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Abstract
Multiclass classification of brain tumors from magnetic resonance (MR) images is challenging due to high inter-class simi-
larities. To this end, convolution neural networks (CNN) have been widely adopted in recent studies. However, conventional 
CNN architectures fail to capture the small lesion patterns of brain tumors. To tackle this issue, in this paper, we propose a 
global transformer network dubbed GT-Net for multiclass brain tumor classification. The GT-Net mainly comprises a global 
transformer module (GTM), which is introduced on the top of a backbone network. A generalized self-attention block (GSB) 
is proposed to capture the feature inter-dependencies not only across spatial dimension but also channel dimension, thereby 
facilitating the extraction of the detailed tumor lesion information while ignoring less important information. Further, mul-
tiple GSB heads are used in GTM to leverage global feature dependencies. We evaluate our GT-Net on a benchmark dataset 
by adopting several backbone networks, and the results demonstrate the effectiveness of GTM. Further, comparison with 
state-of-the-art methods validates the superiority of our model.
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1 Introduction

Brain tumor is broadly witnessed as the most dangerous can-
cer among different cancer types across the globe due to its 
fast-growing nature. It is generally found in individuals of 
all ages, including children, and has the lowest survival rate 
[1]. Therefore, the accurate detection of the brain tumor at 
an early stage is highly indispensable for timely treatment 
and better patient care. Based on their shape and location, 

brain tumors can be categorized into meningioma, glioma, 
and pituitary. However, detecting such tumors and their 
types is more challenging due to their similar structures. 
Magnetic resonance imaging (MRI) is the most commonly 
used medical imaging technique by physicians and radiolo-
gists to diagnose brain and other nervous system disorders 
[2, 3]. This is primarily due to its non-invasive nature and 
ability to produce clear images of brain tissues. However, 
the manual interpretation of brain MR images at huge vol-
umes is tedious, error-prone, and highly dependent on the 
skill of radiologists. Therefore, it is of utmost necessity to 
design automated computer-aided diagnosis (CAD) meth-
ods to assist doctors for fast and correct detection of brain 
tumors. The MR images of various types of brain tumors are 
depicted in Fig. 1.

Considering the above issues, researchers have built 
several CAD systems for brain tumor detection over the 
past decade. The CAD systems [1, 4–6] proposed earlier 
were mainly designed based on the traditional multi-stage 
machine learning structure, in which the typical stages 
adopted are preprocessing, feature engineering, and clas-
sification. With the increase in several sophisticated fea-
ture extraction techniques and classifiers, selecting the best 
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techniques for these CAD systems becomes increasingly 
challenging.

Recent efforts have been directed towards using convo-
lution neural networks (CNNs) for multiclass brain tumor 
classification due to their ability to learn high-level feature 
representations and success in many vision tasks, including 
medical image analysis. Paul et al. [7] evaluated the effec-
tiveness of fully connected networks and CNN for brain 
tumor classification. Asfhar et al. [2] designed a capsule 
network (CapsNet) for the classification of brain tumors. 
Later, they developed a modified CapsNet [8], which fed not 
only the brain MR images but also tumor coarse boundaries 
as input for performance improvement. In [9], a block-wise 
fine-tuning (BFT) approach was adopted with VGG19 to 
classify brain tumors. In [10], a deep neural network was 
trained as the discriminator in the generative adversarial net-
work (GAN) model, and the pre-trained discriminator model 
was later utilized to classify brain tumors. In [11], a boosted 
capsule network (BoostCaps) was proposed to mitigate the 
issues of modified CapsNet [8]. Later, Bodapati et al. [12] 
blended the features captured from Xception and Inception-
ResNetV2 with the help of average pooling operation and 
named their architecture a two-channel deep network. In a 
recent work, a border collie firefly algorithm (BCFA) based 
GAN [13] was presented to classify tumor severity levels.

Despite the fact that the CNN-based approaches 
achieved relatively better classification performance, 
conventional CNNs may overlook capturing the subtle 
size variations of brain tumors within the same class and 
among their types. Further, they face difficulty in cap-
turing global dependency, which makes their practical 
clinical application more challenging. In recent studies, 
attention mechanisms have been used as a vital compo-
nent in CNN architectures to solve several computer vision 
tasks, allowing the model to focus on vital features while 
ignoring unnecessary features, thereby improving perfor-
mance [14–16]. However, to our knowledge, only limited 
studies on these mechanisms have yet been presented for 
classifying brain tumors  [17]. In [18], a model called 
MSENet was proposed which comprised of squeeze and 
excitation blocks. In [19], channel-shuffle dual attention 

block (CSDAB) was coupled with backbone networks to 
achieve improved classification performance. While in 
[20], a global attention-based residual multiscale CNN 
named ARM-Net was introduced to classify brain tumors. 
Recently, vision transformer (ViT) has gained tremen-
dous interest from the vision community due to its abil-
ity to capture wide-range feature interdependencies via 
self-attention [21]. Inspired by its success, in this paper, 
a generalized self-attention block (GSB) is proposed to 
capture the detailed tumor lesion information while ignor-
ing unimportant information. While ViT models are more 
effective in modeling global information, they lack the 
ability to capture local information, which CNNs do effi-
ciently [22, 23]. Hence, to address these issues, we pro-
pose a transformer-based network using GSB that takes the 
benefits of both transformer and CNN, thereby modeling 
both local and global information within the brain MR 
image.

The primary contributions of this paper are enumerated 
as follows:

• We propose a global transformer network called GT-Net 
for multiclass brain tumor classification, which integrates 
a novel transformer module with a pre-trained CNN.

• A global transformer module (GTM) consisting of 
multiple GSB heads is proposed to adequately exploit 
the wide-range feature dependencies among the lesion 
regions. The GSB is introduced to establish global 
dependencies along both spatial and channel dimensions.

• We evaluate GT-Net on a publicly available dataset and 
adopt several pre-trained CNN models as backbones to 
verify the efficacy of GTM. Additionally, we perform 
a comparative analysis with contemporary attention 
mechanisms and state-of-the-art multiclass brain tumor 
classification approaches.

The remainder of the paper is structured as follows. Sec-
tion 2 describes the proposed GT-Net model and its compo-
nents in detail. The dataset description, experimental results, 
and comparisons are presented in Sect. 3. Eventually, the 
conclusions are drawn in Sect. 4.

Fig. 1  Illustration of sample 
MR images of different brain 
tumor types

(a) Glioma (b) Meningioma (c) Pituitary
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2  Proposed method

The structure of the proposed GT-Net is shown in Fig. 2, 
which has three key components: a backbone network, a 
GTM, and a classifier. The backbone network assists in 
deriving abstracted feature representations from the input 
MR images. The GTM includes different GSB heads to learn 
global dependencies across spatial and channel dimensions, 
enabling the extraction of more detailed and category-spe-
cific features. The classifier comprises a pooling layer fol-
lowed by a softmax-activated fully connected (FC) layer 
to classify multiclass brain tumors. The following section 
provides a detailed description of the GT-Net architecture 
and its essential parts.

2.1  Backbone

The input to the GT-Net is a brain MR image, which is 
initially fed to a backbone network, i.e., a CNN architec-
ture pre-trained on ImageNet, facilitating the generation of 
abstracted feature maps F ∈ ℝ

H×W×C , where, C denotes the 
number of channels, and H and W indicate spatial dimen-
sions. To acquire hierarchical feature representations, we 
extract the feature maps from the last convolutional layer 
of the backbone.

2.2  Proposed global transformer module (GTM)

The GTM consists of multiple GSB heads to explore the long-
range global feature relationships from MR images and is 
designed based on the structure of transformer, but it is struc-
turally different. The traditional ViT works on image patches, 
and the multi-head attention in this case is employed on the 
projected input vector representations. On the other hand, the 
GSB is applied over the feature maps obtained from a back-
bone without flattening the feature maps, thereby preserving 
local contextual information. The GTM takes the feature map 
F ∈ ℝ

H×W×C and is fed to GSB heads, resulting in different 

attention feature maps which are fused later to form the output 
of the block.

2.2.1  Generalized self‑attention block (GSB)

The proposed GSB aims at capturing detailed brain lesion 
information while suppressing the useless information. The 
structure of GSB as shown in Fig. 3, is inspired by self-atten-
tion [15] and GCNet [16]. But different from them, it estab-
lishes global dependencies along spatial and channel dimen-
sion simultaneously. The spatial-wise attention captures the 
global feature dependencies along spatial positions, whereas 
channel-wise attention captures global channel interactions 
and assesses the importance of each channel.

As shown in the figure, we take the high-level feature 
map F ∈ ℝ

H×W×C as input to the GSB, resulting in refined 
feature maps Fgs ∈ ℝ

H×W×C . Similar to transformer, we use 
three functions k , q , and v to transform the feature map into 
key, query, and value, respectively. We implement the func-
tion q(F) using 1 × 1 convolution with C� = C∕8 channels and 
global average pooling (GAP) operations to obtain a vector 
q(F) ∈ ℝ

1×C� . While functions k and v are implemented using 
1 × 1 convolution and reshape operations without GAP, result-
ing in maps k(F) ∈ ℝ

HW×C� and v(F) ∈ ℝ
HW×C� , respectively. 

Then, we compute the matrix cross product between q and k , 
and apply a softmax activation thereafter to generate spatial 
attention weights as,

where, ⊗ indicates the matrix cross-product, Φ is the soft-
max activation and T in the superscript denotes the matrix 
transpose operation. Next, we obtain the spatial attention 
feature map Fsp ∈ ℝ

H×W×C by computing element-wise mul-
tiplication between F′ and F as,

where, ⊙ represents the element-wise multiplication 
operation.

(1)F� = Φ
(

q(F)⊗ k(F)T
)

(2)Fsp = Reshape(F
�

)⊙ F

Meningioma
Glioma
Pituitary

 FC
 

    G
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Backbone Global transformer module (GTM) Classifier

H  W  C H  W  C
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block (GSB)
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Fig. 2  Pipeline of the proposed GT-Net for multiclass brain tumor classification
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Similarly, we perform matrix cross-product between F′ and 
v(F) to compute channel attention weights which is further 
fed to a 1 × 1 convolution and a sigmoid activation to increase 
the channels from C′ to C (also called linear embedding). This 
global transform procedure is mathematically expressed as,

The channel-wise attention maps Fch ∈ ℝ
H×W×C are obtained 

as,

Finally, we aggregate the output feature maps Fsp and Fch 
using their weighted sum to acquire the refined attention 
feature map Fgs ∈ ℝ

H×W×C and is defined as,

where W1 and W2 are the trainable scalar parameters. In a 
nutshell, GSB enables exploring both channel-wise and 
spatial-wise feature dependencies simultaneously from MR 
images, thereby, enhancing the feature representations.

2.2.2  Feature fusion strategy

We combine the feature maps generated from the GSB heads 
via concatenation, which is followed by a 1 × 1 convolution 

(3)F
��

= 𝜎
(

Conv(F�
⊗ v(F))

)

(4)Fch = F
��

⊙ F

(5)Fgs = W1Fsp +W2Fch

to obtain the final output of GTM Ftm ∈ ℝ
H×W×C . The Ftm is 

expressed mathematically as,

where h represents the number of GSB heads. It is worth 
noting that the value of h (i.e., h = 4 ) has been chosen 
empirically in this study.

2.3  Classifier

The Ftm is finally fed to a classifier, in which we employ a 
trainable spatial pooling operation called generalized-mean 
(GeM) [24] pooling and a softmax-activated FC layer with 
three nodes to classify tumors into three categories.

3  Experiments and results

In this section, we present the implementation details, exper-
imental results, and a description on the dataset used. We 
compare the potential of proposed GTM with contemporary 
attention mechanisms. A comparative analysis with state-
of-the-art methods is also provided. Further, we carry out 
ablation studies to verify the significance of each individual 
component in the proposed GT-Net model.

(6)Ftm = Concat
[

F1
gs
,F2

gs
,… ,Fh

gs

]

ReLU

H X W X C

  H X W X C
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Fig. 3  Structure of the proposed GSB
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3.1  Dataset used and implementation details

We validate our approach on an openly available brain tumor 
dataset comprises of 3064 T1-weighted contrast-enhanced 
MR images from three classes  [4, 25]. The dataset has 1426, 
708, and 930 2D MR images belonging to glioma, men-
ingioma, and pituitary tumor classes, respectively, that are 
obtained from 233 patients. The images are of resolution 
512 × 512 pixels and are available in different views such as 
axial, coronal, and sagittal view.

For fair comparison, we follow a data split strategy simi-
lar to existing studies [2, 4, 7–9, 12, 19]. A five-fold cross-
validation (CV) setting has been adopted, ensuring the train 
and test set at the same time do not contain the samples 
from a single patient. The input images are scaled 224×224. 
Additionally, we employ various transformations such as 
random rotations, horizontal split, and vertical split for data 
augmentation. Each model is trained for 50 epochs. We use 
Adam optimizer and a cross-entropy loss for training pur-
pose. During learning, the batch size and initial learning 
rate are set to 36 and 0.0002, respectively. The models are 
implemented on Keras with Tensorflow backend.

3.2  Results

To demonstrate the effectiveness of our GT-Net, several 
ImageNet pre-trained CNN models such as ResNet-50 
[27], SqueezeNet [28], DenseNet-121 [29], MobileNet 
[30], and EfficientNet B0 [31], are considered as back-
bones. The size of the abstracted feature maps obtained 
from these models are 7 × 7 × 2048 , 13 × 13 × 512 , 
7 × 7 × 1024 , 7 × 7 × 1024 , and 7 × 7 × 1280 , respectively. 
These feature maps are then passed to the transformer 
block. The results of each model with and without trans-
former block are shown in Table 1. It is clearly evident 
that the backbone network attached with the proposed 
GTM significantly improves the classification perfor-
mance. It is important to note that we fine-tuned all layers 
of the backbone networks using the target dataset to yield 

higher performance. To further test the potential of the 
proposed transformer block, it is compared with contem-
porary attention mechanisms such as channel split dual 
attention block (CSDAB) [19], global context (GC) [16], 
convolutional block attention module (CBAM) [14], self-
attention [15], and squeeze and excitation (SE) [26] under 
similar experimental setup. Table 1 shows that the GTM 
performs better than other attention mechanisms with all 
backbone networks. It can be noticed that the CSDAB 
achieves a comparable performance. Further, the pro-
posed GTM improves the average classification accuracy 
by 0.64%, 0.79%, 1.04%, 0.6%, and 0.9% with ResNet-50, 
SqueezeNet, DenseNet-121, MobileNet, and EfficientNet 
B0, respectively when compared with conventional self-
attention mechanism. The DenseNet-121 outperforms 
other pre-trained models, i.e., it obtains a higher classifi-
cation accuracy of 97.11% . The DenseNet-121 with GTM 
is termed as GT-Net in our study. It is worth noting that 
the reported results are the mean values of the 5-fold CV. 
The confusion matrices of the proposed GT-Net for each 
fold are depicted in Fig. 4. As shown, the GT-Net correctly 
classifies most of the samples from three tumor classes, 
while considerably fewer samples are misclassified even 
though the dataset is not balanced. Also, it is observed 
that the sensitivity of the glioma class is higher than that 
of other classes.

For better understanding of the interpretability of our 
GT-Net model, heatmaps are generated using Grad-CAM++ 
[32] as shown in Fig. 5. It can be clearly seen that the model 
with GTM precisely locates the lesion regions while the 
model with the best performing attention block (CSDAB) 
and the model without attention detects unrelated regions.

The heatmaps generated for a few incorrect predictions 
of the GT-Net model are shown in Fig. 6. These heatmaps 
depict the discriminative regions highlighted by the pro-
posed model. It can be observed that our model focuses on 
other regions instead of the tumor regions in these cases, 
interpreting the reason behind the misclassification. This 
is mainly due to the presence of high structural similar-
ity with other regions and high intra-category differences.

Table 1  Classification results 
comparison with various 
backbones and attention blocks

Bold values signify the best results

Attention Accuracy (%)

ResNet-50 SqueezeNet DenseNet-121 MobileNet EfficientNet B0

Ours GTM 95.81 ± 1.61 94.21±1.46 97.11 ± 0.75 95.12 ± 2.14 93.26 ± 1.27
CSDAB [19] 95.79 ± 1.02 93.49 ± 2.47 96.65 ± 0.94 94.82 ± 1.37 92.66 ± 1.79
Self-attention [15] 95.17 ± 1.97 93.42 ± 1.88 96.07 ± 1.47 94.52 ± 1.82 92.36 ± 1.81
GC [16] 95.28 ± 2.16 93.47 ± 2.59 96.44 ± 0.75 94.41 ± 1.64 92.69 ± 1.65
CBAM [14] 95.18 ± 1.55 93.24 ± 2.08 96.27 ± 0.85 94.77 ± 0.91 92.38 ± 1.88
SE [26] 95.14 ± 2.43 93.43 ± 1.20 96.25 ± 0.80 94.18 ± 1.87 92.51 ± 0.92
None 94.91 ± 2.16 92.98 ± 2.59 95.95 ± 0.86 93.66 ± 2.16 92.09 ± 1.58
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3.2.1  Ablation studies

Ablation studies are performed to analyze the effect of 
each component in our model. We investigate the effect of 

channel-wise attention (CWA), spatial-wise attention (SWA) 
and their combination in the proposed GSB. Further, we 
verify the effect of GAP and GeM pooling in the classifica-
tion layer of GT-Net. Table 2 demonstrates that the backbone 

(a) Fold 1 (b) Fold 2 (c) Fold 3

(d) Fold 4 (e) Fold 5

Fig. 4  Confusion matrices of the proposed GT-Net for five different folds

Fig. 5  Heatmaps obtained by 
DenseNet-121 with CSDAB 
and proposed GTM using Grad-
CAM++
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model with only CWA or SWA reduces the classification 
performance, while the backbone with both CWA and SWA 
leads to an improved performance. Also, it can be observed 
that the GeM pooling is performing better than GAP in 
terms of accuracy and F1-score. Figure 7 depicts the heat-
maps obtained from various ablation experiments.

3.2.2  Comparison with ViT models

In this experiment, we compare the performance of 
GT-Net with traditional ViT [21] and a convolutional 

transformer model, namely, compact convolutional trans-
former (CCT) [22]. The comparison results are shown in 
Table 3. It is worth mentioning here that a variant of ViT, 
ViT 12/16, has been used for comparison with GT-Net, 
which includes 12 transformer encoder layers, and uses 
a 16 × 16 patch size. It is evident from the table that the 
GT-Net yields higher performance than other ViT mod-
els. This can be majorly attributed to the establishment of 
GTM in the proposed network.

3.2.3  Comparison with state‑of‑the‑art methods

We perform a comparison against the state-of-the-
art CNN-based multiclass brain tumor classification 
approaches on the same dataset and the results are shown 
in Table  4. It can be observed that our proposed GT-
Net model achieves superior performance than existing 
CNN-based methods. Also, it achieves better classifica-
tion accuracy than the attention-based methods such as 
MSENet [18] and CDANet [19]. This is due to the fact 
that the proposed transformer block facilitates highlight-
ing more detailed and discriminative lesion information in 
the MR images. It is noteworthy that compared existing 
approaches have been validated under similar data split 
strategy and their results are taken directly from the origi-
nal papers.

             Meningioma                           Glioma                              Pituitary

Fig. 6  Heatmaps generated for incorrect classifications using Grad-
CAM++

CWA SWA   M
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a           
G
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a

Pituitary
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Fig. 7  Heatmaps obtained through ablation experiments using Grad-CAM++
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4  Conclusion

In this paper, we have introduced a global transformer 
network called GT-Net for multiclass brain tumor classi-
fication, which supports end-to-end learning. Specifically, 
we present a transformer block on the top of a backbone 
model which consists of multiple GSB heads to compre-
hensively capture the global feature dependencies. The 
GSB helps to exploit more detailed lesion information 
by learning both channel-wise and spatial-wise attention 
weights. Experiments and comparisons on a public dataset 

confirm the effectiveness of GT-Net compared to other 
state-of-the-art approaches. Further, the GTM achieves 
improved performance when compared with popular atten-
tion mechanisms. In future, the performance of GT-Net 
can further be tested using a large and diverse datasets. 
Also, we intend to explore the application of the proposed 
GTM in other vision tasks.
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