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Abstract
Monte Carlo (MC) simulation for light propagation in scattering and absorbing media is the gold standard for studying the 
interaction of light with biological tissue and has been used for years in a wide variety of cases. The interaction of photons 
with the medium is simulated based on its optical properties and the original approximation of the scattering phase func-
tion. Over the past decade, with the new measurement geometries and recording techniques invented also the corresponding 
sophisticated methods for the description of the underlying light–tissue interaction taking into account realistic parameters 
and settings were developed. Applications, such as multiple scattering, optogenetics, optical coherence tomography, Raman 
spectroscopy, polarimetry and Mueller matrix measurement have emerged and are still constantly improved. Here, we review 
the advances and recent applications of MC simulation for the active field of the life sciences and the medicine pointing out 
the new insights enabled by the theoretical concepts.
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1  Introduction

The same breakthrough in the field of non-operative diag-
nostic methods as provided by X-ray and computed tomog-
raphy at the time can now be expected from optical imaging 
due to the use of non-ionizing radiation and its non-invasive-
ness [1]. Diffuse reflection spectroscopy (DRS), near infra-
red spectroscopy (NIRS), diffuse optical tomography (DOT), 
Raman imaging, fluorescence imaging, optical microscopy, 
optical coherence tomography (OCT) and photoacoustic 
(PA) imaging are among the widely used optical methods 
in biomedicine and their potential is by far not fully explored 
[2].

Modeling the propagation of light in a medium is based 
on the characteristics of absorption and scattering which 
dominate during the propagation of light in biological tis-
sues. Experimental studies and methods of optical imaging 
mainly consist in the study of the characteristics of the light 
which is scattered back to the detector. The photons exit the 
tissue after either elastic or inelastic scattering in the media. 
In particular, inelastic scattering carries the molecular sig-
nature of the medium and is used, for example, to visualize 
Raman scattering.

A common approach to simulating the propagation of 
light in a medium is to use the radiation transfer equation 
(RTE). Several numerical solutions for the RTE have been 
proposed, based on suitable approximations, but effective 
solutions for a heterogeneous medium (tissue) are still a 
problem [3].

In this review, we consider the advances in the simu-
lation of light–tissue interaction using MC methods, and 
discuss the main achievements of these methods as well as 
new applications in biomedical research and engineering. 
The first three sections are devoted to the basics of the MC 
approach for modeling the interaction of light and biotissue 
in the scattering approximation. In the following section, 
we discuss MC approaches in optical coherence tomogra-
phy. Then, the modeling of Raman scattering in biotissue is 
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presented. Finally, the last section is devoted to the appli-
cations of MC-based methods to polarimetry and Mueller 
matrix measurement.

2 � Monte Carlo simulation for biotissue 
modeling

In general, in MC simulations, a large number of photons 
is propagated through the medium (tissue) under study. In 
the frame of the current paper, the term photon denotes 
a package of photons with the same trajectory. Photons 
can undergo reflection, refraction, absorption, or scatter-
ing [4–10]. In these cases, the photons can be reflected, 
refracted, absorbed or scattered, respectively. The opti-
cal properties of the medium such as refractive index (n), 
absorption coefficient (μa), scattering coefficient (μs), and 
scattering anisotropy (g) determine the path traced by the 
photons in the medium. The absorption coefficient (μa) is 
defined as the probability of photon absorption in a medium 
per unit (infinitesimal) path length [1].

The MC approach is based on the variation of a statistical 
weight of the photon package and equivalent to modeling 
of the propagation of a group of photons along each pos-
sible path in the medium. This is achieved by assigning an 
initial statistical weight W0 to each photon package. When 
performing the next propagation step of the photon packet, 
this weight decreases exponentially due to the random walk 
of the photons in the multiple scattering and absorbing 
medium. Finally, when the statistical weight becomes small, 
a method known as “Russian roulette” gives each photon 
a chance to continue its path with a weight of n·W, where 
n is a number between 10 and 20. Otherwise, the photon 
is absorbed completely. This scheme saves computational 
resources and is designed to balance the incident radiation 
with absorption and dispersion of radiation in the medium. 
It has the disadvantage that the length of the photon path 
in the medium increases unnecessarily, which affects the 
distribution of photon paths and gives the method some 
uncertainty. The physical interpretation is also complex and 
controversial [4].

An MC method, which combines the statistical weight 
scheme and efficient modeling of the optical path of photons, 
was implemented in [5, 6]. This approach eliminates the 
problem of energy conservation that occurs in the “Russian 
roulette” method and avoids additional calculations for inter-
pretation of the results. The approach is based on modeling 
a large number of possible trajectories of photon packets 
from the source to the detector. The simulation of an indi-
vidual photon packet trajectory consists of a sequence of the 
following elementary steps: generation of the photon path 
length, scattering, and refraction (ultimately at the boundary 
of the medium). The initial and final states of the photons are 

completely determined by the geometry of the source and 
detector and the numerical aperture of both.

The medium in which the light propagation is simulated 
can be defined as an infinite or semi-infinite geometry 
depending on the simulation needs. For scattering, the polar 
angle θ and the azimuthal angle φ of the scattered photon 
depends on the optical properties of the tissue and random 
value sampling. The angle θ is computed using the 
Henyey–Greenstein (HG) phase function, which is 
p(cos �) =

1−g2

2(1+g2−2g cos �)
3∕2  and φ = 2πξ where ξ is a uni-

formly distributed random number ξ = [0, 1]. However, the 
choice of the phase function is not limited to the classical 
Henyey–Greenstein function. Several authors [7, 8] also 
introduce a Markov chain solution to model photon multiple 
scattering through turbid media via anisotropic scattering 
processes, i.e., Mie scattering. Results show that the pro-
posed Markov chain model agrees well with the commonly 
used MC simulations (employing the Henyey–Greenstein 
function) for various media such as ones with non-uniform 
phase functions or even absorbing media. The proposed 
Markov chain solution method uses practical phase functions 
and successfully converts the complex multiple scattering 
problem into a matrix form. It computes the transmitted/
reflected photon angular distributions by relatively simple 
matrix multiplications.

3 � Reduced models for multiple scattering 
simulation

Beyond using RTE and MC approaches, many studies 
focused on developing reduced models for multiple scat-
tering processes. Such efforts include the Random Walk 
theorem [11, 12], empirical predictions [13], and adding-
doubling methods [14], among others. These methods typi-
cally use simplified analytical expressions to predict the 
behavior of experimental details, such as the distribution of 
total transmission, average cosine of scattering, and distance 
traveled. The use of simple phase functions in these models 
for describing, for example, the scattering anisotropy g or 
isotropic scattering also has drawbacks. Such simplifica-
tions, although they give reasonable results for some aver-
aged observations, cannot distinguish between similar phase 
functions, for example, phase functions with the same g, but 
completely different probability density functions (PDFs) of 
the photons inside the tissue. Another problem is the limita-
tion when working with anisotropic scattering, absorbing 
media and/or non-uniform distributions of optical density 
(OD)/phase functions.

In one example, the Markov chain approximation is used 
to simulate photon multiple scattering through a turbid slab 
exhibiting anisotropic scattering [7]. The proposed Markov 
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chain approximation is considered superior to the MC simu-
lation in handling such problems as it re-formats them into 
the already mentioned matrix form, allowing feasible input 
parameter studies and inversion studies for such complex 
cases. With the matrix form of the Markov chain approxi-
mation, one can easily re-write the cost or error function as 
Qsimulation − Qmeasurement and then minimize this function to 
infer the desired quantities in a fashion similar to the proce-
dure in [15]. In this context, it is worth noting that there have 
also been successful experimental investigations in reflected 
photon angular distribution measurements confirming the 
simulations [16].

4 � Beam spread function approach 
for optogenetics

In recent years, optogenetics has become a central research 
area in neuroscience. For example, estimating the trans-
mission of visible light through brain tissue is of crucial 
importance for controlling the activation levels of neurons 
in different depths, designing optical systems, or estimating 

and avoiding lesions from excessive power density exposure 
[17]. Two modified approaches for modeling the distribu-
tions of light emanating from a multimode fiber and propa-
gating through scattering tissue are introduced and studied, 
using both realistic numerical MC simulations and an ana-
lytical approach based on the beam spread function (BSF) 
concept (Fig. 1). Good agreement of the new methods’ pre-
dictions both with recently published data and with meas-
urements in mouse brain cortical slices is demonstrated. In 
the latter case, results yield a new cortical scattering length 
estimate of ~ 47 µm at λ = 473 nm, significantly shorter than 
ordinarily assumed in other optogenetic applications.

These results put forward the beam spread function (BSF) 
method as a viable analytic approach to better understanding of 
light propagation and interactions in optogenetics and related 
fields, while using the Kubelka–Munk (K–M) model based 
on one parameter only, the scattering coefficient μs, appears 
inadequate. The K–M model has a particularly simple solution 
in the case of semi-infinite samples. All the geometric features 
of the inhomogeneous sample are combined into a single semi-
empirical parameter to take into account the internal scatter-
ing processes, i.e. the scattering coefficient μs. Generally, the 

Fig. 1   a Simulation key points: 
in the 1st stage the 3D pencil-
beam response is calculated, 
in the 2nd stage the angular 
convolution of the pencil beam 
response, and in the 3rd stage 
the spatial convolution with 
the fiber tip area. b Simulation 
outcomes for the three simula-
tion steps. All figures are given 
in log scale. c Schematic of the 
experimental setup. Reproduced 
from [17], with permission
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scattering coefficient μs depends on the particle size and the 
refractive index of the sample, while in the K–M model it 
is assumed to be constant. In fact, the scattering coefficient 
changes slowly with wavelength. More importantly, it changes 
significantly with packing density. According to the authors, 
the BSF can be used both to calculate the distribution of light 
in the brain tissue and to estimate optical parameters from 
measured attenuation curves [17].

The BSF method [18] approximates the distribution of 
light in strongly scattering media, taking into account the 
effects of higher order photons propagating via several paths 
of different lengths. It also allows to calculate time disper-
sion of the light intensity. In this approach, the Green’s func-
tion is an analytical approximation for the unidirectional 
propagation of a pulsed source in a turbid medium. The 
simulation time of the BSF approach of a pencil beam is 
considerably smaller than for the MC approach at compara-
ble accuracy. The accelerated gradient search method was 
implemented by Beck and Teboulle [19] to find the scatter-
ing coefficient and anisotropy factor [20, 21].

In order to describe the above optogenetics problem with 
MC simulations several aspects need to be addressed. At the 
heart of the MC method is the assumption that the medium 
is homogeneous. Therefore, one of the problems, among 
others, is the assumption of homogeneity of the brain tis-
sue. However, the cortical layers of the brain have differ-
ent cytological properties and necessarily different optical 
parameters. They can be obtained by fitting the attenuation 
curve in parts, using histologically determined layers Azi-
mipour et al. [22].

As mentioned above, in vivo methods in optogenetics are 
widespread. However, to date, the effects of direct exposure 
of brain tissue to light have not been studied in detail and 
require additional research. Special attention is attracted by 
the effect of heat release and heat transfer in biological tis-
sues induced by prolonged optical stimulation, as discussed 
in [23]. In the same work it is shown that high-intensity 
light delivered through an optical fiber can locally increase 
the rate of excitation of neurons, taking into account the 
properties of the environment. Therefore, the creation of a 
dosimetry model to predict an increase in temperature dur-
ing optogenetic stimulation is a very important task. A real-
istic model is required that simulates the propagation of light 
and heat during optogenetic experiments which is currently 
still under study.

5 � Monte Carlo approaches in optical 
coherence tomography

Optical coherence tomography (OCT) is a non-invasive 
technique which enables fast imaging with high resolution 
down to the few micrometer range. For the needs of modern 

medicine, such high-speed imaging techniques are widely 
required. This approach is advanced by recent developments 
in the field of tunable laser technologies and miniaturiza-
tion concepts [24–27]. Simulations were developed along 
with the technology and meanwhile even take into account 
additional parameters of the setup such as realistic geometric 
and interferometric conditions as well as requirements for 
detection [28]. Most numerical approaches so far are based 
on the MC method. Smithies and co-workers [29] developed 
an MC OCT model taking a geometrical implementation of 
the OCT probe with low-coherence interferometric detection 
into account. It was found that OCT, in general, detects only 
minimally scattered photons. Alerstam and co-workers [30] 
described a highly optimized MC code package for simulat-
ing light transport developed on NVIDIA graphics process-
ing units (GPUs). It is built for general-purpose computing 
Fermi GPU micro architecture.

In [31], a simple and effective model based on the MC 
method for simulating OCT signals, scattering coefficients 
and the effect of multiple photon scattering with increasing 
concentration of scatterers is presented. It is important to 
note, that although the model accurately estimates the opti-
cal parameters of sample, it does not require the inclusion of 
more complex effects, such as dependent and multiple scat-
tering. Instead, a certain weight function is introduced that 
describes the different orders of multiple scattering events.

Practice shows that the main problem in quantitative 
OCT measurements is the linear dependence of the scat-
tering coefficient µs on the concentration of diffusers, in the 
case of weakly scattering homogeneous media. In the case 
of strong scattering, the dependence becomes nonlinear and, 
therefore, more complex. The model developed in [31] is 
capable of accurately predicting this non-linearity and has 
the potential to be extended to OCT studies of biological 
tissues and the corresponding determination of optical prop-
erties in the future.

Chumakov et al. [32] report on the investigation of the 
vector method for modeling of the propagation of polarized 
electromagnetic radiation with small coherence length for 
application in polarization OCT. The MC method was used 
to model the coherent effects of multiple scattering, and a 
comparison was made with an iterative approach to solving 
the Bethe–Salpeter equation [33]. Multiple scattering was 
determined as the sum of partial contributions correspond-
ing to each registered photon, taking into account the func-
tion of time coherence

where Wi is the statistical weight of the photon, ΔLi the 
optical path difference for this photon and a photon in the 

(1)IOCT (�) =

Nph
∑

i=1

Wi cos

(

2�

�
ΔLi

)

exp

[

−4lg2

(

ΔLi
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reference arm, λ the wavelength of a radiation source in 
the medium, and Nph the sampling power. The expression 
describes the time delay of scattered radiation with respect 
to the reference signal. After time averaging, it gives rise to 
an additional stochastic background in the form of speckles.

In the proposed MC vector model, an important param-
eter is the polarization vector P of the radiation, which can 
measure changes in the electromagnetic field when propagat-
ing through a medium. The simplicity of the calculations of 
the polarization vector at the output of the medium with the 
co-polarized and cross-polarized components of the scat-
tered field is an advantage of the vector approach compared 
with methods based on the Mueller matrix, see below.

6 � Raman spectroscopic simulation based 
on efficient Monte Carlo concepts

Raman spectroscopy has advantages compared with other 
spectroscopic methods widely used in the life sciences, for 
example, approaches based on fluorescence detection. First, 
Raman signals do not bleach and secondly, Raman lines/
bands are spectrally narrow, which improves discrimination 
of signals in complex media [34]. Research on the use of 
Raman spectroscopy for biological tissues is maturing only 
slowly, and at this stage, quantitative analysis of spectro-
scopic combination signals in biological tissue is difficult. 
Typically, biological samples contain a variety of molecu-
lar species, and, in addition, measurements are altered by 
the attenuation of the combinational signal through self-
absorption in the tissue. Realistic numerical simulation of 
the process of Raman scattering can help in carrying out 
a quantitative analysis of Raman spectra, which is highly 
desirable. However, approaches are still scarce and often 
take a long time. Numerical simulation of Raman scatter-
ing consists of two stages: (1) the calculation of the photon 
fluence at each point of the medium and (2) the subsequent 
generation of the corresponding number of Raman scattered 
photons at each point.

To effectively simulate Raman scattering in turbid media 
irradiated with light, two different methods have recently 
been published [35]. Both approaches use the MC method to 
simulate the Raman process. In the first approach, the direct 
method, it is assumed that the absorption coefficient µa(λRaman) 
and the coefficient of Raman scattering µs(λRaman) are constant 
throughout the sample for a given wavelength of the Raman 
photon λRaman. With the photon propagating into the medium, 
with some probability PRaman, re-emission of a new photon, 
the Raman scattered photon can occur (Fig. 2). The value of 
PRaman is constant for each step, since the scattering length, 
i.e., the photon path between the individual scattering events, 
is also assumed to be constant. A Raman photon can propagate 
through a medium with a random direction for the next step, 

which corresponds to isotropic scattering. The optical proper-
ties of the medium at a specific wavelength of the Raman scat-
tered light λRaman are used to propagate the photons in the next 
step. To generate a reasonable amount of combinational pho-
tons in this one-pass approach, the estimated value of PRaman is 
chosen quite (unphysically) large (PRaman = 0.01). Realistically, 
PRaman needs to be set five to ten orders of magnitude smaller 
than the Rayleigh (elastic) scattering probability. However, 
according to the work of Everall et al. [36] the assumption 
employed in [35] is well justified.

The second approach, the so-called two-step method, cre-
ates sufficient Raman scattered photons without increasing 
PRaman or the number of incident photons. The first step here 
is identical to the MC code in [14]. It simulates the propaga-
tion of the incident photons through the sample, which results 
in a photon deposition distribution of the excitation (parent) 
photons Aex(r, z). In combination with the absorption coef-
ficient µa this determines the spatial distribution of the excita-
tion photons Φex(r, z) within the sample. In the second step, 
Raman scattered photons are launched from each point where 
“parent” photons were absorbed with isotropically distributed 
directions and a weight of

where r represents the radial coordinate in the isotropic case. 
The Raman coefficient µRaman is comparable with the Raman 

(2)WRaman = �ex(r, z) ⋅ �Raman,

Fig. 2   General scheme of the Raman MC simulation model used 
for both the direct and the two-step method. In the direct approach, 
the initial photon (package) moves in a medium and can be Raman 
scattered at any moment. In the two-step approach, the propagation 
of Rayleigh photons is modeled first. At each step (circles) where 
absorption occurs some of the photons from the packet are terminated 
and Raman photons are launched and propagated as well. Solid lines 
show the trajectories of elastically scattered photons, the trajectories 
of Raman scattered photons are represented by dashed lines. While 
z denotes the depth of the sample, r denotes the distance from the 
center of illumination, that is, the radial coordinate. Reproduced with 
permission from [35], [OSA Publishing]
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probability PRaman of the direct method. If just a single pho-
ton at each unit volume of the sample was created, this 
would not lead to a large enough number of photons required 
to obtain suitable statistics in the simulations. Therefore, the 
described algorithm creates any desired number of photons 
within the sample. The distribution of the photons starting 
in the second step of the process is similar to the excitation 
photon distribution Φex. In other words, Φex(r, z) is scaled 
with the number of photons intended to be allocated in the 
simulation grid which is determined by Aex(r, z).

Furthermore, in the work of Reble et al. a method that 
could correct Raman signals for the influence of opti-
cal properties in a large parameter range without a priori 
assumptions of the absorption and scattering properties 
was investigated [37]. Possible correction functions were 
employed to correct the Raman signals for the influence of 
the tissue optical properties.

Everall et al. [36] used MC simulations to study the time-
resolved migration of Raman and Tyndall photons, i.e. pho-
tons scattered by particles with sizes on the order of the 
wavelength of the light, in opaque samples with isotropic 
and direct scattering. A suitably large value of the probabil-
ity of Raman scattering (PRaman = 0.01) was used to model a 
sufficient number of photons, for statistical reasons. So far, 
most models are based on a two-step approach for Raman 
modeling, similar to fluorescence modeling, and only a few 
papers directly implement Raman photon scattering.

In [35] a comparison between the two simulation meth-
ods, the direct method and the two-step method, was 
performed. For both cases, the spatial distribution of the 
absorbed light for Raman scattering in a medium that is 
illuminated with a laser beam of finite beam dimension was 
calculated. The simulations are realized using the NVidia 
CUDA technology to increase the calculation speed and are 
optimized for high-precision.

Both methods have advantages in different parameter 
regimes, and, as the comparative study shows, the results are 
generally in good agreement. Furthermore, both approaches 
work with acceptable photon statistics. However, the two-
step method usually leads to a smoother photon distribution 
or absorption profile, because the launch of new Raman scat-
tered photons in the second step provides a good statisti-
cal representation of stochastic events. The implementation 
of the two-step method is clearer and simpler and does not 
require major modification of the source code MC or an 
unrealistically large number of PRaman. The direct method, 
on the other hand, has the advantage that its procedure is 
closer to the actual processes in a laser-illuminated medium 
that is Raman active.

One of the main applications of Raman spectroscopy is to 
measure the chemical composition of a sample, which can 
then be used to extract static or dynamic biological infor-
mation from that sample. Increasing the accuracy of Raman 

spectroscopy models in scattering media, such as biological 
tissue, requires more precisely defined optical parameters 
of the medium, accurate detector parameters and the sample 
geometry to be included in the model. As an example, two 
cases were studied that represent some of the most common 
configurations in Raman spectroscopic studies: a confo-
cal Raman setup and a fiber-optic probe setup. In addition, 
with regard to the samples under study, the model effectively 
simulates Raman signals for different single and multilayer 
samples with arbitrary geometry, including both focused and 
collimated lasers for excitation as well as different values of 
the numerical aperture NA of the optics and the radius of 
the exciting beam, respectively [38].

For convenience, the model introduces the concept of 
a cross section for Raman scattering or, alternatively, the 
probability of a Raman scattering event, μRaman, similar to 
the cross section for elastic scattering [21, 35, 37, 39, 40]. 
The advantage of using this parameter lies in the fact that 
for each simulation step it represents the probability that the 
photon in question is re-emitted as a Raman photon. When 
calculating the photon distribution the two-step model is 
thus more beneficial [35]. Given the fact that the process of 
Raman scattering is very weak, this approach greatly accel-
erates the simulation of Raman scattering, which is man-
datory for modeling complex environments and geometries 
[35, 41–43].

When designing a Raman setup for conducting experi-
ments, the signal is usually obtained in reflection mode. 
However, as shown by the simulations, large values of the 
scattering or absorption coefficients of the samples lead to 
a decrease in the intensity of the Raman signals on the sur-
face [38]. In addition, the existence of boundaries between 
individual layers of a multilayer medium where each layer 
exhibits different optical properties has a significant effect 
on the distribution of the optical radiation inside the sample 
and the detected Raman signal outside the sample. Differ-
ences in absorption and scattering as function of wavelength 
lead to a change in the fluence of the Raman photons and the 
detected Raman intensity. This fact is usually crucial when 
Raman spectroscopy is to be used as a quantitative measure-
ment tool. Thus, incorporating self-absorption of the Raman 
signal in biological media potentially allows for quantitative 
measurements in the future [38, 44].

In another study, an attempt to model Raman scattering 
of normal human skin in the near infrared (NIR) wavelength 
range was addressed [45]. An eight-layer skin model was 
built with transport parameters adapted from a number 
of publications. The calculation of the 785 nm excitation 
light distribution inside the model medium was performed 
directly with the MC code from Wang and Jacques [4]. The 
code was modified to simulate the Raman escape process 
from the medium. It was assumed that the exit process of a 
Raman photon is similar to the exit of a fluorescence photon 
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from inside the tissue. Therefore, the same modeling proce-
dures that were developed in fluorescence modeling [46–49], 
were used to simulate Raman scattering, which consist of 
the following steps:

1.	 Calculate the excitation light distribution inside the 
model skin.

2.	 Calculate the escape functions for different wavelengths 
and at different depths.

3.	 Calculate the Raman detection efficiency as a function 
of wavelength for different skin layers.

4.	 Calculate the simulated Raman spectra.

Raman spectra of ex vivo normal skin tissue sections were 
measured to quantify the different intrinsic micro-spectral 
properties of the skin layers [45]. The reconstructed skin 
Raman spectrum was compared with clinically measured 
in vivo skin spectra to verify the utility of the modelling 
approach, see Fig. 3. To obtain the reconstructed Raman 
spectra, a convolution of the intrinsic spectra with the MC 
simulation results of the excitation light distribution and the 
Raman photon escape efficiency was performed. The simula-
tions suggest that the majority of the measured in vivo skin 
Raman signals come from the dermis (70%) and the epider-
mis (28%). The stratum corneum, although very thin, still 
has non-negligible contributions (1.3%) due to its near-to-
surface location which facilitates escape of the Raman pho-
tons. The contribution of the subcutaneous layers is also not 
negligible (1.1%) due to its much higher Raman scattering 
efficiency compared to other tissue layers (4–5 times higher 
than those of the epidermis/dermis), although it is located 
deep inside the skin. In essence, an overall good agreement 
between simulated and measured data was obtained.

7 � Polarimetry and Mueller matrix 
measurement

All necessary information for analyzing the polarization 
changing properties of a biological sample is contained in 
the Mueller matrix. It can be calculated from images of a 
sample taken with different polarization states of the illumi-
nating and the observed light. Using the Mueller matrix it is 
then possible to calculate the Stokes vector of the outgoing 
light 

(

S⃗o

)

 after interaction with a medium for incoming light 
with Stokes vector ( ⃗Si ) according to (S⃗o) = MMM ⋅ (S⃗i) . Thus, 
the potential opens up that Mueller matrix imaging polarim-
etry becomes a new and possibly very efficient technique for 
the optical biopsy and cancer staging. Usually, this is cur-
rently tested by measuring on ex vivo samples of human 
tissue, as in vivo measurements are often not feasible. Multi-
spectral polarimetric images performed, for example, on 
human colon and uterine cervix samples reveal an enhanced 
contrast between healthy and cancerous zones compared to 
the unpolarized intensity images [50].

In this approach, the MC method was applied to simulate 
the Mueller matrices of tissue samples and also for better 
understanding of the physical origin of the observed polari-
metric contrast [51–53]. Such an approach requires the use 
of multi-layered optical tissue sample models. Thus, the 
tissue is treated as a multi-layer medium where each layer 
is characterized by the anisotropy factor g, the absorption 
coefficient μa, the scattering coefficient μs, and the refractive 
index n. Optical properties are assumed constant for each 
layer. Through repeated modelling experiments, it was found 
that the optical properties of different layers and the corre-
sponding layer boundaries strongly influence the distribution 

Fig. 3   (Left) intrinsic Raman 
spectra measured from different 
layers of an unstained excised 
normal skin sample. (Right) 
NIR auto-fluorescence image 
of the skin section showing 
the measurement locations. 
Reproduced from [49], with 
permission
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of photons in the medium. For sufficiently large scattering 
and absorption coefficients, the largest number of photons is 
scattered or absorbed in the upper layers of the tissue [38]. 
The detailed analysis of the simulation results and experi-
mental studies show that objects that are sufficiently small 
compared to the wavelength of light are the main sources of 
back-scattering events in the tissue [50].

The analysis of the measured Mueller matrix of a sam-
ple begins with the decomposition of the final matrix into 
a product of elementary matrices with known polarimetric 
properties. Such a decomposition can be obtained by various 
approaches. In some studies, the Lu–Chipman decomposi-
tion was applied [54, 55], where the Mueller matrix M of 
image samples is decomposed pixel-wise into the product 
of three matrices:

where MΔ, MR, MD are the matrices of a depolarizer, a 
retarder and a diattenuator, respectively. This can then 
be used for numerical analysis of the measured samples 
in terms of the effective scalar birefringence, orientation 
of the optical axis and depolarization. The general trend 
for the wavelength-dependent depolarization and scalar 
birefringence shows that Mueller matrix polarimetry is 
capable to differentiate between healthy and diseased tis-
sues [50].

In more detail, it was shown on ex vivo measurements of 
excised colon samples that tumor areas are less depolarizing 
than healthy areas at the early stage of cancer. Also, depo-
larization is always higher for circular polarization of the 
light incident to the sample compared to linear polarization, 
both for healthy and cancerous tissue [50, 52].

For comparison with the measurements, the Mueller 
matrix images of human colon tissue were simulated by 
MC techniques using the above mentioned multi-layer tissue 
models with different scattering and absorption coefficients 
of the individual layers, see Fig. 4. Through the comparison 
with experimental data it was demonstrated that the meas-
ured values of depolarization for both circular and linear 
polarized incident light and for healthy and anomalous tis-
sues can be qualitatively reproduced only when small (com-
pared to wavelength of the light) scatterers are incorporated 
into the optical model [50].

Finally, Doronin et al. [56], in an effort to develop a uni-
fied MC code for biomedical optics and biophotonics appli-
cations, presented an approach for modeling of coherent 
polarized light propagation in highly scattering turbid media. 
In this approach, the temporal coherence of the light, linear 
and circular polarization, interference, and the helicity flip 
of circularly polarized light due to reflection at the medium 
boundary and/or back-scattering are taken into account. 
A Jones-based formalism was adapted to handle linear or 

(3)M = MΔMRMD,

circular polarization of coherent light traveling through a 
random turbid medium. The propagation of linear polarized 
light in a scattering medium is modeled in analogy to the 
iterative procedure of the solution of the Bethe–Salpeter 
equation [57]. Reported results and analytical solutions by 
Milne and the results of alternative modeling [58–61] are 
in good agreement for both linearly and circularly polar-
ized light. The approach also provides a certain flexibility 
to account for the optical properties of the medium and the 
light source and is realized as a part of a user-friendly and 
fast GPU calculation platform [56].

In [62], a theoretical model of the scattering of polar-
ized radiation was developed and simulation of OCT 
images was performed. Using an innovative interpreta-
tion of the MC simulation and a complex skin model, the 
authors obtained expressions for the contribution of the 
co-polarized and cross-polarized radiation components to 
the OCT image of the sample (Fig. 5). An further aspect in 
related work is the possibility of modeling light propaga-
tion with and without taking speckle effects into account, 
which quantitatively demonstrates the influence of these 

Fig. 4   Intensity and Mueller matrix images of excised samples inves-
tigated using a optical radiation at 600 nm for human colon cancerous 
polyp and b at 500 nm for cancerous uterine cervix. Reproduced from 
[50], with permission
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effects in the formation of, for example, OCT images [63, 
64]. The capabilities of the developed code are illustrated 
by the good correlation with OCT images of human skin 
in vivo, compare also [65].

In a continuation of previous research, in [66] using 
Monte-Carlo simulation with GPU CUDA the propaga-
tion of cylindrical vector beams (CVB) in turbid tissue-
like scattering media was explored in comparison with 
conventional Gaussian laser beams. The authors also pio-
neered the application of MC for imitation of the propa-
gation of vector light beams in turbid media. The results 
are compared with the results obtained by experiment 
and show good agreement both quantitatively and quali-
tatively. The model developed by the authors includes 
the coherent properties of light, taking into account the 
effect of total reflection and refraction at the boundary 
of the medium. A distinct aspect of the model is the fact 
that it also takes into account the mutual interference of 
the polarization components of the CVB wavefront due 
to scattering in the medium. It was shown that the degree 
of contrast achieved when using CVBs is at least twice as 
large compared to conventional linearly polarized Gauss-
ian beams after propagation in a turbid tissue-like scat-
tering medium.

8 � Summary

The MC based simulation of light propagation in biologi-
cal tissue has emerged to an important tool for understand-
ing the subtleties of the light–matter interaction in complex 
media relevant to the fields of medicine and the life sciences, 
for example. Apart from efficient simulation algorithms 
accurate modeling is the key for the recent advances in the 
field. New insights obtained from the simulations serve as 
valuable input for the design of novel instruments based on 
non-invasive, optical principles or facilitate the interpreta-
tion of measured data obtained from biological samples. 
The simulation methods presented in this review are mainly 
focused on biomedical optical imaging and spectroscopy 
[67]. However, they will likely influence further fields of 
application in the near future. Consequently, intense research 
is currently under way to develop more comprehensive 
and at the same time efficient simulation tools taking into 
account all aspects of the system itself as well as incorpo-
rating all relevant environmental influences. Also, the trend 
points towards the use of anatomically more realistic geom-
etries and the development of more user-friendly simula-
tion tools. As the field is already undergoing the translation 
from basic research to practical applications, for example, 

Fig. 5   a–c Experimental 2D OCT images of human skin in  vivo 
obtained for non-, co- and cross-polarized modes, respectively. Upper 
stratum corneum (1), lower stratum corneum (2), epidermis (3) and 
dermis (4) are clearly distinguished in the OCT images. d–f Simu-

lated 2D OCT images obtained for non-, co- and cross-polarized 
modes, respectively. The coherence length of the low-coherent light 
source is 15 μm. Reproduced with permission from Ref. [62], [OSA]
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in clinical environments or in the field, a large variety of 
optical systems with enhanced functionality are expected 
to evolve in the mid and long term. Further benefit will be 
generated by the ever increasing computing power available 
and artificial intelligence concepts such as machine learning 
and deep learning concepts which will likely also advance 
modeling and simulations as well as data analysis.
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