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Abstract
In medical clinical scenarios for reasons such as patient privacy, information protection and data migration, when domain 
adaptation is needed for real scenarios, the source-domain data is often inaccessible and only the pre-trained source model on 
the source-domain is available. Existing solutions for this type of problem tend to forget the rich task experience previously 
learned on the source domain after adapting, which means that the model simply overfits the target-domain data when adapt-
ing and does not learn robust features that facilitate real task decisions. We address this problem by exploring the particular 
application of source-free domain adaptation in medical image segmentation and propose a two-stage additive source-free 
adaptation framework. We generalize the domain-invariant features by constraining the core pathological structure and 
semantic consistency between different perspectives. And we reduce the segmentation generated by locating and filtering 
elements that may have errors through Monte-Carlo uncertainty estimation. We conduct comparison experiments with some 
other methods on a cross-device polyp segmentation and a cross-modal brain tumor segmentation dataset, the results in both 
the target and source domains verify that the proposed method can effectively solve the domain offset problem and the model 
retains its dominance on the source domain after learning new knowledge of the target domain.This work provides valuable 
exploration for achieving additive learning on the target and source domains in the absence of source data and offers new 
ideas and methods for adaptation research in the field of medical image segmentation.
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1 Introduction

Deep learning has achieved great success in mainstream 
computer vision in recent years, and these experiences 
provide a reference solution for the field of medical image 
analysis [1–5]. In real clinical scenarios, medical imaging 
is often acquired using different modalities, scanners, and 
protocols from different locations and populations that may 
have different characteristics, and these data suffer from 
severe domain shifts (inconsistent data distribution in the 
source and target domains) which may lead to performance 
degradation of pre-designed methods [6, 7]. Simultaneously, 
providing intensive professional annotations by high-level 
physicians is time-consuming and labor-intensive, and real 
patient data is subject to privacy protections and security 

regulations resulting in limited access. The lack of annota-
tion also leads to the fact that training a new target domain 
model is not only overhead but also difficult to implement. 
The above mentioned problems of domain shift and lack of 
annotation make it difficult for traditional vision process-
ing solutions to work directly in the field of medical image 
analysis. How to adapt the trained source model with a small 
amount of target domain data in real clinical scenarios with 
drastic domain changes is an urgent problem.

Unsupervised Domain Adaptation (UDA) maps source 
and target domains to common feature space and then aligns 
differences in the distribution of two features so that model 
adapts itself to the target domain samples and obtains close 
or even consistent performance with source domain through 
similar representations [6–8]. These approaches require 
labeled source datasets and well-trained models to learn 
the source knowledge in domain adaptation training. As 
shown in Fig 1, compared to UDA, where source and target 
domain samples are directly aligned, Source-Free Domain 
Adaptation (SFDA) adjusts the parameters of a pre-trained 
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source model using only the target domain samples. This 
adjustment aims to reduce the feature differences between 
the source and target domains [9, 10].

Existing SFDA methods can be roughly categorized into 
two types. The first type achieves domain alignment through 
virtual domain generation. Yang et al. [11] extract source 
domain knowledge from the source model to pattern the 
generative model of the source data to perform style trans-
formation on the target domain data, and then using methods 
such as contrast learning and noise label filtering to perform 
target domain adaptation. Tian et al. [12] generate virtual 
domain samples based on a pre-trained source model in fea-
ture space using an approximate Gaussian mixture model, 
allowing the virtual domain to maintain a similar distribu-
tion to the source domain without accessing the source data. 
Qiu et al. [13] train a prototype generator by exploring the 
classification boundary information of the source model 
through contrast learning. However, these methods not only 
require additional computational costs but also necessitate 
the design of dedicated generation schemes for different 
domains, which can be a cumbersome process. The second 
type focuses on inter-domain feature alignment. These meth-
ods leverage techniques such as knowledge distillation and 
statistical consistency to achieve robust model parameteriza-
tion against domain shifts [10]. Bateson et al. [14] guides the 

weakly labeled target sample and the domain-invariant prior 
on the segmented region based on minimizing the unlabeled 
entropy learning defined on the target domain data. Kim 
et al. [15] selected reliable samples with self-entropy crite-
rion and defined them as class prototypes. Self-supervised 
learning is then performed by assigning pseudo-labels to 
each target sample based on the similarity scores of the class 
prototypes. These methods are free from the constraints of 
domain generation and can achieve simple and generalized 
domain distribution adaptation by guiding the feature distri-
bution for alignment through prior knowledge.

The above inter-domain feature alignment-based methods 
have made some progress without accessing the source data. 
However, on the one hand, adaptation learning over a long 
time on a small number of target domain samples leads to 
a bias of the model to fit these only samples, making it dif-
ficult for the model to maintain its original dominance over 
the source domain during the adaptation process. On the 
other hand, the feature signals obtained by these methods 
inevitably contain redundant, erroneous, and harmful noise 
signals due to the lack of explicit supervision. Indiscriminate 
use of these signals to update the source model parameters 
may lead to the model learning in a bad direction or even 
to a complete collapse. With these limitations in mind, this 
letter aims to investigate persistent adaptation over the target 
domain in the presence of effective supervision.

We propose a two-stage SFDA framework for additive 
source-free domain adaptation, aiming to achieve more 
robust and simplified target domain adaptation for medical 
image segmentation tasks. Inspired by consistency learning, 
in the first stage, we freeze the decoder part of model and 
generalize the encoding capability through aligning style and 
content consistency between rotated and cropped images. 
In the second stage, we utilize the model fine-tuned in the 
first stage with the frozen encoder part and guide the target 
domain samples with their enhanced knowledge distillation 
using uncertainty maps. The main contributions of this letter 
can be summarized as follows:

• We investigate a more realistic and challenging task to 
achieve continuous learning on both the target and source 
domains without accessing the source data. The proposed 
method can effectively deal with the problem of cross-
distribution domain bias and the problem of unavailabil-
ity of source domain data due to privacy and security 
protection in the field of medical image segmentation.

• We propose a two-stage approach to adapt the encoder 
and decoder of the model separately. The framework uses 
multi-view feature styles and content consistency in the 
encoder adaptation stage to generalize the feature extrac-
tion capability of the encoder of the segmentation model, 
and reduces errors in the decoder reconstruction of the 
segmentation results by finding and eliminating poten-

Fig. 1  Explanation of the difference between domain adaptation and 
source-free domain adaptation. Domain adaptation methods utilize 
both source domain data and target domain data to design feature 
alignment and other adaptation methods. In practical clinical sce-
narios, accessing source domain data may be infeasible due to issues 
such as privacy and security concerns. Source-free domain adapta-
tion, on the other hand, is a solution that addresses this limitation. It 
involves tuning pre-trained source model parameters using alterna-
tive methods without accessing the source domain data, aiming to 
improve the model’s performance on the target domain
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tially erroneous feature elements through uncertainty 
estimation in the decoder adaptation stage.

• We conduct fair comparison experiments with current 
state-of-the-art methods in cross-device polyp segmenta-
tion and cross-modal brain tumor segmentation applica-
tion scenarios, respectively. We validate the effectiveness 
of the proposed method on the target domain to dem-
onstrate that the proposed method can be well adapted 
to different target domain offsets. Further, we report the 
performance of the post-adaptation method on a test set 
in the source domain to demonstrate that the proposed 
method is knowledge-retentive rather than knowledge-
replacing.

2  Method

2.1  Overview

We propose a two-stage adaptation framework to enable 
additive source-free domain adaptation by adjusting the 
model to learn domain-invariant features. It consists of an 
encoder adaptation stage that learns joint style and content 
invariance and a decoder adaptation stage that reduces fea-
ture uncertainty.

Let us define the source data Ds =
{

xs, ys
}

 and the target 
data Dt =

{

xt
}

 , where xs is the source image, ys is the cor-
responding source label, and yt is the target image. xcrop and 
xrot are the cropped and rotated enhanced images, respec-
tively, and zcrop , zrot , zt are the intermediate vectors encoded 
by the encoder. p is the predicted probability map. Ms is the 

pre-trained source model. Our goal aims to improve the per-
formance of the adjusted model Mt on the target domain by 
adjusting Ms in conjunction with the target data Dt without 
accessing the source data Ds.

2.2  Encoder adaptation stage

Medical imaging exposes different anatomical structures of 
organs or tissues, and these images exhibit significant style 
information differences in terms of texture, contrast, satu-
ration, and other visual attributes across different devices 
or modalities. These style variances exacerbate the domain 
shift issues along these cross-domain imaging pathways, 
leading to performance degradation of models in cross-
scenario settings [11, 16]. Taking these inherent properties 
into consideration, in the encoder adaptation stage (fixed 
decoder, adjusted encoder), we decompose the high-level 
semantic representation space learned by the encoder into 
content representation and style representation. We then use 
style matching to enforce style consistency across the overall 
representation distribution between the base branch and the 
two branches based on cropping and rotation. The specific 
process is shown in the Fig 2.

Specifically, for the enhanced sample feature z model 
from the base feature is transformed (same range cropping 
or same angle rotation) to obtain the original feature corre-
sponding to the field of view for the same type of transfor-
mation to constrain the style content consistency.

The process of style and content consistency constraint is 
shown in the following equation:

Fig. 2  The proposed encoder adaptation stage. The decoder is frozen first to improve the robustness and anti-interference capability of the 
encoder by learning styles and content consistency for features from different viewpoints
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where n is the number of samples in a batch, 
zaug = (zcrop, zrot) , and zaugmean is actually the mean of the 
sample of the corresponding augmentation perspective in 
a batch. In the specific implementation, the alignment of 
zaug from different perspectives with the base branch zbase is 
calculated separately.

2.3  Decoder adaptation stage

The high-level semantic representations encoded by the 
encoder may include sub-elements with low confidence 
and incorrect categorization. These errors will be gradually 
amplified by the upsampled decoder, resulting in regionally 
false-positive segmentation results [17, 18]. We can cap-
ture these low-confidence sub-elements by estimating the 
model’s uncertainty on the samples. Then, we can jointly 
constrain the decoder’s reconstruction process through two 

(1)

lossstyle =(

∑n
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aug
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mechanisms: filtering out low-confidence elements and 
enforcing consistency across different augmented perspec-
tives of the same sample. The specific process is shown in 
the Fig 3.

Specifically, we perform Monte-Carlo uncertainty estima-
tion [19] on the prediction probability maps pbase and paug 
from the base perspective and the perspective augmented by 
ColorJitter in the decoder adaptation stage (fixed encoder, 
adjusted decoder) to obtain the uncertainty maps Ubase and 
Uaug in the prediction probability maps and the average prob-
ability prediction maps pbase and paug . Pixels with low con-
fidence in Ubase and Uaug are filtered by a threshold � , and 
the filtered uncertainty maps are used to weight the average 
prediction maps. Finally, knowledge distillation is used to 
align the weighted probability prediction maps.

The uncertainty map is calculated as follows:

where � is a hyperparameter used to adjust the filtering ratio, 
t is the number of Monte-Carlo uncertainty estimation itera-
tions, and pmean

j
 represents the average of the results of t 

iterations.

(3)ΔU =

∑n

i=1

∑t

j=1
(pi,j − pmean

i,j
)2

n

(4)U =

{

ΔU ΔU ≥ �

0 otherwise

Fig. 3  The proposed decoder adaptation stage. At the end of encoder 
self-adaptation, the encoder is frozen and then the decoder is fine-
tuned. The uncertainty of the samples is calculated by Monte-Carlo 
uncertainty estimation, and then the features are filtered by threshold 

filtering and feature weighting to reduce the uncertainty elements 
in the features and ensure that the decoder is optimized in the right 
direction
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The calculation process of consistency distillation is as 
follows:

2.4  Optimization

The optimization process of the proposed method is to first 
perform encoder adaptation, and then decoder adaptation 
based on the adaptation results, which are optimized accord-
ing to lossstage1 and lossstage2 respectively. During the encoder 
adaptation stage, the decoder is frozen, and the adaptation is 
only for the encoder. Similarly, during the decoder adapta-
tion stage, the encoder is frozen, and the adaptation is only 
for the decoder.

where � and � are corresponding weight hyperparameters.

3  Experiment

3.1  Experiment setting

We utilize DeeplabV3+ [20] as our base segmentation model 
for conducting source-free domain adaptation experiments 
and implemented the entire framework using PyTorch. Fol-
lowing the workflow of previous works [11, 14], we divide 
the data into source domain data and target domain data. 
The source domain data is used to pretrain the source model, 
and then the corresponding domain adaptation methods were 
employed to optimize the model on the target domain. We 
used the SGD optimizer and applied basic data augmenta-
tion using Colorjitter. For methods with open-source code, 
we conduct experiments using the provided code, while for 
methods without open-source implementations, we strictly 
follow the descriptions in their papers to construct the cor-
responding pipelines.

3.2  Dataset

We perform fair comparison experiments with current 
state-of-the-art methods on two publicly available medical 
image segmentation datasets. We follow previous methods 

(5)losscon =

∑n

i=1
(pbase

i
∗ Ubase

i
− p

aug

i
∗ U

aug

i
)2

n

(6)lossentropy = −

n
∑

i=1

pi × logpi

(7)lossstage1 = � × lossstyle + (1 − �) × losscontent

(8)lossstage2 = � × losscon + (1 − �) × lossentropy

to segment the datasets [11]. And for each task we perform 
a 3-fold cross-validation.

Cross-device polyp segmentation: The publicly avail-
able colonoscopy datasets EndoScene [21] and ETIS-Larib 
[22] are used for cross-device adaptation. The EndoScene 
dataset includes 912 images from 36 patients. It is collected 
by Olympus Q160AL and Q165L, additional II video pro-
cessors. We set the EndoScene dataset [21] as the source 
domain and follow the standard setting for polyp segmenta-
tion as described by [21] with a ratio of 3:1:1 for the training 
set validation set and test set, respectively. We set the ETIS-
Larib dataset [22] as the target domain, which is composed 
of Pentax 90i series, EPKi 7000 video processor collected 
196 frames. We randomly set the training set to 4:1 with 
the test set. To facilitate training and testing, we resized all 
images to 256x256 dimensions.

Cross-modal brain tumor segmentation: The Multimodal 
Brain Tumor Segmentation Challenge 2018 dataset [23] is 
a dataset providing multimodal 3D brain MRI and ground 
truth segmentation for each case including 4 MRI modalities 
(T1, T1c, T2 and FLAIR). We refer to the pipeline of previ-
ous work [24] to partition the source and target domains 
of the samples in a 1:1 ratio from the data of 285 HGG 
patients on this dataset, and then further randomly partition 
the training and test sets in a 4:1 ratio on the correspond-
ing domains. We perform experiments in both flair and T2 
modals of MRI imaging, where the size of each axial slice 
is adjusted to 192 × 168.

3.3  Comparison with the state‑of‑the‑art methods

To verify the effectiveness of the proposed method, we con-
duct fair comparison experiments with some of the most 
popular methods in the same environment. We compare the 
experimental results with some state-of-the-art methods 
on the cross-device polyp segmentation task and the cross-
modal brain tumor segmentation task, respectively. These 
methods are described below:

• AdaEnt [25]: This method combines domain-invariant 
prior with entropy loss minimization to guide segmenta-
tion. It learns an analogical prior through an auxiliary 
network and integrates it in the overall loss function in 
the form of Kullback–Leibler (KL) divergence.

• AUGCO [26]: This method utilizes pixel-level predic-
tion consistency of the model, automatically generates 
views of each target image, and utilizes model confidence 
to identify reliable pixel predictions. It selectively self-
trains these images.

• SFDA [15]: This method employs a pre-trained model 
from the source domain and progressively updates the 
target model in a self-learning manner. It assigns pseudo-
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labels to each target sample using reliable samples 
selected based on the self-entropy criterion.

• AdaMI [14]: This method minimizes the unlabeled 
entropy loss defined on the target domain data to further 
guide weak labels of target samples and domain-invariant 
prior on segmentation regions.

• SMG [11]: In the generation stage, this method achieves 
inverse-source class images using a pre-trained source 
model and statistical information of mutually Fourier-
transformed. In the adaptation stage, it transfers rela-
tional knowledge using domain distillation loss and 
reduces domain discrepancy through domain contrastive 
loss in a self-supervised paradigm.

In Table 1 the data reported is the performance of these 
methods on the test set of target domain and in Table 2 the 
data is the performance of these methods on the test set 
of source domain. The Source Only method in Table 1 is 
the result obtained by training on the source domain data 
through a single-step transfer learning method. Specifi-
cally, we use ResNet101 pre-trained on ImageNet as ini-
tialization backbone, and then use source domain data for 
fine-tuning the whole model. Similarly, Target Only use 
the ResNet101 pre-trained on ImageNet as initialization 
backbone, and then use target domain data to fine-tuning 
the whole model. As shown in Table 1, the performance 
of Source Only tested on target domain test set can be 
treated as a a pass mark for source domain-free adaptive 
method for this task. While Target Only is trained directly 
on target domain, the performance on target domain test 
set can be regarded as the upper limit of source-free adap-
tation method for this task. In the cross-device polyp seg-
mentation task, the performance of model can generally 
be improved compared to using domain-adaptive methods 
and not using any domain-adaptive methods. For example, 
using methods such as AdaEnt, SFDA, and AdaMI can 
improve the model’s Dice score on target domain to around 

70.12, and these methods can also improve performance 
in a cross-modal brain tumor segmentation task (Dice 
scores 68.31 and 67.64). The limitation of these methods 
to further improve their performance may be that they only 
perform simple adaptation of output layer features of the 
model without in-depth consideration of the consistency 
of different viewpoints of same representation and bias 
caused by the uncertainty of model’s prediction. Whereas 
methods such as AUGCO and SMG consider more inter-
mediate layer features for adaptation, these methods are 
either very sensitive to changes in viewpoints or require 
complex hyperparameters for tuning. In contrast, the Dice 
Score on the tasks of polyp segmentation and brain tumor 
segmentation using the proposed method reaches 73.7 
and 70.61, respectively. This is mainly attributed to the 
fact that the proposed method uses a two-phase adaptive 
approach to learn domain-invariant representations and 
uncertainty-reducing feature factors, respectively. These 
operations allow the model to keep the model learning dis-
criminative and robust features in the presence of complex 

Table 1  Compare with State-of-The-Art methods on the target 
domain test set. Source Only indicates the performance of the source 
model trained on the source domain and tested on the target domain 

(without any domain adaptation) Target Only represents the perfor-
mance of the source model trained on the target domain and tested on 
the target domain

Method Cross-device polyp segmentation Cross-modal brain tumor segmentation

Dice Specificity Sensitivity Acc Miou Dice Specificity Sensitivity Acc Miou

Source Only 68.03 98.94 74.26 96.12 59.22 62.75 98.25 74.26 94.19 56.47
Target Only 79.32 99.53 82.97 99.04 76.81 77.46 99.76 82.9 99.13 73.2
AdaEnt [25] 69.84 99.37 75.9 97.09 61.43 66.13 99.19 72.66 95.56 56.89
AUGCO [26] 69.2 98.88 75.71 97.14 61.2 66.4 98.7 72.11 95.74 57.21
SFDA [15] 70.12 98.9 77.65 98.07 61.21 68.31 98.57 76.41 97.01 59.6
AdaMI [14] 70.58 98.72 76.11 97.92 61.87 67.64 98.8 75.56 96.22 58.4
SMG [11] 71.66 98.84 78.8 97.36 62.13 68.23 99.37 76.12 97.12 59.24
ours 73.7 98.91 80.74 98.28 64.4 70.61 99.5 78.32 98.04 61.42

Table 2  Compare with State-of-The-Art methods on the source 
domain test set. The Source Model represents the performance of the 
source model on the source domain test set

Method Cross-device polyp seg-
mentation

Cross-modal brain 
tumor segmenta-
tion

Dice Miou Dice Miou

Source Model 87.04 78.82 85.67 76.31
AdaEnt [25] 83.17 73.97 80.93 70.3
AUGCO [26] 85.8 76.9 83.82 73.61
SFDA [15] 85.1 76.16 83.12 72.84
AdaMI [14] 83.41 74.1 81.2 71.02
SMG [11] 85.24 76.33 82.84 72.35
ours 86.16 77.42 84.26 74.9
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changes, while selecting features with higher confidence 
for final decision making and segmentation.

At the same time, to evaluate the persistence of the pro-
posed method in the source domain more objectively, we 
also report the performance of the adaptation model on the 
source domain test set to prove that the knowledge learned 
by the proposed method is retention-addition rather than 
replacement-forgetting. It can be seen from the Table 2 that 
after the model completes the adaptation process, the model 
shows different degrees of performance degradation on the 
test set of the source domain, for example, AdaMI, AdaEnt 
and other methods have Dice Scores of only 83.41 and 
83.17 (87.04 for the source model) in the adaptation model. 
Although these methods achieve performance improvement 
on the target domain after adaptation, they show significant 
performance degradation on the source domain, which 
means that these methods forget the rich experience of pre-
vious learning after learning new knowledge, and some ben-
eficial weight parameters are replaced with new knowledge. 
This phenomenon can also be interpreted as the overfitting 
of the model to the target domain sample. In contrast, using 
proposed method the model can almost maintain its original 
advantage in the source domain (Dice Score 86.16) while 
achieving the best performance in the target domain (Dice 
Score 73.7 and 70.61). This shows that the features learned 
by proposed method are more generalized and robust than 
others.

3.4  Ablation experiments

We perform a series of ablation experiments to verify some 
other details in the overall framework.

Loss function curves: We plot the loss function curves 
of the proposed method in the encoder and decoder adapta-
tion phases. As shown in Fig. 4, since the entire network is 
initialized using the parameters of the source model, which 
means that the network already has a certain amount of 
discriminative ability, the loss function starts to decrease 
from a relatively low point at the beginning of the encoder 
adaptation phase. After about 100 epochs of training, the 
model converges in the encoder adaptation phase. At the 
beginning of the decoder adaptation phase, the loss starts to 
decrease from around 0.31, and the loss converges to around 
0.26 after 50 epochs of training. These results validate that 
combining the consistency and uncertainty estimates in the 
two complex augmented viewpoint features can effectively 
improve the performance of the model.

Backbone: To explore the robustness of the proposed 
method and the influence of different architectures on the 
model, we conduct ablation experiments on some popu-
lar backbone networks [27–32]. The experiment uses the 
same configuration, replacing only the backbone network 
portion of the model. It can be seen from the Fig. 5 that 

backbones such as Shufflenet [29] and InceptionV3 [31] 
perform the worst, which may be due to the complexity 
of the design of these architectures, which leads to their 
poor performance in some special scenarios, compared to 
simpler architectures such as EfficientNet [30] and ResNet 
[27]. After comprehensive consideration, we finally use 
ResNet as the basic feature extractor.

Ablation of Monte-Carlo uncertainty maps: We perform 
ablation experiments on decoder adaptation stage to dem-
onstrate the necessity of Monte-Carlo uncertainty maps. 
The proposed decoder adaptation stage computes Monte-
Carlo uncertainty map for the original and enhanced views 
separately, and then unifies high-confidence pixel compu-
tation consistency among different views in uncertainty 
map by distillation learning. From Table 4, it can be seen 
that using Monte-Carlo uncertainty map (Monte-Carlo) 
has a significant advantage over not using Monte-Carlo 
(w/o Monte-Carlo) in both Dice Score and Miou. These 
results validate the effectiveness of Monte-Carlo uncer-
tainty map in this passive-domain adaptive scenario for 
medical imaging.

Loss-function weighted proportion: We design experi-
ments to explore the proportions between different loss 
functions. An excessively large value of � will cause the 
model to pay too much attention to the style of the sample 
and ignore the content modeling. � that is too small causes 
the model to pay too much attention to the content of the 
sample and neglect to generalize the features of different 
styles. Similarly, � is used to regulate the degree of optimi-
zation between consistency learning and entropy learning. 
The results are shown in the Fig. 6, and after comprehensive 

Table 3  Ablation experiments contributed by each module. Baseline 
is the effect of the basic model without any adaptive adjustment on 
the target domain test set

Method Cross-device 
polyp segmenta-
tion

Cross-modal 
brain tumor 
segmentation

Dice Miou Dice Miou

Baseline 68.03 59.22 62.75 56.47
Baseline+lossstage1 70.78 61.61 66.27 58.33
Baseline+lossstage1+lossstage2 73.7 64.42 70.61 61.42

Table 4  The ablation of Monte-Carlo uncertainty maps

Method Cross-device  polyp 
segmentation

Cross-modal 
brain tumor 
segmentation

w/o Monte-Carlo 71.64 62.87 67.32 59.72
Monte-Carlo 73.1 63.56 70.09 61.11
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consideration, we set the values of a and beta to 0.7 and 0.9, 
respectively.

Contribution of each module: Table 3 reports the experi-
mental results of the proposed method decoupling, verifying 
that the proposed components work together and benefit the 
overall framework. It can be seen from the table that the pro-
posed two-stage domain adaptation fine-tuning is carried out 
sequentially on the basis of baseline, and the performance of 
the model is significantly improved (Dice Score from 68.03 
to 73.7, 62.75 to 70.61).

4  Conclusion

This letter summarizes the limitations of domain feature 
alignment methods in adaptation learning and proposes a 
new two-stage additive SFDA framework to address these 

Fig. 4  Loss function decline 
curve. The encoder adaptation 
phase and the decoder adapta-
tion phase are conducted in 100 
epoch and 50 epoch, respec-
tively, and the whole training is 
conducted in two phases

Fig. 5  Comparison of different backbones. All experiments are per-
formed using the same configuration changing only the type of back-
bone

Fig. 6  Weighted ratio of differ-
ent losses
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issues. The proposed method is extensively evaluated on 
two medical image segmentation tasks: cross-device polyp 
segmentation adaptation and cross-modal brain tumor seg-
mentation adaptation, achieving significant results that 
validate the effectiveness and potential applications of the 
framework. Overall, this work provides valuable explo-
ration for achieving additive learning on the target and 
source domains in the absence of source data and offers 
new ideas and methods for adaptation research in the field 
of medical image segmentation.
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