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Abstract
Bones during growth period undergo substantial changes in shape and size. X-ray imaging has been routinely used for bone 
growth diagnosis purpose. Hand has been the part of choice for X-ray imaging due to its high bone parts count and relatively 
low radiation requirement. Traditionally, bone age estimation has been performed by referencing atlases of images of hand 
bone regions where aging-related metamorphoses are most conspicuous. Tanner and Whitehouse’ and Greulich and Pyle’s 
are some well known ones. The process entails manual comparison of subject’s hand region images against a set of corre-
sponding images in the atlases. It is desired to estimate bone age from hand images in an automated manner, which would 
facilitate more efficient estimation in terms of time and labor cost and enables quantitative and objective assessments. Deep 
learning method has proved to be a viable approach in a number of application domains. It is also gaining wider grounds 
in medical image analysis. A cascaded structure of layers can be trained to mimic the image-based cognitive and inference 
processes of human and other higher organisms. We employed a set of well known deep learning network architectures. In 
the current study, 3000 images were manually curated to mark feature points on hands. They were used as reference points 
in removing unnecessary image regions and to retain regions of interest (ROI) relevant to age estimation. Different ROI’s 
were defined and used—that of rather small area mostly made up of carpal and metacarpal bones and that includes most of 
phalanges in addition. Irrelevant intensity variation across cropped images was minimized by applying histogram equaliza-
tion. In consideration of the established gender difference in growth rates, separate gender models were built. Certain age 
range image data are far scarcer and exhibit rather large excursion in morphology from other age ranges—e.g. infancy and 
very early childhood. Many studies excluded them and addressed only elder subjects in later developmental stages. Con-
sidering infant age group’s diagnosis demand is just as valid as elder groups’, we included entire age ranges for our study. 
A number of different deep learning architectures were trained with varying region of interest definitions. Smallest mean 
absolute difference error was 8.890 months for a test set of 400 images. This study was preliminary, and in the future, we 
plan to investigate alternative approaches not taken in the present study.
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1 Introduction

Bones undergo substantial shape changes throughout life-
time. The changes are particularly the strongest during the 
growth period. Hand is joined to lower arm via radius and 
ulna bones and is comprised of carpal, metacarpal and phal-
ange bones, which together count thirty bone parts (Fig. 1). 
The high bone count in a relatively small spatial volume and 
rather small radiation requirement makes hand an ideal body 
part to take X-ray images from. This property was exploited 
by Greulich and Pyle [1]. Specifically, they created an atlas 
of regions of hands in X-ray that are chronologically most 
distinguishing through the course of aging. Tanner and 
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Whitehouse later compiled a more extensive atlas of images 
characterizing age-wise morphological changes of bones [2].

Example images of hand bones at different ages are 
shown in Fig. 2.

Size change is the most well perceived aging-induced 
bone morphology change. During infancy, diaphyses make 
up most part of bone matter. Another notable shape change 
from aging process is ossification: especially, the cartilage 
in epiphyses regions calcify to form hard bones.

While most people follow regular growth path, some 
people might follow substantially delayed or advanced 
growth paths. People in infant to juvenile periods with rela-
tively low growth status compared with their age peers may 
deserve medical diagnosis and special treatment for growth 
stimulation or removal of pathological causes such as endo-
crine disorders. In order to make an objective assessment 

for normality of growth, diagnosis has to be as accurate as 
possible.

Atlas based method requires arduous human labor to 
compare patient’s images against reference atlas images [5, 
6]. Also the process is subjective - different people judg-
ing differently depending on their personal level of experi-
ences and their training path specific views. Being based 
on visual similarity-cued individual decisions, the backing 
ground for diagnostic results is also hard to quantify. Pos-
sibly lower reproducibility is another disadvantage of atlas 
based manual estimation.

Machine learning methods provide for a way to automati-
cally carry out image based inferences by forming a mapping 
from input to output. Computerized and automated process-
ing and provision for quantitative measures of similarity, etc. 
are a merit afforded by the machine learning method. Mini-
mal human intervention reduces labor cost and improves 
time efficiency in clinical environments. BoneXpert intro-
duced in 2009 is a machine learning based bone age estima-
tion system [7].

Deep learning technique is finding increasing use cases in 
diverse medical information processing and analysis fields 
[8, 9]. In particular, medical image analysis has been an 
apt field to leverage image-related cognitive and inferential 
efficacy of deep learning approaches towards. Typically, 
a model is formed which maps an input to a desired form 
of output. For the problem of hand bone age estimation, 
X-ray image corresponds to input and estimated age to the 
output. Neural network is made up of a large number of 

Fig. 1  Skeletal anatomy [3] and an X-ray image of hand [4]

Fig. 2  Hand bones at different ages
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nodes and edges, and a proper weighting for the edges have 
to be determined. A set of numerical values characterizing 
input and output relationship is formed via training process. 
Input image goes through a chain of processing stages to be 
mapped to desired kind of output. Traditional machine learn-
ing approaches typically assumed a set of human defined 
feature representations which may not always be optimal for 
problems being tackled.

From training process perspective, deep learning provides 
developers and researchers with the benefit of end to end 
training where raw input data together with desired output 
labels are presented and neural network is brought to a con-
figuration reasonably close to optimal, with minimal human 
intervention.

Deep learning usually employs neural networks of high 
level of learning capacity. A layer is made up of a tiled 
array of processing units. Training process forwards inputs 
through network to produce output. It is then compared with 
correct desired output, difference of which is error signal. 
The error is backward propagated to adjust edge weights 
connecting network’s constituent nodes [10]. Some issues 
emerge with deep learning process. One is the huge imbal-
ance between the number of edges and the typical amount 
of available data to be used during the training phase. This 
will result in an overfitting where model is highly tuned to 
the specifics of training data and fails to generalize well to 
data instances that are not represented in the training dataset. 
Some measures such as dropout layer is often employed to 
combat the imbalance and overfitting issue [11]. Dropout 
layer typically is placed in between the fully connected lay-
ers. It dynamically switches on and off the edges connecting 
the two layers and helps reduce coadaptation phenomenon 
known to occur where nodes and weights are trained to 
similar configuration when the dropout layer is not in use. 
It is a utility layer effective during the training phase, and 
during the test and deployment phases, the dropout layer is 
removed.

1.1  Problem formulation and data preparation

Given an input hand X-ray image, we seek an automatic 
way to infer bone age. Since the age to be estimated is a 
continuous variable, a regression model is a reasonable way 
of mapping out the input–output relationship.

â = estimated age and M is a regression model, I is input 
image of width, w and height, h, and i is in I ∈ Nwh , where 
N is natural number.

The present days’ neural network architectures all 
assume fixed size input images. For example, Caffenet 
[12, 13] assumes a fixed size of 227 × 227 pixels, and the 

i.e. â = M(I)

googlenet, 224 × 224 pixels. Then the above expression 
reduces to â = M(I), I ∈ N224⋅224 for the case of Googlenet.

An anatomy of hand made up of carpal, metacarpal and 
phalange bones is shown in Fig. 1. A dataset is needed to 
train a model. We used the data from the RSNA challenge 
[4]. More than 12 thousand image files in png (portable 
network graphics) format are provided. For the training 
set, age and gender information is associated with each 
data instance. For the validation set, age information is 
provided yet gender information is missing. Test set has 
neither age nor gender annotations. Images are in gray-
scale and ranges from 169 to 3639 kilobytes in file size, 
and dimension ranges between 594 and 2970 pixels a side. 
Due to partial or full lack of critical age and gender infor-
mation from the validation and test sets, we solely used 
the training set in our study—i.e., it was partitioned into 
training and test sets in a mutually exclusive manner so 
that an entry in one set is excluded from the other set. Most 
of widely used deep learning networks assume three chan-
nel RGB color inputs. All X-ray images in the training set 
were single channel black and white images. Hence they 
were converted to three channel image data by duplicating 
their single channel data.

Hands assume quite substantial variability in angle with 
respect to border lines within the image frame. Also image 
intensity range is quite wide that hand regions appear in 
from nearly white to dark gray tints over data set (Fig. 3). 
Data in the entire age range from 0 months to 228 months 
were included for both training and testing in our study - 
no age ranges were excluded. We randomly selected 1400 
images each of male and female cohorts to total 2800 
images. For each gender, one thousand images were used 
to form training data and the remaining data were used to 
form testing data.

2  Methods

A number of factors determine the appearance of hand 
bone X-ray images. Values of individual pixels comprising 
an image are determined by the settings used during X-ray 
taking, relative orientation of hand with respect to image 
frame, overall intensity level of hand region in addition to 
the age-related morphological characteristics. What matter 
most from the pattern recognition perspective are the pat-
terns that are formed by the spatial arrangement of inten-
sity values assumed by pixels. On the other hand, absolute 
levels of intensity values may directly impact the output 
of neural network. Hence it was desired to minimize the 
intensity variation across image data instances that are 
irrelevant to age-specific morphological characteristics 
and changes.
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2.1  Region of interest reduction

Setting an appropriate region to retain to use for inference 
may help reduce the appearance variations that are irrel-
evant to age. Background portion found in X-ray image 
data are irrelevant to age estimation. Hence they can be 
safely removed without any negative implication on the 
age estimation performance. Typically, similar pattern of 
ossification is found throughout the hand. Some appear-
ance information may be regarded redundant which may 
then be excluded from age estimation process. The criteria 
and tradeoff involved are redundancy and uniqueness of 
information and whether an aspect of image is relevant 

towards age estimation. In terms of degree of freedom in 
orientation and spatial extension of occupation, fingers 
exhibit a wider range of variability than the palm. In an 
attempt to minimize finger pose-induced image variation, 
a set of points on phalanges, radius and ulna were first 
defined. Specifically, they were located towards the proxi-
mal ends of phalanges and on the distal ends of radius and 
ulna (Fig. 4). A rectangle of largest area is defined which 
is aligned to the image border lines and has the reference 
points on its border or in its interior. A corresponding 
image is shown in Figs. 4 and 5 (henceforth we refer to this 
as ROI scheme 1,  ROI1). While the variability due to finger 

Fig. 3  Variability of hand X-ray images

Fig. 4  An input image [4] and feature points marked thereon (upper row), and ROI1, 2 and 3 defined (bottom row)
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poses is greatly reduced, the age-related morphological 
information from the inter-phalangeal regions is lost.

Alternatively, a larger part of phalangeal bones may 
be included in an ROI so as to retain and reflect more of 
phalangeal specific age-related morphological information 
in the training process. The borderline coordinates in  ROI1 
were expanded by 30% in all four directions except for 
wrist to result in a larger ROI (to be referred to as  ROI2). 
Entire proximal phalanges are included and all or parts of 
mid- and distal phalangeal bones are included.

With yet another ROI scheme,  ROI3, all phalanges, 
carpal and metacarpal bones were included. Overall, we 
implemented three settings for regions of interest, which 
we’ll compare in terms of resulting estimation accuracy. 
Some images processed according to the ROI reduction 
schemes are shown in Fig. 5.

2.2  Intensity variation reduction

Also image intensity has a wide range of fluctuation in the 
RSNA training dataset, possibly due to the multi institutional 
nature of the data gathered by different medical agencies. 
The unwanted intensity variation in hand regions may be 
removed via a number of ways. Histogram equalization is 
well known to be a method of choice for equalizing intensity 
distributions across a set of images, which was adopted and 
applied to the ROI-reduced images obtained from the previ-
ous step. Figure 6 illustrates some images after the applica-
tion of ROI reduction and histogram equalization.

Overall image processing flow was as shown in Fig. 7.

2.3  Neural network architecture

A large number of neural network architectures were pro-
posed. In addition to the kinds of layers employed, they are 
distinguished in terms of the number of constituent layers 
and the topology of inter-connections between them. In this 
article, we employed a set of well known architectures and 
compared their performances—Caffenet, Googlenet and 
Resnet [14] [15]. The deep learning tool suite Caffe [12, 13] 
was used for conducting this study.

2.4  Performance measures

We used mean absolute difference and concordance correla-
tion coefficient measures to quantify the performance levels 
of algorithms. Given a pair of true age and estimated age, 
the error, e, is defined as

Fig. 5  Hand images obtained by applying different ROI schemes

Fig. 6  Cropped and histogram equalized images

Fig. 7  Overall processing flow—preprocessing and deep learning stages
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The sum of absolute errors is sume =
∑n

k=1
�â − a� , 

and mean absolute difference (MAD) er ror is 
MAD =

∑n

k=1
�â − a�∕n . Often in clinical applications, it is 

needed or critical to have a low level of fluctuations in per-
formance. Concordance correlation coefficient (CCC) [16] 
quantifies the stability in performance, which is defined as:

Here ρ is Pearson’s correlation coefficient, σ is standard 
deviation and μ is mean.

2.5  Neural network: architecture and weight 
setting

Deep learning neural network is typically built up by cascad-
ing a series of layers each performing distinct kinds of oper-
ations. An example architecture is illustrated in Fig. 8. Con-
volutional layer consists of two dimensional array of tiles 
which perform numerical convolution operations on inputs 
which are processed results from previous stages. Max pool-
ing layer typically follows a convolution layer and performs 
maximum response value sampling. Fully connected layer 
has exhaustive edge connections to neurons from its preced-
ing layer. Layers in later stages in the network get tuned to 
more specific patterns of image during the course of training 
and exhibits higher response specificity. The release version 
of Caffenet and many others assume classification tasks. The 
comprising layers of networks were changed to suit to the 
present regression task.

e = â − a and absolute error as e = |â − a|

�c =
2��x�y

�2
x
+ �2

y
+
(
�x − �y

)2

2.6  Training iteration

Training deep learning network aims at finding a suitable 
performance level as close as possible to global optimum. 
A number of parameters are involved in the training pro-
cess. Typically, deep learning process entails the determi-
nation of a large number of weight values for edges. On the 
other hand, the amount of data available for training are 
far less—often counting tens to hundreds. This imbalance 
may lead to overfitting of model to training data where 
model is highly tuned to supplied training data and fails 
to generalize to unseen data.

It is often believed the primitives that compose image 
characteristics such as edges, corners and blobs are rather 
general to recur over different image instances. Then spec-
ificity of an image instance is determined by the combina-
tion and spatial arrangement of the primitives. The layers 
which typically are placed in the later part of neural net-
work including convolutional layers and fully connected 
layers will be suitable for finding such arrangement.

Imagenet [17] is an image database which includes 
more than one million image instances in more than a 
thousand image categories. This order of training data set 
size may facilitate a more proper determination of edge 
weights than a smaller size training data set. Pre-trained 
weight configuration files on ImageNet data are available 
for most of widely used deep learning architectures, which 
were obtained after a large number of training iterations. 
Hence an approach to remedying the data size imbalance 
issue was to take the pretrained weights as a starting con-
figuration and apply problem-specific data to fine tune the 
weights towards specific learning goal.

Fig. 8  An illustration of deep learning neural network architecture
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3  Results

The RSNA dataset comprises of more than 12 thousand 
images of hand bone X-rays. In following, 2000 randomly 
selected images were used for training and 800 images 
for testing.

3.1  Gender agnostic models and gender aware 
models

The established maturity rate difference due to gender dif-
ference implies a level of growth is attained at distinct ages 
by male and female cohorts on average [18, 19]. Hence 
needed are models which reflect subjects’ gender. Figure 9 
indicates decrease in errors in linear and log scales from a 
session of training iterations. There was substantial differ-
ence in performance between models that distinguish gen-
der and do not (Table 1). For Googlenet, the mean MAD 
of gender aware models was 10.380 while the MAD of 
gender agnostic models was 12.642. These results clearly 
show gender aware models fare better than gender agnostic 
models which is in accordance with well known gender-
wise growth rate difference. Overall higher level of MAD 
errors is seen for female cohort. It may be hypothesized 
that relatively higher growth rate of female cohort causes 

greater deviation from the nominal growth trajectory for 
individual subjects.

3.2  Network architectures

Since the introduction of the Alexnet [20], numerous archi-
tectures have been proposed. In addition to the sequential 
arrangement of the distinct kinds of layers, they may be 
distinguished one from another by the depth and the inter-
connection between the layers. Caffenet has a rather shal-
low 8 layers deep architecture. On the other hand, Resnet 
used in here is made up of 50 layers far surpassing the 
layer count of other architectures. In this experiment, we 
compared different deep learning architectures—Caffenet, 
Resnet and Googlenet. Gender specific models were used 
in what follows (Table 2).

Overall googlenet showed the lowest error of 
8.890 months. Caffenet showed a decent 12.272 months 
error, despite its simple network structure. Increased 
number of layers in general necessitates larger number of 
operations. Hence the adoption of more complex archi-
tectures may be justified only by commensurate increase 
in performance. In this regard, Caffenet may be regarded 
as a simple yet effective architecture. The performance 
of Resnet is somewhat counter-intuitive, considering the 
highest level of complexity of its architecture. A more 
carefully set training parameters may realize its full per-
formance potential.

Fig. 9  Loss error versus iteration in linear and in log scales

Table 1  Error levels of gender agnostic and gender-aware models

MAD mean absolute difference

MAD (male, female)

Caffenet, gender-agnostic 16.933
Caffenet, gender-aware 12.649 (12.272, 13.026)
GoogleNet, gender-agnostic 12.642
GoogleNet, gender-aware 10.380 (10.186, 10.573)

Table 2  Performances by different network architectures

MAD (female) CCC 

Caffenet 12.272 0.904
GoogleNet 8.890 0.941
Resnet 15.366 0.855
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3.3  ROI schemes

Hand in X-ray images may appear in a wide range of angular 
and locational displacements. Despite the learning capacity 
of deep learning networks, irrelevant appearance variability 
of objects may negatively impact the inferential capability 
and hence lower their overall performance. In particular, 
fingers typically assume wider variability in pose, contrary 
to the palm. In the third experiment, we tried to assess the 
tradeoff between the informativeness and age-unrelated vari-
ation of different hand regions by comparing performances 
obtained with ROI 1, 2 and 3. Overall, using the smallest 
ROI produced the best result (Table 3).

For note, image augmentation did not produce substantial 
performance difference from the case of no data augmenta-
tion (data not shown) [21].

4  Discussion

Traditional hand bone age atlases relied on data that were 
compiled decades ago which may not reflect the stature and 
growth rate changes over the many generations. Time and 
labor cost consideration rather discourages atlas based man-
ual estimation. We assessed the trade off and performance 
implication from including different hand bone regions. 
Rather surprisingly, mostly relying on carpal and metacar-
pal bones while nearly excluding phalanges produced lowest 
level of estimation errors. This suggests entire hand region 
images do not have to be included in estimating bone ages 
and having palm regions intact may be just sufficient.

With a rather simple approach, a quite decent error level 
of 9.35 months was achieved. Males and females are known 
to follow different rates of growths, with boys lagging girls 
by 12–18 months in attaining growth milestones. Accord-
ingly, models distinguishing genders were built. A more 
elaborate estimation method could incorporate subroutines 
such as region segmentation to further reduce age-unrelated 
image variation and feature point detection for image reg-
istration. Compared with full-fledged estimation method, 
our approach requires minimal development efforts and 
still produces a decent performance level to be competent 
in clinical application fields. Possibly, a large part of perfor-
mance is contributed by the use of deep learning network 

which enables efficient mapping of input image to estimation 
objective in a close to optimal manner.

It is well known infants show larger variance from nomi-
nal bone growth states than older ages, and clinical data in 
the range is far scarcer. Despite the difficulty and negative 
performance implication from dealing with infant data, we 
did not exercise data exclusion based on specific age range 
criteria and included entire age ranges data in our study. 
Further segregating data by age ranges and training models 
separately may improve overall estimation performance.

We plan to implement aforementioned routines to realize 
a fully streamlined end to end age estimation process and 
to improve performance. The aging process as manifested 
in hand bones is known to be rather nonlinear with particu-
larly rapid morphological changes taking place in certain age 
intervals. Then there’s chance a classification neural network 
may fare better than regression model for such highly non-
linear input–output response relation. Classification neural 
network may also be implemented and its performance com-
pared with regression network in our future work.

The practice of bone age estimation typically purposes to 
assess whether a subject is in a normal growth regime and 
to diagnose any growth problems of diverse origins, etc. So 
having chronological age information of subject available is 
a clinically reasonable assumption and then it’s plausible to 
build an estimation model with such information available. 
The available age information may be used to performance 
advantage. We also plan to implement such model in the 
future and assess its performance.
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