Nyquist-ANN: 99.16%
Computational Cost
PowerProposed : 0.93µW,Nyquist− ANN : 46.8?86.7µW
Energy/Classification Proposed: 0.75µJ , Nyquist-ANN: 4.36 
µJ

STBP / spiking recurrent MLP (input-recurrent-
sparse-FC layer)

[47] LIF / LIF MIT-BIH dataset [53] V class ACC
Proposed: 98.2%, deep CNN: 98.6%
Computational Cost (Energy per Beat / Time per Beat)
Proposed: 324.51µJ  / 1.32ms,
CNN: 37mJ / 41ms

CNN-to-SNN conversion / SNNs with channel 
attentional module

[48] LIF / Poisson encoding 2017 PhysioNet/CinC challenge dataset [54] 4-class
ACC Proposed: 84.4%, ANN (ReLU): 84.1%
ROC-AUC Proposed: 0.935, ANN (ReLU): 0.890

ANN-to-SNN conversion / SNNs (Input-13 Conv-1 
FC-Output layer)

[49] Adaptive LIF / Poisson encoding MIT-BIH dataset [53] 4-class ACC
Proposed: 93.6%, LSTM: 99.2%, CNN: 93.4%
Energy (/heartbeat)
Proposed: 0.178µJ , LSTM: 35 mJ , CNN: 1.17J

STBP / DiSNN (Input-5 SConv-2 FC-Output layer)

[50] IF / Rate encoding MIT-BIH dataset [53] 4-class ACC
Proposed: 90%, CNN: 92%
Total Power (W) Proposed: 0.077, CNN: 10.40

CNN-to-SNNs conversion / SNNs

[51] - / Temporal coding (time to first spike coding) Fetal Arrhythmia (Normal/Arrhythmia)
ACC Proposed method achieved 16.65/13.09% higher than ANN
AUC Proposed method achieved 2.45% higher than ANN

Momentum Search Algorithm / Binarized SNNs

ECG waveform classification
[52] Adaptive LIF / level crossing encoding ECG dataset [55] 6-waveform ACC

Proposed: 85.9%, Bi-LSTM: 80.8%
Computational Cost (AC/MAC)
Proposed: .5k/90, Bi-LSTM: -/181.8 K

BPTT + Multi-gaussian surrogate gradient / SRNNs

LIF Leaky Integrate-and-Fire, STBP Spatio-Temporal Back Propagation, MLP Multi-Layer Perceptron, FC Fully-Connected, ACC Accuracy, 
ANN Artificial Neural Networks, CNN Convolutional Neural Networks, SNNs Spiking Neural Networks, AUC Area Under the Curve, DiSNN 
Deep integrative Spiking Neural Network, BPTT Back-Propagation-Through-Time, SRNN Spiking Recurrent Neural Networks, AC ACcu-
mulation, MAC Multiply-And-Accumulate
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3.3 Electromyogram signal

EMG is a signal of electrical activity generated by skeletal 
muscles and is recorded through electrodes placed on the 
surface of the skin over the muscles or inserted directly 
into muscle tissue. The presence of an electrical potential, 
produced by muscle cells upon electrical or neurological 
activation, is reflected in this signal  [18]. EMG is used for 
various clinical and research purposes. In clinical practice, 
EMG testing can assist in diagnosing diseases and disorders 
that impact muscles and their controlling nerves.

Research on SNNs based on EMG signals has primarily 
focused on the detection of hand gestures. Table 3 summa-
rizes the EMG-based SNNs studies. Xu et al. [56] intro-
duced an innovative event-driven spiking CNN (SCNN) for 
EMG pattern recognition. They designed a SCNN structure 
that integrates a fully connected module with a cyclic CNN 
and improved LIF neurons to enhance learning efficiency 
and reduce information loss. Furthermore, they employed 
an event-driven differential coding approach for effective 
EMG signal encoding and spatio-temporal backpropagation 
for model training. The research, centered on high-density 
surface EMG signals across six gestures and various elec-
trode positions, demonstrated high energy efficiency and 
high performance in small-sample training experiments. 

Vitale et al. [57] demonstrated the potential of neuro-
morphic computing to enhance edge-computing wearable 
devices for biomedical applications, focusing on EMG-
based gesture recognition. They proposed two SNNs—a 
spiking convolutional neural network and a spiking fully 
connected network—and implemented on Intel’s Loihi 
neuromorphic processor to evaluate gesture recognition. 
The proposed system demonstrated high accuracy, energy 
efficiency, and low latency compared to traditional machine 
learning methods, highlighting its suitability for real-time 
wearable applications. Ma et al. [58] developed a neuro-
morphic processing system incorporating mixed signals 
and employing a spiking recurrent neural network (SRNN) 
to efficiently and accurately classify EMG-based gesture. 
They introduced an adaptive delta-encoding method to 
equalize input firing rates across channels and subjects, 
incorporated a soft Winner-Take-All network with STDP 
learning to enhance classification accuracy, and used a 
sparse representation to reduce connections in SRNN. The 
proposed system implemented on the DYNAP neuromor-
phic chip and achieved competitive performance with lower 
power consumption.  Ceolini et al. [59] developed a neuro-
morphic computing benchmark for hand gesture recognition 
by integrating EMG and event-based camera data through 
a sensor-fusion approach. Their framework evaluated the 
performance of two different neuromorphic processors, 
Loihi and ODIN + MorphIC, in processing spike-encoded 

accuracy on ECG classification tasks. The efficiency and 
effectiveness of this method were demonstrated by experi-
mental results, showing that the transformed SNNs outper-
formed the original ANN.

Jiang et al. [49] proposed the MSPAN system, a mem-
ristive spike-based computing engine with adaptive neu-
rons for the purpose of edge arrhythmia detection. They 
introduced a deep integrative SNN architecture comprising 
spike-based convolution layers and fully connected layers 
with an integrate unit and an adaptive unit. Additionally, the 
study proposed a memristor-based computing-in-memory 
architecture, eliminating the necessity for an analog-to-
digital converter. A threshold-adaptive LIF neuron module 
mimicking human brain function is included in the archi-
tecture, which improves energy efficiency and processing 
speed. The MSPAN system achieved a significant reduction 
in computational complexity relative to traditional CNN-
based methods, without compromising on performance. Yan 
et al. [50] introduced a two-stage CNN and SNN framework 
for energy-efficient ECG classification. Initially, a two-step 
CNN workflow classifies ECG beats as normal or abnor-
mal, then further categorizes abnormal beats into specific 
types. They proposed a convolutional SNN with an identi-
cal structure as the CNN, transferring network weights from 
CNN to SNN. This approach allows the SNN to inherit the 
learned features from the CNN, achieving high accuracy 
with reduced computational complexity. They achieved 
significant energy savings, with the two-class SNN sys-
tem consuming only 0.077 W and maintaining 90% accu-
racy.  Shekhawat et al. [51] proposed a Binarized Spiking 
Neural Network (BSNN) optimized using a momentum 
search algorithm to improve the detection of fetal arrhyth-
mia detection from ECG signals. By optimizing the net-
work’s weight parameters and employing hexadecimal 
local adaptive binary pattern for feature extraction, the pro-
posed method tried to overcome the challenges posed by 
noisy ECG signals and the complexity of fetal arrhythmias. 
BSNN achieved significant enhancement of fetal arrhyth-
mia detection, thereby supporting better prenatal care and 
clinical outcomes.

Yin et al. [52] introduced spiking recurrent neural net-
works (SRNNs) that leverage novel surrogate gradients and 
adaptive spiking neurons for improved time-domain clas-
sification tasks, including ECG wave-pattern classification, 
speech and gesture recognition. This study proposed the use 
of adaptive LIF trained with a novel surrogate gradient, the 
multi-gaussian, which significantly outperforms other surro-
gate gradients. This training method optimized the SRNNs 
for sequential and temporal tasks, resulting in significantly 
less energy consumption and computational efficiency than 
traditional networks.
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demonstrated improved results compared to existing state-
of-the-art methods.  Sun et al. [62] explored the feasibility 
of applying SNNs to myoelectric control systems, address-
ing challenges such as extensive training demands, low 
robustness, and excessive energy consumption.  This paper 
introduced an adaptive threshold-based temporal encoding 
method and used improved LIF neuron that incorporates 
voltage-current effects to enhance EMG pattern recognition. 
Proposed SNNs model significantly reduced training repeti-
tions, lower power consumption, and improving robustness 
compared to conventional methods. Tanzarella et al. [63] 
proposed a neuromorphic framework for movement inten-
tion recognition of human spinal motor neurons. This study 
introduced SNNs model features a convolutional architec-
ture optimized for decoding spinal motor neuron activity, 

sensory data. They implemented Spiking CNN and Spiking 
MLP architectures on Intel’s Loihi and ODIN + MorphIC 
processors, respectively. The system achieved competitive 
accuracy with significantly lower energy consumption, pro-
viding a benchmark for neuromorphic computing for real-
time low-power applications. 

Garg et al. [60] proposed a new approach to optimize the 
hyperparameters of the spike encoding algorithm based on 
the readout layer concept of storage computing.  This study 
used a regulated reservoir computing approach that operates 
at the edge of chaos. CRITICAL auto-regulation algorithm 
[61] was used to adjust the dynamics within the reservoir, 
enhancing the network’s sensitivity and performance. The 
proposed method was evaluated for hand gesture rec-
ognition performance on two open-source datasets and 

Table 3 Research on SNNs application based on EMG signals
Ref Neuron model / Input coding Performance

Learning rule / Network architecture
Gesture classification
[56] Improved LIF / variant of delta modulation HD-sEMG dataset [64] 6-gestures ACC

Proposed: 98.78%, CNN: 94.61%
Power Consumption (J/s ) Proposed: 1.52E-03, CNN: 0.142

Spatio-temporal backpropagation / spiking convo-
lutional neural networks

[57] LIF / delta modulation NinaPro DB5 dataset [65] 12-gestures ACC
Proposed: 74%, TCN: 69.2%
Computational Cost (Inference Latency / Power)
Proposed: 5.7ms / 41mW, TCN: 12.82ms / 0.9 mJ

SLAYER framework [66] / spiking fully con-
nected networks (two hidden layer)

[58] Adaptive exponential integrate-and-fire / delta 
modulation

Roshambo dataset [67] 3-gestures ACC
Proposed: 85.28%, SVM: 75%
Power Consumption Proposed: 1.121µW
NinaPro DB2 dataset [68] 8-gestures ACC
Proposed: 55.92%, SVM: 36%
Power Consumption Proposed: 1.190µW

Spike-timing-dependent plasticity / SRNNs

[59] Loihi LIF / delta modulation
ODIN + MorphiC
Izhikevich / delta modulation

EMG + DVS sensor data, 5-gestures ACC
Spiking CNN (Loihi): 96.0%, Spiking MLP (ODIN + MorphiC): 89.4%
CNN: 95.4%, MLP: 88.1%
Computational Cost (Inference time / EDP)
Spiking CNN (Loihi): 7.75ms / 8.6µJ ∗ s ,
Spiking MLP (ODIN + MorphiC): 19.5ms / 0.42µJ ∗ s ,
CNN: 6.9ms/221.10µJ ∗ s , MLP: 7.9ms / 253.0µJ ∗ s

Loihi
SLAYER framework [66] / Spiking CNN
ODIN + MorphiC
ANN-to-SNN conversion / Spiking MLP

[60] Adaptive LIF / Temporal contrast Roshambo dataset [67] 3-gestures ACC
Proposed: 89.72%,
Reservoir with spike-rate distance-based readout: 85.28%
Sensor fusion dataset [69] 5-gestures ACC
Proposed: 70.60%, CNN: 68.1%

CRITICAL [61] / Reservoir (80% excit-
atory + 20% inhibitory neurons) with SVM 
readout classifier

[62] Improved LIF / Temporal encoding based on adap-
tive threshold

High-density sEMG data, 9-gestures ACC
Electrode-shift Proposed: 72.59%, LSTM: 71.65%, CNN: 68.61%
User-independent Proposed: 66.61%, LSTM: 62.8%, CNN: 59.66%
Power Consumption (Inference power / latency)
Proposed: 13.64*104 / 0.073s,
LSTM: 2855.1*104 / 0.126s, CNN: 594.9*104 / 0.1334s

Surrogate-Gradient descent /
Input-2 Hidden-Output layer

[63] LIF /
Relative firing extraction by threshold

High-density sEMG data, 10-gestures ACC (all/intrinsic/extrinsic 
muscles)
Proposed: 92%/83%/86%, SVM: 83%/72%/61%
Power Consumption
Total energy: 0.97 mJ, Inference time: 9.7ms, EDP: 9.4 µJ ∗ s

Surrogate-Gradient and local learning /
Convolutional SNNs

LIF Leaky Integrate-and-Fire, ACC Accuracy, CNN Convolutional Neural Networks, TCN Temporal Convolutional Networks, SRNNs Spik-
ing Recurrent Neural Networks, SVM Support Vector Machine, MLP Multi-Layer Perceptron, DVS Dynamic Vision Sensor, EDP Energy-
Delay Product, LSTM Long Short-Term Memory
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