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Abstract
Monocular depth estimation from camera images is very important for surrounding scene evaluation in many technical fields 
from automotive to medicine. However, traditional triangulation methods using stereo cameras or multiple views with the 
assumption of a rigid environment are not applicable for endoscopic domains. Particularly in cystoscopies it is not possible 
to produce ground truth depth information to directly train machine learning algorithms for using a monocular image directly 
for depth prediction. This work considers first creating a synthetic cystoscopic environment for initial encoding of depth 
information from synthetically rendered images. Next, the task of predicting pixel-wise depth values for real images is con-
strained to a domain adaption between the synthetic and real image domains. This adaptation is done through added gated 
residual blocks in order to simplify the network task and maintain training stability during adversarial training. Training is 
done on an internally collected cystoscopy dataset from human patients. The results after training demonstrate the ability to 
predict reasonable depth estimations from actual cystoscopic videos and added stability from using gated residual blocks is 
shown to prevent mode collapse during adversarial training.

Keywords  Neural networks · Domain adaptation · Depth estimation · Endoscopy · Synthetic data

1  Introduction

Depth, or distance, information from a sensor is paramount 
for localization and mapping algorithms, especially when 
using cameras as the main sensor modality. For this reason, 

current robotics applications combine LIDAR, or similar, 
sensors to create what is known as an RGB-D (color and 
depth) camera image. This provides a dense (or at least par-
tially dense) pixel-wise depth map for each given matching 
image. By using the camera’s intrinsic parameters, a point 
cloud of the scene can be re-projected and, through addi-
tional algorithms, the extrinsic position of the camera can Peter Somers, Simon Holdenried-Krafft, and JohannesZahn have 
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be reconstructed while simultaneously mapping the environ-
ment. It is also possible to do this without the direct depth 
information by finding matching points in sequential images 
and using triangulation methods to accomplish the same task 
with more sparse data points.

When operating inside the human body, however, these 
methods are not as feasible and particularly during cysto-
scopic operations where the camera and instruments must fit 
through the urethra to reach the bladder, inclusion of depth 
measuring sensors like LIDAR are out of the question. These 
restrictions also make it more difficult for the physician to 
ensure that the entire bladder has been seen giving rise for 
the need of methods to map the bladder to ensure full vis-
ual coverage. While using stereo cameras provides a more 
robust triangulation-based depth reconstruction, for the same 
reason of restricted space this method is not feasible and 
using a monocular camera for depth estimation is unavoid-
able to obtain the same localization and mapping goals. An 
additional problem in the cystoscopic environment is that 
the scene may change fast enough that also using sequential 
image frames for pseudo-triangulation is not feasible due 
to difficulties in matching features between images. Some 
works have proposed ideas to circumvent these limitations, 
for example [1], but they require additional information, 
such as an underlying model, that is not always obtainable. 
For these reasons, monocular depth estimation remains a hot 
topic of research and when using a single image, one method 
has come to stand out: image domain adaptation.

This work leverages the idea that instead of measuring, 
the entire domain can be simulated, in this case a synthetic 
cystoscopic environment, including the desired output infor-
mation of depth from the camera. This can be used to com-
pensate for the missing information in a second domain: the 
real environment. Adaptation between different domains is 
generally possible when they are similar enough that there 
exists a feasible transfer function from one to the other. Gen-
erative Adversarial Networks (GANs) have shown this to be 
true by learning this transfer function using neural networks. 
Under the assumption that the synthetic domain can be con-
structed accurately enough to form a finite information gap 
from the real domain, this work aims to find the associated 
transfer function.

With this in mind, the training method proposed in [2] is 
used as a foundation and modified. The approach uses adver-
sarial training to retrain an encoder from a encoder-decoder 
network such that it produces similar latent features from 
real images as from the synthetic images it was originally 
trained on. The encoder in this work is modified so that the 
domain adaptation occurs only in added residual blocks, 
not through retraining the entire encoder. This approach of 
using residual blocks for the additional learning was also 
taken in [3] for transfer learning to improve over compara-
tive GAN approaches, but in this work it is directly applied 

to a GAN approach. In addition, learnable gates are included 
in the added layers to bring additional stability during the 
adversarial training by smoothly fading in domain specific 
features.

1.1 � Related work

Depth estimation from images is not a new field of study. 
Techniques such as structure from motion have been around 
since at least the 1970 s [4] and, more recently, augmented 
reality requires real-time estimation of this information. 
Until recently, the approaches using only camera images all 
relied upon using corresponding points between consecutive 
images. One state-of-the-art open source tool COLMAP [5] 
excels at this. Machine learning has recently been used to 
enhance results of these methods for more complete and 
continuous depth maps [6]. The downside to all of these 
existing techniques, however, is that they are not universal.

Domains that change quickly or lack distinct features 
between frames, such as endoscopic videos, render exist-
ing methods unusable. Therefore, newer techniques focus 
on methods to make this prediction without the need for 
distinct feature recognition. These techniques begin with 
a supervised approach, in which the problem can be seen 
as a regression problem given a color image as input and 
a ground truth depth map as output. Two frequently used 
neural network architectures that do this are DispNet [7] and 
fully convolutional residual networks (FCRN) [8]. One non-
negligible difficulty with formulating the problem this way 
is the reliance on ground truth data. Unfortunately, the situ-
ations where only a camera is desired for extracting dense 
depth information are ones in which also using reliable dis-
tance sensors for ground truth is not feasible.

This dilemma led to more generalizable approaches 
capable of using synthesized data for supervised train-
ing and using domain adaptation to apply the results to 
real images. As already mentioned, AdaDepth [9] was the 
first to effectively do this and demonstrates the capability 
on various datasets of different domains. Shortly there-
after came works in the areas of colonoscopy [10] and 
bronchoscopy [2], where depth predictions in endoscopic 
surgeries could now be done. Both of these works used 
simplified organ reconstructions and phantom scans to cre-
ate synthetic data with ground truth depth for initial neural 
network training before performing a domain adaptation to 
the real images. While these environments also suffer from 
the aforementioned deformability and working space prob-
lems, particularly the lungs and airways have the advan-
tage that the general shape and images between different 
patients does not vary to the same extent as for the bladder. 
The bladder is one of the most deformable organs in the 
body and during surgeries, the fill level is continuously 
changed to allow for different views or cutting actions 
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making the scene very dynamic. However, this does not 
mean that the approaches cannot be applied to the bladder, 
it has just not yet (to the authors’ knowledge) been done.

The contributions of this work can be summarized as

•	 the creation of a synthetic cystoscopic environment for 
rendering images and corresponding depth maps,

•	 the use of a modified encoder structure for more stabi-
lized GAN training during domain adaptation,

•	 and evaluation of the prior two contributions on real, 
clinical endoscopic video data.

2 � Materials and methods

The training takes place in two parts. First, a neural net-
work is trained on synthetic data to learn the mapping 
from synthetic images to depth maps and in the second 
step, gated residual blocks for domain transfer are inserted 
into the encoder and adversarial training is performed to 
adapt the encoder for real cystoscopic images. This sec-
tion will outline the developed network structure, the data 
generation, and training methods used to accomplish this. 
First, the structure for depth estimation from synthetic 
images using an encoder-decoder network is explained. 
Following the synthetic training, the structure is modified 
for domain transfer from real to synthetic latent features 
through a modification of the encoder where gated residual 
blocks are inserted.

2.1 � Synthetic domain network structure

The overall depth prediction network structure follows the 
U-Net in [2] with differences mainly in the decoder and 
the activation functions. Instead of simple nearest neigh-
bor upsampling, the ICNR initialized sub-pixel convolution 
approach [11] is used. On real images this step drastically 
reduced checkerboard artifacts (from empirical testing). 
The resulting network (Figure 2) is the backbone for learn-
ing depth estimation from synthetically generated images. 
As seen in Fig. 1, the decoder is guided to predict depth at 
multiple levels during training. This encourages the latent 
features to include information about the depth. Once this 
network is trained with a standard supervised regression 
approach, the modifications outlined in the next section are 
made to handle the domain transfer learning for real cystos-
copy images.

2.2 � Domain transfer network structure

While direct application of the synthetic depth prediction 
network on real images without any network modifications 
or re-training produces plausible depth maps, these are still 
subject to inaccuracy due to the domain shift (see third 
column in Fig. 10). This domain shift is handled through 
a domain transfer learned through generative adversarial 
training between a new encoder and multiple discrimina-
tors. However, rather than retrain the entire encoder, as is 
done in [2], which can lead to more unstable GAN training, a 
gated transfer learning approach is implemented with added 

Fig. 1   Synthetic data depth prediction network. Solid red arrows indicate the points at which the loss is calculated and include upsampling as 
needed to match the pixel dimensions of the ground truth depth image D (shown here in color for illustration purposes only)
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residual blocks at each encoder level. These blocks are ini-
tially disabled as GAN training is started and the gates are 
slowly opened with a learned coefficient �

�
 for each encoder 

level � using

where R and O are the outputs of the added ResNet block 
and the resulting gated output, respectively. This follows the 
same method as in [12] using the idea of ReZero from [13]. 
The intent here is that the residual blocks will learn how 
to correct for the domain shift and the rest of the already 
trained encoder is left frozen to maintain the image features 
that contain the depth information. The modified encoder 
with residual blocks is shown in Fig. 2.

2.3 � Synthetic domain data and training

Here, the methods for the first step of training depth estima-
tion within the synthetic cystoscopy domain are outlined.

2.3.1 � Data generation

The tool of choice for rendering images of the synthetic envi-
ronment is extremely important and directly influences the 
quality of the results. The generated images should be as real 
as possible. The tool used in this work to create the syntheti-
cally rendered images is the 3D rendering software Blender 

(1)O
�
= R

�
◦ tan �

�
,

[14], which also includes a python interface for automated 
generation of different scenes and camera positions.

Realism in synthetic images can be divided into three 
categories: photo, physical, and functional realism [15]. The 
first refers to whether a rendered image produces the same 
visual response as a real scene. Physical realism is achieved 
when a synthetic image produces the same visual stimulation 
as a real scene. This is harder to achieve than photo realism 
and requires the render engine to accurately and realisti-
cally calculate the spectral properties of the light, observed 
at the viewpoint. Functional realism requires an image to 
contain the same visual information as a real scene. Hence, 
the observer must be able to extract the relevant proper-
ties such as sizes, shapes, motions, positions, and materials. 
This does not require the image to be physically realistic. 
For example, technical drawings can provide functional 
realism. For the task of object detection, it was found that 
a high level of photo realism is not required for high per-
formance [16]. While this was shown for the task of object 
detection it is unknown for other tasks, such as monocular 
depth estimation.

The scene lighting has a drastic effect on physical cues 
for depth estimation in an endoscopic environment, which 
was a driving factor in [10]. The light source within an 
endoscopic environment is typically attached to the camera 
and, therefore, moves along with it. To capture illumination 
effects as best as possible, ray trace rendering is preferred 
over rasterization for creating synthetic images in order to 
model the light transport accurately capturing effects such 

Fig. 2   Modified encoder with 
gated residual blocks
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as shadowing in a realistic way. Additionally, for depth 
estimation, the general shapes and sizes of objects need to 
be accurately represented. For this, all models need to be 
created within the bounds of physically possible features 
seen during a cystoscopy. This is accomplished by utilizing 
reconstructions of actual patient bladders taken from CT 
scans, a 3D imaging technique, from the study [17]. Exam-
ples are seen in Fig. 3 where it is also possible to see that the 
human bladder is a very irregularly shaped organ as the only 
consistent feature between the scans is that they are singular, 
closed volumes. The lights are simulated as two conical light 
sources placed on each side of the camera, similar to [10], to 
simulate a typical endoscope.

Due to the voxel resolution of the scanning method that 
generated the models the resulting models’ surfaces needed 
to be smoothed. Features such as divercula or polyps are, 
therefore, not represented. In addition, the walls in an actual 
bladder tend to be more wrinkly. To account for these miss-
ing features, additional geometry modifications are per-
formed to randomly add fake polyps and a Perlin noise dis-
placement texture across the model’s surface. Examples of 
these modifications are shown in Fig. 4 next to similar real 
images.

To avoid poor generalization due to the uniform textur-
ing (default blender material) shown in Fig. 4, additional 
materials are used to represent a closer color representation 
to the real images including blood vessel-like structures. 
Translucent subsurface scattering is also enabled for this 
texture to better represent the optical properties of human 
tissue. A final touch of randomly generated texture bright-
ness helps to make the model learn the difference between 
the reflective properties and shadows. These modifications 
are shown in Fig. 5.

Camera pose generation for the rendered images is a sim-
ple procedure since the bladder is a closed sphere-like vol-
ume. Vectors from the center of volume are randomly gener-
ated and a randomized distance from the intersection of the 
bladder wall provides the position of the camera. The view-
ing direction is then varied up to 30◦ from the intersecting 
vector. The final augmentations come post rendering in the 
form of more standard image modification methods. These 

include: black circular mask generation, random color jitters, 
random translations, and random rotations from 0 ◦ to  360◦ . 
The circular black mask is necessary as this information 
cannot be removed in the real images. Samples of these are 
seen in Fig. 6. Simultaneously to the color image rendering, 
depth maps are rendered out and matching transformation 
augmentations are applied accordingly.

2.3.2 � Supervised training

The training for the synthetic domain is very straightfor-
ward. The goal of the network is to predict a depth map 
D∗ for a given synthetic image IS . It is a standard super-
vised learning problem with the caveat that the depth loss is 
calculated at each level of the multi-resolution decoder. In 
order to do this at the pixel level, the same technique as in 
[2] is used, namely upsampling with bilinear interpolation, 
to reach the ground truth depth image D dimensions. The 
BerHu loss [18]

is used as it has been shown to outperform standard regres-
sion losses such as the L1 or L2 loss. The threshold 
c =

1

5
maxi

(|||Di − D∗
i

|||
)
 is defined as a fixed fraction of the 

maximum absolute difference for any pixel between the 
ground truth and prediction. Since the depth maps should be 
locally similar as the tissue is generally smooth and con-
nected (excluding situations such as occlusion), an addi-
tional loss is calculated, namely a gradient loss

where yi = logDi − logD∗
i
 , and ∇x and ∇y denote the image 

gradients in horizontal and vertical directions for the number 
of valid pixels N. The loss term penalizes high image gra-
dients of the difference between the prediction and ground 
truth in log scale. This produces more accurate gradients in 

(2)LBerHu(D,D
∗) =

{
|D − D∗| if |D − D∗| ≤ c
(D−D∗)2+c2

2c
if |D − D∗| > c

(3)Lgrad =
1

|N|
∑

i∈N

((
∇xyi

)2
+
(
∇yyi

)2)
,

Fig. 3   Anatomically accurate 3D bladder models with different filling states obtained by CT scans
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the depth prediction without degrading the L2 regression 
loss [19].

The total resulting loss for the synthetic domain training 
is given as

with sensitivity tuning coefficients c0 and c1 between the 
two loss components. The individual loss components are 

(4)L(D,D∗) =

4∑

l=1

c0 LBerHu(D, u(D
∗
l
)) + c1 Lgrad(D, u(D

∗
l
))

summed across each decoder level with l = 4 as the lowest 
resolution decoder output. Here, u is the bilinear interpola-
tion upsampling to reach the image resolution of D.

2.4 � Domain transfer data and training

As is done for the synthetic domain, first an overview of the 
data used is provided, followed by the training procedure for 
accomplishing the task.

Real Endoscopic Image Before Augmentation After Augmentation

Fig. 4   Bladder model geometry augmentations. The 3D bladder mod-
els are modified to cover tissue effects such as: (top) polyps, (bot-
tom) bumpy bladder walls. Left image shows general tissue effect to 
be simulated, middle image shows model before augmentation, right 

image shows model after augmentation with either added bodies or 
added Perlin noise displacement. Note: the model images here are 
rendered using Phong shading, so it only appears that the simulated 
polyp is floating in space even though it is not

Fig. 5   Bladder texture modifications left to right: Bladder base color, artificial blood vessels, artificial vessels and randomized texture brightness 
values, and real image of blood vessels for comparison
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2.4.1 � Data acquisition

The dataset for domain adaptation consists of 17 standard 
cystoscopic videos with an average frame rate of 25 frames 
per second. The videos consist both of normal diagnostic 
checks and trans-urethral resections of tumors. Most of these 
videos are recorded using analog equipment so before pro-
cessing, a standard deinterlacing algorithm YADIF is run on 
the associated videos. The videos are then sampled every 5 
frames to generate the initial raw data set.

Before the images can be used they are filtered to exclude 
irrelevant ones including: when the endoscope is outside the 
body, over exposure, and the image is too blurry or dark. 
This process is automated by first finding a fitting circu-
lar mask and then using tools such as a red threshold (for 
inside the bladder), Laplacian variance (blurriness), and a 
general brightness threshold. Further, more advanced filter-
ing could be done including using a neural network classifier 
to exclude images with bubbles as these are not a part of the 
actual depth of the scene. Figure 7 shows some examples of 
excluded and included cystoscopic images.

2.4.2 � Adversarial training

After the network is trained to predict depth from the syn-
thetic images, the network weights are frozen. Two copies 
of the encoder will be used during adversarial training: 
one FS is left unchanged and the other FR receives the 
gated residual blocks for domain transfer. It is worth not-
ing here that the batch normalization statistics throughout 
the encoder are also frozen. This decision comes from a 
separate experimental investigation that found by doing 
this a better overall depth error was achieved after adver-
sarial training. The training approach here follows the 
scheme in [2] where the decoder is not included in the 
adversarial training and instead the encoder is forced to 
learn similar latent vectors at the lower three levels as 
those output from the synthetic training. This is shown in 
Fig. 8. The individual discriminators Ai with i ∈ 3, 4, 5 also 
use the same PatchGAN structure as in [2].

The standard GAN training as proposed in [20] is used 
with the adversarial objective function

Fig. 6   Data augmentation examples left to right: No augmentation, color jitter, and color jitter with rotation

Included Excluded Excluded

Fig. 7   Frame selection from the clinical cystoscopy dataset. From left to right: included image for training, excluded blurry image, and excluded 
camera outside the body
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where IR is an image from the real domain and IS an image 
from the synthetic.

3 � Results

For the synthetic data, 5000 images per bladder model and 
material (textured and non-textured) were rendered. There-
fore, 10000 images per bladder model are available with 
randomized viewpoints, viewing direction, light intensity, 
etc. Two of the 38 bladder models are used each for the 
validation and test sets. This amounts to 340000 images for 
the train set ( 90% ) and 20000 images for both the test and 
validation set ( 5% each). For the domain adaptation, approxi-
mately 16600 real cystoscopy images without ground truth 
labels are used. The images from both datasets are fed to 
the network at their original resolution of 256 × 256 pixels.

The synthetic data training achieved the lowest valida-
tion root mean square error (RMSE) after 22 epochs at 
0.878 mm. The weights acquired after this epoch were 
saved and used for the domain adaptation. To ensure the 
gating of the domain adaptation functioned as expected, 
the adversarial training was performed as presented in 
Sect. 2.4.2 and also repeated with the gating removed. 
The results of the distribution of the gate coefficients �∗ 
can be seen in Fig. 9. Sample results after training the 

(5)
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Fig. 8   Adversarial domain 
adaptation scheme similar to 
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Fig. 9   Gate values for the adaptable gates during adversarial train-
ing (top) with discriminator (middle) and generator (bottom) training 
losses. The � values correlate to the adaptive gating (light blue) train-
ing shown in the bottom two loss plots, while the dark blue values 
track the loss for training without any gates included after the residual 
blocks. It is seen that the gating provides a smoother transition to a 
stable balance between the generator and discriminator. This subse-
quently results in better predictions
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domain adaptation with gating are shown in Fig. 10. A 
prediction using the same image before any adaptation 
is done is provided as well (right depth plot). To get an 
idea of what is changed between the two depth plots after 
domain adaptation training, a difference plot between the 
two depth plots is provided.

When comparing to the results in Fig. 10, training the 
network with the gates removed (ungated training plot 
from Fig. 9), it is seen that the network almost imme-
diately suffers from a mode collapse and struggles to 
maintain any information from the provided input image. 
Instead, only a feasible texture is predicted that can fool 
the discriminators and the network becomes stuck at this 
point. The resulting prediction is seen in Fig. 11.

4 � Discussion

As expected, the convergence of the adversarial training to 
a stable balance between discriminator training and genera-
tor training losses takes longer with the gating but exhibits 
a much more stable trajectory to the equilibrium in com-
parison to not using gating. By using an adaptive gating the 
possibility of needing to restart training due to complete 
divergence of the network is avoided, which can happen very 
often when training adversarial networks. In Fig. 10 it is pos-
sible to see that including the domain adaptation (left depth 
plot) produces a more reasonable depth map for the given 
image. It can be seen that the adversarial training appears to 
improve upon deciphering the difference between shadows 
and a darker texture. The checkerboard effect which often 

Input Image Domain Adapted Unadapted Difference

Fig. 10   Examples of (perceived) improved depth estimation over syn-
thetic training by using domain adaptation. From left to right: input 
image, domain adapted depth prediction, unadapted depth prediction 
using network trained on synthetic data, and difference plot between 

the two depth predictions. Units are provided in mm and the depth 
predictions in the second and third columns both use the same scale 
found in their respective rows

Input Image Domain Adapted Unadapted Difference

Fig. 11   Example of mode collapse during adversarial training for domain adaptation when not using adaptive gating. Units are provided in mm
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appeared when directly applying the synthetic network to 
real images is effectively eliminated creating a smooth, more 
continuous depth estimation.

4.1 � Limitations

It is clear that the proposed domain adaptation through the 
gated residual blocks accomplishes the intended tasks set 
forth in this work. Unfortunately, however, as there is no 
representation for objects such as the resection cutting loop 
in the current synthetic domain and the simulated polyps do 
not differentiate much from their surrounding texture, the 
network really struggles with handling images containing 
this info. Examples of this are seen in Fig. 12. It is apparent 
that the network relies purely on the brightness of the tool 
to determine its distance from the camera and misses the 
fact that the polyp is not flat since it does not cast a visible 
shadow in the given image. These problems should be avoid-
able by including sample images of this data in the synthetic 
domain such that the network can learn how to map the dis-
tinct depth structure of the tool to the latent vector space and 
that drastically differentiating local texture is an indication 
of a different structure.

5 � Conclusion

In this work an improvement on using deep neural net-
works for monocular depth estimation for cystoscopy was 
achieved using a two step training approach to limit the 
problem to a domain transfer between a synthetic and real 
domain. This was done for the cystoscopic environment 

inside the human bladder and the work included the con-
struction of a pseudo-realistic bladder environment for 
the creation of synthetic camera images. Real cystoscopic 
videos were used for adversarial training to transfer the 
depth estimation capabilities from the synthetic domain 
to the real. The training for this was stabilized by restrict-
ing the domain adaptation to newly added residual blocks, 
each with a learnable gating parameter. Results showed an 
improvement on feasible depth estimations once a domain 
transfer was done, however, this only worked in scenarios 
where the synthetic domain was able to provide a simi-
lar scene. With these results, it can be concluded that the 
methods shown enabled depth estimation in a cystoscopic 
environment and provided a more stable approach to the 
adversarial training for domain adaptation.
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