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Abstract
Automated recognition of daily human tasks is a novel method for continuous monitoring of the health of elderly people. 
Nowadays mobile devices (i.e. smartphone and smartwatch) are equipped with a variety of sensors, therefore activity clas-
sification algorithms have become as useful, low-cost, and non-invasive diagnostic modality to implement as mobile soft-
ware. The aim of this article is to introduce a new deep learning structure for recognizing challenging (i.e. similar) human 
activities based on signals which have been recorded by sensors mounted on mobile devices. In the proposed structure, the 
residual network concept is engaged as a new substructure inside the main proposed structure. This part is responsible to 
address the problem of accuracy saturation in convolutional neural networks, thanks to its ability in jump over some lay-
ers which leads to reducing vanishing gradients effect. Therefore the accuracy of the classification of several activities is 
increased by using the proposed structure. Performance of the proposed method is evaluated on real life recorded signals 
and is compared with existing techniques in two different scenarios. The proposed structure is applied on two well-known 
human activity datasets that have been prepared in university of Fordham. The first dataset contains the recorded signals 
which arise from six different activities including walking, jogging, upstairs, downstairs, sitting, and standing. The second 
dataset also contains walking, jogging, stairs, sitting, standing, eating soup, eating sandwich, and eating chips. In the first 
scenario, the performance of the proposed structures is compared with deep learning schemes. The obtained results show that 
the proposed method may improve the recognition rate at least 5% for the first dataset against its own family alternatives in 
distinguishing challenging activities (i.e. downstairs and upstairs). For the second data set similar improvements is obtained 
for some challenging activities (i.e. eating sandwich and eating chips). These superiorities even reach to at least 28% when 
the capability of the proposed method in recognizing downstairs and upstairs is compared to its non-family methods for the 
first dataset. Increasing the recognition rate of the proposed method for challenging activities (i.e. downstairs and upstairs, 
eating sandwich and eating chips) in parallel with its acceptable performance for other non-challenging activities shows its 
effectiveness in mobile sensor-based health monitoring systems.

Keywords  Human activity recognition · Mobile sensor · Deep learning · Convolutional neural networks · Long short-term 
memory · Residual networks

1  Introduction

Monitoring of the activities of alone old people is one of the 
important issues in modern electronic healthcare [1]. Recog-
nition and distinguishing the above activities may be utilized 
for several applications including assistive living, rehabili-
tation, and surveillance. Although video-based monitoring 
is the simplest way for human activity recognition but this 
technique was less appropriately addressed, because of its 
privacy-invasive nature. In parallel with recent advances in 
Micro Electro Mechanical Systems (MEMS), low-cost small 
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size sensors have emerged. Such sensors are widely used in 
smartphones, smartwatches, and healthcare devices. Some 
of these sensors (for example accelerometer and gyroscope) 
enables smartphones and smartwatch to be utilized as equip-
ment for monitoring human activities [2]. The similarity of 
the signals which are captured from different activities of a 
person (for example upstairs and downstairs or eating activi-
ties) caused the discrimination of several human activities 
remains a challenging classification problem. In addition, a 
high amount of recorded data increases the computational 
cost of recognition algorithms.

In several studies, various linear and nonlinear classifi-
cation schemes have been proposed to address the above 
limitations. The main objective of these schemes is to obtain 
acceptable accuracy, especially when the similarity of the 
activities increases. Some primary approaches try to distin-
guish activities based on their simple features such as mean 
[3–5] or variance [6].Although using such methods shows 
acceptable results for several simple activities (e.g. standing, 
sitting, and running) but their outcomes for some compli-
cated activities (e.g. stretching and riding elevator) are not 
satisfactory.

Some researches make use of Fourier transform domain 
for extracting suitable features that may distinguish between 
similar human activities. These features may reflect the fre-
quency-based properties of several activities, therefore they 
may differentiate between activities based on their various 
frequency contents. Unfortunately, this family of methods 
has no sufficient accuracy in recognizing activities in parallel 
with their high computational cost.

In some studies [7], the support vector machine (SVM) 
is used as a classifier that makes use of Gaussian kernels. 
Using this type of kernels results in more flexibility in deci-
sion boundaries, therefore ultimately increase the accuracy 
of the recognition of several activities. However, in the 
above method, the strategy of selecting SVM parameters is 
very challenging, because the resultant accuracy is highly 
dependent on these parameters.

Some sophisticated methods try to classify different activ-
ities by constructing the Hidden Markov Model (HMM) [8]. 
Although this technique has shown better results than many 
of its older alternatives, however, its performance is highly 
dependent on the quantity and quality of the extracted fea-
tures from the recorded signals.

In parallel with recent advances in manufacturing proces-
sors with high computational power, deep neural networks 
have attracted a lot of attention as an effective paradigm to 
overcome challenges of human activity recognition. In this 
method, a deep neural network extracts non-handcrafted 
features from its raw input data [9]. Furthermore, deep neu-
ral networks are based on the learning of multiple levels of 
representations of the data. Such a multi-level representa-
tion scheme in parallel with their deep architecture (several 

processing layers) enables them to get more accurate results 
[9]. Deep convolutional neural networks (CNNs) are initi-
ated from deep learning theory which is based on large scale 
data and different types of layers. A portion of this structure 
is responsible for extracting discriminative features of input 
data, while others are responsible for the classification of the 
data based on extracted features. Based on the above abili-
ties, deep convolutional networks have been widely used for 
separating human activities in recent years containing several 
standard, partial, or full weight sharing versions (e.g. partial 
weight sharing in the first convolutional layer and full weight 
sharing in the second convolutional layer) [10]. Unfortunately, 
temporal-dependency which is the main characteristic of 
human activity signals has not been addressed in classic CNN 
which hampers its performance in human activity recognition. 
Therefore in complementary researches, the temporal depend-
ency of data has been incorporated in the solution. In some 
researches, recurrent neural networks (RNNs) were used to 
consider the time dependence of human activities in construct-
ing deep neural networks [11]. In more complicated solutions 
several combinations of CNN and long-short term memory 
(LSTM) were introduced in order to extract temporal and local 
features simultaneously [12]. Although these methods enabled 
researchers to improve the results of human activity recogni-
tion systems, however the accuracy saturation still remains as 
an important limiting factor in this application.

In this paper, a new method is introduced to improve distin-
guishing different human activities. The proposed algorithm 
is based on minimizing the accuracy saturation phenomenon 
along with improving the optimization ability of LSTM-CNN. 
In our proposed algorithm the temporal deep learning scheme 
is modified by using the concept of residual network. The 
resultant architecture utilizes shortcuts to jump over some lay-
ers thanks to existing residual networks in its body. Therefore 
the problem of vanishing gradients is addressed by reusing 
activations from a previous layer until the layer next to the cur-
rent one has learned its weights. Consequently, the problem of 
accuracy saturation is greatly reduced. The paper is organized 
as follows. In Sect. 2, the proposed approach is demonstrated 
including dataset and pre-processing, learning deep neural 
network and the classification of activities. In Sect. 3, the per-
formance of the proposed method is evaluated by comparing 
its results with the results of deep learning methods. In Sect. 4, 
the obtained results from the proposed scheme are compared 
with the results of non-deep techniques. Finally, conclusion is 
presented in the last section of the paper.

2 � Methods

In this section, the details of the proposed method are 
described. Firstly the LSTM-CNN deep structure is intro-
duced and then the residual network is applied to improve 
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the performance of deep structure against vanishing gradi-
ents problem and increases the optimization performance 
of the network by identity mapping. Finally, the classi-
fication is performed in order to distinguish six human 
activities.

2.1 � Convolutional neural network

Convolutional neural network (CNN) is a kind of deep 
neural network which has high potential in extracting 
high-level features. The feature extraction is perfumed in 
so-called convolutional layers of CNN [12] thanks to its 
linear and nonlinear kernels and regardless of the feature 
positions which makes them scale-invariant. Suppose 
input activity signal as:

In which x0
i
 may be represented by a matrix of size 

3 × N which N refers to the number of incorporated accel-
erometers. In the same manner, the input of k-th convo-
lutional layer includes Zi,j feature map as demonstrated in 
Fig. 1. Therefore the component for (i, j) location in k-th 
layer and l-th feature map may be computed as:

In which σ and k′ demonstrate activation function and 
number of feature maps, respectively in (l − 1)th layer with 
kernel size of X and Y. Furthermore, w represents weight 
matrix and b shows the bias.

Finally, all feature maps are transferred into distin-
guished classes by using a fully connected layer. For this 
goal, a dense layer is used with some nodes which are 
equal to the number of activity classes using bellow so-
called softmax function.
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2.2 � Long short‑term memory

Feedforward networks consider all inputs and outputs as 
independent elements which are not a valid assumption for 
time sequence phenomena such as human activity signals. To 
overcome this limitation, recurrent neural networks (RNNs) 
are used which have a great potential to model the temporal 
dependencies thanks to their recurrent unit which serves as a 
memory. The main challenges in classic RNN are vanishing 
gradient [13] and the limited number of memory [14] which 
hamper its long term temporal dependency. This weakness 
may seriously hamper the effectiveness of RNNs in modelling 
of long time series of human activity signals.

Long short-term memory (LSTM) is a type of recurrent 
networks to solve the vanishing gradient problem mentioned 
above [15]. In this network, the memory cell has been used 
to save the information instead of the recurrent unit. Memory 
cells are constructed and updated by using three main gates 
including write (i.e. controlling input information), read (i.e. 
controlling output information), and reset (i.e. forgetting use-
less information) [15] as demonstrated in Fig. 2.

The functionality of the LSTM which was shown in Fig. 2 
may be described in details by Eqs. (4–8).
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Fig. 1   Illustration of convolution operation with X and Y kernel size
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Fig. 2   LSTM cell including write, read and forget gate to save infor-
mation
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In the above equations i, f, o, and c represents input gate, 
forget gate, output gate, and cell activation functions respec-
tively. The combination of CNN and LSTM may be used to 
model local and temporal dependencies for long time series 
signals [12].

2.3 � Batch normalization

Generally, the change of input distribution may cause several 
problems in the learning process of deep neural networks 
[16]. On the other hand, the presence of any amount of vari-
ance in the input of each layer shows itself in the form of 
more intense changes in the next layer, due to nonlinear and 
deep structure of CNN [17]. In order to reduce the impact of 
this unfavourable phenomenon, the normalization is widely 
used between successive layers [9, 18, 19]. In this research 
Batch Normalization (BN) function is applied to reduce 
the internal covariance shift between layers in parallel with 
increasing learning speed [20] as illustrated in Eq. (9) and 
Fig. 3.

In above equation � and � are learning parameters.

2.4 � Residual network

Although depth increment leads to construct more fitted 
model between input and output in CNN [20], but such a 
deep structure faces some limitations in its training pro-
cedure. One of the important problems is the vanishing/
exploding gradient [19, 21] which occurs with the stack-
ing of more layers [22]. Degradation with the network 
depth increasing, cause the accuracy gets saturates and 
then reduces fast. This problem points out that maybe the 

(7)ot = σo
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wzozt + whoht−1 + wcoct + bo

)

(8)ht = otσh
(

ct

)

(9)BN(z) = �
z − E{z}

√

(Var{z} + �)
+ �

network has problems with approximating identity map-
ping due to stacking nonlinear layers [22].

In this research, residual network [22] is incorporated 
in the combination of CNN and LSTM structures (i.e. 
ConvLSTM) to overcome the above-mentioned problem. 
This solution utilizes parameter-free connections (identity 
shortcuts) for connecting the input of layer to output as 
shown in Fig. 4.

This shortcut connections help the function to play its 
role more optimal. Therefore, such direct input–output 
connections enable the deep network to overcome accu-
racy saturation and overfitting problems by skipping some 
layers. As shown in Fig. 4, the shortcut connections can 
help the solver function to map the identity function easier.

The final structure of our proposed network has been 
shown in Fig. 5 in which the convolutional layers extract 
local features from a 3-axis Mobile sensor-based acceler-
ometer as feature maps. LSTM layers used to model tem-
poral dependency existing in the feature maps. As shown 
in this figure in parallel with feature extraction, BNs are 
applied between layers to reduce the variance of each 
layer. Finally, the fully connected layer maps the result of 
ConvLSTM into six classes of activities as shown in the 
right end of Fig. 5.

The complete procedure of the proposed method may 
be observed in pseudocode of Fig. 6.

Fig. 3   Locating BN in CNN structure. Before each CNN layer, a BN layer was placed to reduce internal covariance shift

Fig. 4   Residual network which 
including parameter free con-
nections (identity shortcuts) to 
connect the input of layer to 
output

weight layer x
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Fig. 5   The final structure of the proposed method: three CNN struc-
tures which each include two convolution layers and two BN layers. 
Residual shortcuts connect the first CNN output to the output of the 

last BN layer in each CNN section. Two LSTM layers were implanted 
to model temporal dependencies. Finally, the fully connected layer 
with softmax function, map the features into desired activity classes

Fig. 6   Description of the pseu-
docode of the proposed method Require: Human activity raw signals 

1- Data prepara�on: 
2- Make train, valida�on and test datasets using the data of step 1 
3- While (training data is available) %fit the model on training data using step 4 to 25 

4- Apply the first BN layer  
5- Apply the previous step output as input to the first convolu�onal layer  
6- The second BN layer has applied to the output of step 5 
7- Use the output of step 6 to the input of the second convolu�onal layer  
8- Apply 3rd BN layer to the output of second convolu�onal layer 
9- Add residual connec�on to connect the 5th step output to the 3rd BN output 
10- Add the 3rd convolu�onal layer to the output of the last layer 
11- Apply the 4th BN layer to output of the last layer 
12- Use the output of step 11 to  input of the 4th convolu�onal layer  
13- Apply the 5th BN layer to output of the last layer 
14- Add residual connec�on to connect the 10th step output to the 5th BN 
output 
15- Using output of the last layer as input of the 5th convolu�onal layer  
16- Apply the 6th BN layer to output of the last layer 
17- Use the last layer output to the input of the 6th convolu�onal layer  
18- Apply the 7th BN layer to the output of the last layer 
19- Add residual connec�on to connect the 15th step output to the 7th BN 
output 
20- Using flat layer to reshape the output of last layer to a vector over �me 
steps 
21- Apply first LSTM layer to the output of last step 
22- Apply second LSTM layer  
23- Use flat layer to reshape the 2-D output of the last step to a vector 
24- Use dense layer to map output of the last layer to 6 types of ac�vi�es 
25- Set the next batch as input 

26- End while 
27- While (valida�on data is available) 

28- Get batch of valida�on data 
29- Use fi�ed model to tune batch of valida�on data 
30- Apply next batch 

31- End while
32- Use the test data to evaluate the trained network
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3 � Results

The proposed method was applied on two datasets from 
wireless sensor data mining (WISDM) lab [23, WISDM2] 
which includes over one million and 15 million raw time 
series data respectively. These signals have been captured 
from the smartphone’s 3-axis accelerometer of 36 volun-
teers for first the dataset and data from the accelerometer 
sensor from smartphone and watch as 51 subjects per-
formed 18 activities for the second one. The smartphone 
was fixed in the right pocket of each volunteer’s pants to 
achieve the maximum robustness in recorded signals.

The first dataset which we used included six different 
activities consist of walking, jogging, upstairs, downstairs, 

standing, and sitting which has been captured over 10 min 
per each. From the second dataset, we choose eight activi-
ties from the smartwatch’s accelerometer consist of walk-
ing, jogging, stairs, standing, sitting, eating soup, eating 
sandwich, and eating chips. For the first dataset, the vol-
umes of data belonging to several activities are not equal 
because some users did not perform some of the activi-
ties due to their physical restrictions. Furthermore, some 
activities (i.e. sitting and standing) were limited to only 
a few minutes because it has been expected that the data 
would remain almost constant over time. More information 
about this dataset may be found in Table 1.

In Figs. 7 and 8 for instance, some sample signals from 
both datasets have been shown. These examples belong to 
upstairs and downstairs activities for the first dataset and two 

Table 1   The details of two WISDM datasets

Dataset Activities Class distribution Sample rate Measurement time Number 
of users

Number of data

First dataset Walking, jogging, upstairs, down-
stairs, standing and sitting

Walking: 38.6%
Jogging: 31.2%
Upstairs:11.2%
Downstairs: 9.1%
Sitting: 5.5%
Standing: 4.4%

20 Hz 10 min 36 1,098,207 sample

Second dataset Walking, jogging, stairs, standing, 
sitting, eating soup, eating sand-
wich and eating chips

Walking: 12.5%
Jogging: 12.5%
Stairs:12.5%
Sitting: 12.5%
Standing: 12.5%
Eating soup: 12.5%
Eating sandwich: 12.5%
Eating chips: 12.5%

20 Hz 3 min 51 1,676,282 sample

Fig. 7   Two recorded signals belong to a downstairs and b upstairs activities
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different eating activities for the second dataset respectively. 
These figures clearly show that there is no significant differ-
ence between two recorded signals belonging to downstairs 
and upstairs activities for the first dataset and eating sand-
wich and eating chips for the second one. Therefore it illus-
trates why recognizing these activities may be considered 
as a challenge in the domain of human activity recognition.

However for the Eating Soup activity, the signal is more 
distinguishable from the other two eating activities as 
showed in Fig. 9.

The proposed method was implemented on the Tensor-
flow framework, using the tensor processing unit (TPU) 

hardware developed by Google collaboratory. Furthermore, 
three deep learning-based alternative methods were also 
implemented to compare with the proposed scheme includ-
ing: (a) basic CNN algorithm, (b) combination of CNN and 
LSTM which is called ConvLSTM for brevity in the rest of 
the article, and (c) ConvLSTM which has been modified 
by residual network (ResNet) concept which is called Con-
vLSTM + ResNet for brevity in the rest of the article. The 
accuracy of each method was obtained on the same data set 
and reported to evaluate the performance of several exam-
ined algorithms.

The first step of human activity recognition is data seg-
mentation, and the most traditional approach is to use a slid-
ing window. In this paper, the window size of 90 with a 50% 
overlap was used.

In this contribution, three different structures were pro-
posed which for each of them the best configuration (number 
of layers and hyperparameters) were determined and showed 
in Table 2. The weights initialized randomly for each train-
ing procedure using stochastic gradient decent (SGD) opti-
mizer [24] with the momentum of 0.9 and the initial learning 
rate of 0.01 and decay rate of 50% per 10 epochs. Table 2 
shows the main parameters of examined structures.

Firstly, the performance of CNN was evaluated in distin-
guishing several activities of the two mentioned datasets. As 
demonstrated in Tables 3 and 4, this approach has obtained 
utterly acceptable results on those on-challenging activities 
in which their recorded signals were not so similar to each 
other.

However, the performance of this network was dropped 
when it was applied to recognize challenging activities 
(i.e. downstairs and upstairs for the first dataset and eating 

Fig. 8   Two recorded signals belong to a eating sandwich and b eating chips activities

Fig. 9   Recorded signal belongs to eating soup
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sandwich and eating chips for the second dataset which 
caused similar signals). These decrements occurred in such 
way that for the first dataset the accuracies were obtained 
85.53 and 86.99% for upstairs and downstairs respectively 
and for the second dataset, the accuracies were 58.58 and 
50.22 for eating sandwich and eating chips respectively.

Tables 5 and 6 show the results obtained from applying 
the ConvLSTM scheme. These results demonstrate although 

the modification of CNN by long short-term memory may 
marginally improve the accuracies for the mentioned simi-
lar activities. For the first dataset, 4.03 and 2.02% improve-
ment was obtained for upstairs and downstairs and in a 
similar manner for the second dataset, the improvements 
were 2.36 and 8.06% for eating sandwich and chips respec-
tively). Note that these improvements were not enough to 
make the results acceptable for these challenging activities. 

Table 2   Description of main 
parameters of proposed method 
and its deep based alternatives

Conv ConvLSTM ConvLSTM + ResNet

Number of parameters 57,366 39,158 164,730
Number of layers 6 8 17
Input 90 × 3 × 1 90 × 3×1 × t 90 × 3 × 1 × t
Convolution 1 [2-D conv (3 × 3), 16

2-D conv (3 × 3), 16]
[2-D conv (3 × 3), 16
2-D conv (3 × 3), 16]

[2-D conv (3 × 3), 16 + BN
2-D conv (3 × 3), 16 + BN]

Convolution 2 [2-D conv (3 × 3), 32
2-D conv (3 × 3), 32]

[2-D conv (3 × 3), 16
2-D conv (3 × 3), 16]

[2-D conv (3 × 3), 32 + BN
2-D conv (3 × 3), 32 + BN]

Convolution 3 [2-D conv (3 × 3), 64 + BN
2-D conv (3 × 3), 64 + BN]

LSTM 1 Cells = 32 Cells = 32
LSTM 2 Cells = 32 Cells = 32
Output Softmax Softmax Softmax

Table 3   Results for the first 
dataset of WISDM classification 
by using CNN

Predicted classes Accuracy (%)

Walking Jogging Sitting Standing Upstairs Downstairs

Activity classes
Walking 1839 3 0 0 25 18 97.56
Jogging 14 1490 0 0 15 2 97.96
Sitting 0 0 266 0 0 0 100
Standing 5 0 3 203 4 0 94.42
Upstairs 15 31 3 0 467 30 85.53
Downstairs 7 0 1 0 51 388 86.99
Overall 93.74

Table 4   Results for the second dataset of WISDM classification by using CNN

Predicted classes Accuracy (%)

Walking Jogging Sitting Standing Stairs Eating soup Eating 
sandwich

Eating chips

Activity classes
Walking 841 3 0 0 85 0 1 0 90.48
Jogging 6 905 0 0 3 0 0 0 99.01
Sitting 4 1 762 38 4 47 35 65 80.55
Standing 2 0 73 817 4 37 35 65 84.84
Stairs 87 8 6 38 792 4 7 7 85.90
Eating soup 0 0 18 32 2 734 77 67 78.92
Eating sandwich 2 0 48 43 3 111 546 179 58.58
Eating chips 1 0 67 37 12 129 205 455 50.22
Overall 78.56
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Furthermore, Tables 3 and 4 show that the accuracies of the 
other activities have had no meaningful difference from the 
results which had been obtained from basic CNN (e.g. these 
differences were about 1%).

Finally, Tables 7 and 8 demonstrate that the proposed 
method has significantly increased the obtained accura-
cies for two challenging activities compared to CNN. The 
obtained results showed that the residual network concept 
may improve the recognition accuracies against the basic 

CNN network for the first dataset by extents of 9.16 and 
6.96% for upstairs and downstairs activities respectively. 
These improvements were obtained as 5.13 and 4.94 for 
the same activities compared to the ConvLSTM scheme. 
However, these results illustrated a tiny accuracy decre-
ment in walking compared to basic CNN. For the sec-
ond dataset, accuracies which were obtained for eating 
sandwich and chips were improved about 7.41 and 9.71% 
compared to the CNN and 5.05 and 1.65% compared to 
the ConvLSTM.

Table 5   Results for the first 
dataset of WISDM classification 
by using ConvLSTM

Predicted classes Accuracy (%)

Walking Jogging Sitting Standing Upstairs Downstairs

Activity classes
Walking 1839 6 0 0 21 19 97.56
Jogging 10 1470 0 0 35 6 96.64
Sitting 0 0 266 0 0 0 100
Standing 5 0 4 205 1 0 95.34
Upstairs 6 22 4 0 489 25 89.56
Downstairs 10 5 0 0 34 397 89.01

Table 6   Results for the second dataset of WISDM classification by using ConvLSTM

Predicted classes Accuracy (%)

Walking Jogging Sitting Standing Stairs Eating soup Eating 
sandwich

Eating chips

Activity classes
Walking 852 1 0 0 81 1 0 0 91.12
Jogging 4 900 0 0 10 0 0 0 98.47
Sitting 5 0 775 17 5 34 31 79 81.92
Standing 0 0 58 813 2 17 25 48 84.42
Stairs 69 13 7 2 817 6 5 3 88.61
Eating soup 0 0 12 30 1 712 51 124 76.55
Eating sandwich 2 0 35 25 1 80 569 221 60.94
Eating chips 2 0 63 21 12 91 189 528 58.28
Overall 80.04

Table 7   Results for the first 
dataset of WISDM classification 
by using ConvLSTM + ResNet

Predicted classes Accuracy (%)

Walking Jogging Sitting Standing Upstairs Downstairs

Activity classes
Walking 1837 0 0 0 29 19 97.45
Jogging 12 1483 1 0 23 2 97.5
Sitting 0 0 262 0 0 4 98.5
Standing 0 0 5 206 4 0 95.81
Upstairs 3 4 4 0 517 18 94.69
Downstairs 6 2 4 0 15 419 93.95
Overall 96.32
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4 � Discussion

In the previous section, the superiority of the proposed 
algorithm against CNN based schemes has been inves-
tigated. The common aspect of all those algorithms was 
that all of them belong to deep neural networks family, 
hence all of them extract features from raw data by using 
their convolutional layers. In this section, the performance 
of the proposed algorithm is compared with the feature-
based classifiers as an alternative family for deep methods. 
To perform such comparison, five feature-based activity 
recognition methods were applied on the first dataset of 
WISDM. The alternative algorithms include (a) a combi-
nation of hand-crafted features and Random Forest clas-
sifier which is called for brevity as Basic features + RF 
in this article [23, 25], (b) principal component analysis 
(PCA) based on empirical cumulative distribution function 
which is called for brevity as PCA + ECDF in this article 
[26, 27], (c) logistic regression [23, 28], (d) a decision 
tree algorithm used for classification which is called J48 
algorithm in the article [23, 28] and finally (e) multilayer 

perceptron [23]. The classification accuracy was calculated 
for the proposed method and the all above alternatives to 
compare their effectiveness. Table 9 shows the obtained 
accuracies for all examined methods. This table describes 
that for upstairs activity the recognition accuracy of the 
proposed algorithm was 33.23%, 35.43%, 67.17%, 35.14%, 
and 28.02% better than multilayer perceptron, J48, logistic 
regression, PCA + ECDF, and basic features + RF meth-
ods, respectively. Also, this table shows that for downstairs 
activity, the recognition accuracy of the proposed algo-
rithm was 49.65%, 38.47%, 81.69%, 54.35%, and 44.13% 
better than the above alternatives.

For the other three non-challenging activities (e.g. sit-
ting, standing and jogging) although the proposed algorithm 
recognized activities overall better than its alternatives, 
but for most of the test items the performances of exam-
ined methods were in acceptable range in accordance with 
those which were described in deep learning methods (see 
Tables 3, 5, 7). However, it is important to note that even 
for these non-challenging activities the superiorities of the 
proposed scheme against alternative methods have reached 
up to 16.03% (e.g. proposed method vs Basic features + RF 

Table 8   Results for the second dataset of WISDM classification by using ConvLSTM + ResNet

Predicted classes Accuracy (%)

Walking Jogging Sitting Standing Stairs Eating soup Eating 
sandwich

Eating chips

Activity classes
Walking 892 0 0 0 43 0 0 0 95.4
Jogging 6 906 0 0 2 0 0 0 99.12
Sitting 2 6 816 10 4 24 22 62 86.26
Standing 1 0 62 807 5 17 24 47 83.8
Stairs 59 5 2 3 835 3 9 6 90.56
Eating soup 1 0 7 8 3 725 91 95 77.96
Eating sandwich 1 0 42 20 0 91 615 163 65.99
Eating chips 4 0 54 14 8 76 207 543 59.93
Overall 82.38

Table 9   Comparison of Results first dataset of WISDM classification by using proposed method and its feature based alternatives

Activity type Basic fea-
tures + RF 
(%)

PCA + ECDF (%) Logistic 
regression 
(%)

J48 (%) Multilayer 
perceptron 
(%)

CNN (%) CNNLSTM (%) CNN + LSTM  + ResNet 
(%)

Walking 83.56 98.54 93.58 89.90 91.68 97.56 97.56 97.45
Jogging 94.72 95.44 97.95 96.52 98.33 97.96 96.64 97.50
Sitting 82.47 100 92.20 95.74 95.05 100 100 98.5
Standing 95.76 100 86.99 93.27 91.93 94.42 95.34 95.81
Upstairs 66.67 59.55 27.52 59.26 61.46 85.53 89.56 94.69
Downstairs 49.82 39.60 12.26 55.48 44.30 86.99 89.01 93.95
Overall 78.83 82.19 68.42 81.69 80.46 93.74 94.68 96.32
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in sitting activity). Finally, in case of walking activity, the 
results of the proposed scheme were 13.89%, 3.87%, 7.55%, 
and 5.77% higher than those which had been obtained by 
basic features + RF, logistic regression, J48, and multilayer 
perceptron methods. However, for this activity, the result of 
the proposed method has been lower than PCA + ECDF by 
extents of 1.09%. The above results confirmed the results 
which had been obtained by using deep learning-based 
methods which showed that the proposed algorithm caused 
a great accuracy improvement in recognizing challenging 
activities (i.e. downstairs and upstairs). On the other hand, 
for other non-challenging activities although the proposed 
method showed a slight accuracy increase or decrement 
compared to existing methods, but the recognition accu-
racies belonging to this method still remained within the 
acceptable range.

5 � Conclusion

In recent years, deep neural networks have been widely uti-
lized for human activity detection which the most famous 
among them is convolutional neural network (CNN). Despite 
the considerable potential of CNNs in recognizing human 
activities, unfortunately, such networks face with accuracy 
saturation phenomenon which hampers their performance in 
real-world applications. In this paper, a new structure was 
introduced to address this problem based on a combination 
of long short-term memory (LSTM) and residual network 
structures. The performance of the proposed structure was 
evaluated on two real data sets contained the recorded sig-
nals belonged to six human activities including walking, 
jogging, upstairs, downstairs, sitting, and standing for the 
first dataset. The second dataset contained walking, jogging, 
stairs, sitting, standing, eating soup, eating sandwich, and 
eating chips. Two different scenarios were adopted to com-
pare the performance of the proposed method with two main 
categories of existing techniques. In the first scenario, the 
performance of the proposed method was compared with 
those of its own family, all based on deep learning. The 
obtained results showed that for the first dataset, the pro-
posed scheme distinguished both of downstairs and upstairs 
(as the most challenging activities) almost 5% better than 
its closest deep based alternative. For the second data set 
improvements were 5 and 1.65% for those results which had 
been obtained for eating sandwich and eating chips respec-
tively. On the other hand, the performances of the proposed 
method and its deep based alternatives had no meaningful 
difference among four other (i.e. non-challenging) activi-
ties for both datasets. The second scenario was dedicated to 
comparing the performance of the proposed structure and 
non-deep techniques. The results obtained in this scenario 
also indicated the superiority of the proposed method against 

five well known non-deep techniques in recognition of chal-
lenging activities for the first dataset. The obtained results 
showed that the proposed scheme distinguished downstairs 
and upstairs (as the most challenging activities) almost 
38 and 28% better than its closest feature-based alterna-
tive. Similar to the previous scenario, the performance of 
the proposed method and its alternatives had no meaning-
ful difference and both are in acceptable range when they 
were examined on the other four non-challenging activities. 
Based on the above analyses it may be concluded that the 
proposed structure has considerable potential to be used as a 
low-cost and non-invasive diagnostic modality to implement 
as mobile software.
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