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Abstract
Segmentation of fundamental heart sounds–S1 and S2 is important for automated monitoring of cardiac activity including 
diagnosis of the heart diseases. This pa-per proposes a novel hybrid method for S1 and S2 heart sound segmentation using 
group sparsity denoising and variation mode decomposition (VMD) technique. In the proposed method, the measured pho-
nocardiogram (PCG) signals are denoised using group sparsity algorithm by exploiting the group sparse (GS) property of 
PCG signals. The denoised GS-PCG signals are then decomposed into subsequent modes with specific spectral characteristics 
using VMD algorithm. The appropriate mode for further processing is selected based on mode central frequencies and mode 
energy. It is then followed by the extraction of Hilbert envelope (HEnv) and a thresholding on the selected mode to segment 
S1 and S2 heart sounds. The performance advantage of the proposed method is verified using PCG signals from benchmark 
databases namely eGeneralMedical, Littmann, Washington, and Michigan. The proposed hybrid algorithm has achieved a 
sensitivity of 100%, positive predictivity of 98%, accuracy of 98% and detection error rate of 1.5%. The promising results 
obtained suggest that proposed approach can be considered for automated heart sound segmentation.

Keywords Phonocardiogram (PCG) · Group sparsity (GS) · Variational mode decomposition (VMD) · Denoising · 
Segmentation

1 Introduction

Phonocardiogram (PCG) is a plotting of the recordings of 
heart sounds and murmurs. It is a vital tool for the diagnosis 
of cardiac abnormalities including heart diseases, failures, 
rate and rhythm. The increased usage of PCG waveforms 
for cardiac diagnosis is due to its ease of capturing, simplic-
ity and low cost. It overcomes the limitations of acoustical 

stethoscope when it comes to storing, analysis and auto-
mated continuous monitoring. The PCG waveform contain-
ing two fundamental heart sounds namely first sound-S1 and 
second sound-S2. The S1 heart sound is low pitch sound of 
longer duration corresponding to the systole cycle (contrac-
tion) of heart. The S2 heart sound is of shorter duration with 
high pitch corresponding to the diastole cycle (relaxation) 
of heart. In addition to these, the PCG signals contain the 
diastolic low pitch sounds such as S3 and S4, different kind 
of murmurs and several anomalous sounds like clicks, snaps 
etc. [1]. The murmurs are caused by turbulence in hemody-
namics, vibration of tissues and valvular dysfunctions. Mur-
murs can be systolic or diastolic and can be of different types 
based on its timing and duration [2]. Identification of these 
events in heart sound is critical for automated cardiac analy-
sis, continuous monitoring and heart sound segmentation.

In literature, various approaches have been proposed for 
heart sound segmentation. A methodology based on mor-
phological and temporal features to detect heart sound events 
has been proposed in [3]. A total-variation (TV) based 
technique is proposed in [4] for heart sound segmentation. 
The TV-filtered PCG signal is processed further based on 
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Shannon entropy envelope and instantaneous phase [4]. 
The non-linear behavior of PCG signal will deteriorate 
the efficiency of instantaneous phase extraction stage is 
the limitation of this method. Many of the existing meth-
ods are based on specific features such as energy, entropy, 
statistical parameters etc. [5, 6]. One of the disadvantage 
of these methods is inaccurate segmentation in presence 
of artifacts. Transform-based approaches have been devel-
oped to overcome the disadvantages of feature-based tech-
niques. In transform-based approaches, the measured PCG 
signals are transferred into different modes and later these 
modes are segmented to detect the events. The examples of 
transform-based approaches includes wavelet transform [7], 
empirical mode decomposition (EMD) [8], variational mode 
decomposition (VMD) [9, 10] and empirical wavelet trans-
form (EWT) [2]. In [9], VMD combined Shannon energy 
method for heart sound segmentation is proposed. However, 
this method has poor performance under noisy scenarios. 
Additionally, the Shan-non energy envelope extraction 
results error in low amplitude events detection. VMD com-
bined Shannon entropy detection method (VMD-SEE) for 
fundamental heart sound segmentation has been proposed 
in [10]. This method offers an improved performance than 
[9], however, the denoising capability of VMD is not effi-
cient under abnormal situations such as murmurs and addi-
tional heart sounds. Thus, during high noisy situations this 
method results an erroneous detection. An automatic meth-
odology for identification of S1 and S2 sound using PCG 
and photoplethysmogram (PPG) recordings is proposed in 
[11]. In this method, the detection is done based on VMD 
algorithm. Logistic-regression technique [12], multifractal 
approach [13], deep neural network with mel-frequency cep-
stral coefficient (MFCC) features [1], hidden Markov model 
(HMM) [14] are also proposed for fundamental heart sound 
segmentation.

2  Objective and contributions

The objective of the present paper is to propose a hybrid 
method for fundamental heart sound segmentation using 
group sparsity denoising (GSD) and variational mode 
decomposition (VMD) algorithm. Even though VMD based 
heart sound segmentation is available in the literature, its 
performance is found to be decaying during noisy situations. 
Hence, there is a requirement of improving the performance 
in noisy situations by developing alternative approaches. 

This motivates us to develop a novel hybrid method for fun-
damental heart sound segmentation by combining GSD and 
VMD. In the proposed method, the distinct group sparse 
and periodicity property of PCG signals are utilized to 
achieve an efficient denoising. The denoised group sparse 
(GS)-PCG signals are decomposed using VMD into different 
modes with distinct spectral characteristics. The appropri-
ate VMD mode for further processing is selected based on 
central frequency and energy based mode selection criteria. 
Finally, Hilbert transform based envelope extraction and 
thresholding is performed to segment the fundamental heart 
sounds–S1 and S2. The efficiency of the proposed hybrid 
method is verified on different PCG signals having normal 
and abnormal characteristics.

3  Proposed hybrid method for fundamental 
heart sound segmentation

The overview of the proposed hybrid method is illustrated in 
Fig. 1. The major steps involved in the proposed method are 
(1) group sparsity denoising, (2) VMD decomposition, (3) 
appropriate mode selection, and (3) Hilbert envelope extrac-
tion and thresholding.

3.1  Group sparsity denoising (GSD)

Group sparsity (GS) is a characteristic property exhibited by 
many of the natural signals that the high-valued coefficients 
are occurring as isolated groups than isolated peaks. The 
group sparse signals exhibit periodic nature. The com-mon 
examples of group sparse signals are speech, vibration sig-
nals emanating from faulty bearings, bio-medical signals 
etc. and this peculiar feature is clear from the time-domain 
or frequency-domain spectrum of such signals [15]. Fig-
ure 2 shows the PCG signal and its spectrogram in frequency 
domain demonstrating the group sparse property of the PCG 
signal. The short-term Fourier transform (STFT) based 2D 
spectrum in Fig. 2 is not showing any isolated large magni-
tudes, but shows ridges of higher magnitudes. 

In recent years, the denoising of group sparse signals 
is an important research problem and several algorithms 
have been proposed [15, 16]. Group-sparsity have been 
employed in different applications such as image restora-
tion [17], machine condition monitoring [18], fault detec-
tion in rotating machines [19] etc. In the present paper, we 
have utilized the algorithm proposed in [16] for denoising 

Fig. 1  The overview of the 
proposed hybrid method for 
fundamental heart sound seg-
mentation
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the GS-PCG signals. The objective function to denoise the 
noisy PCG signal y ∈ RN is defined as the minimization of 
the cost function F(x) as,

where x ∈ RN is the denoised signal, and � is the regular-iza-
tion coefficient. The regularization term R(x) is defined as,

where � denotes the non-convex penalty function, K denotes 
the cardinality of the group or group size and xi;K denotes 
the starting index i of K th group. The parameterized arc-
tangent (atan) penalty function is utilized in this study and 
is defined as,

where 0 < a ≤ 1

K𝜆
 denotes the scalar parameter to enforce 

the convexity of the minimization problem. Further the 
problem defined in Eq. 1 is solved using Majorization-Min-
imization algorithm. In the present work, we have employed 
2D group sparsity algorithm by taking STFT of the PCG 
signal to get the 2D spectrum. The 2D array of STFT coeffi-
cients is created by taking discrete Fourier transform (DFT) 
of windowed blocks of PCG signal. In the 2D array, one 
column of Fourier coefficients represent one frame in time 
domain. However, a point in time domain will appear in 
two adjacent frames and hence contribute to Fourier coef-
ficients in two consecutive frames. This results an issue in 
reconstruction (or inverse transform). Hence to make the 
transform reversible, a point in time-domain should distrib-
ute its value to two frames so that while reconstructing, we 
can directly add the inverse transform of the overlapping 
frames with appropriate translation. One way of achieving 
this is to multiply each frame with a half wave sine window 
before taking DFT during forward transform and after DFT 
for taking inverse transform. The illustration of above pro-
cedure is shown Fig. 3.
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3.2  VMD decomposition

The VMD is a non-recursive, quasi-orthogonal, data-adap-
tive signal decomposition procedure using the concept of 
alternating direction method of multipliers (ADMM) [20]. 
In the proposed hybrid method, the group sparse denoised 
PCG signals, f (t) is decomposed into three different modes, 
fn(t) with distinct spectral properties. In VMD decompo-
sition, for each mode fn(t) , the spectrum of the analytic 
signal is estimated using Hilbert transform. Then the esti-
mated one-sided spectrum tuned to respective center fre-
quency, �n(t) is shifted to baseband by multiplying with 
the complex exponential function, e−j�nt . Finally, the band-
width of the frequency translated signal is computed using 
the squared L2 of the gradient. The variational optimization 
problem to obtain the modes is defined as in Eq. 1.

This constrained optimization problem estimate the 
unknown n central frequencies and corresponding modes, 
subject to the constraint that sum of the estimated modes 
should be equal to the input signal [21, 22]. This problem 
is solved using ADMM algorithm by taking the augmented 
Lagrangian multiplier.
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Fig. 2  Illustrates a measured 
PCG signal, b STFT based 2D 
spectrum
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3.2.1  Variational mode decomposition algorithm

• Initialize f̂ 1
n
, �̂�1

n
, �̂�1, k ← 0

• For all modes, n = 1 ∶ N

Update the spectrum and central frequency for each mode 
f̂
n
 for all � ≥ 0,

where � is bandwidth parameter.

Update the Lagrangian multiplier �̂�n,

where � is Lagrangian multiplier update parameter.

• Increase k ← k + 1 and repeat the spectrum and central 
frequency for each mode, until the following convergence 
criterion is satisfied.
  

where � is tolerance value.

The performance of VMD algorithm is mainly propor-
tional to the selection of two decomposition parameters 
namely data fidelity constraint ( � ) and number of modes 
( N ) [23]. The bandwidth parameter, � determine the band-
width of each mode and the number of modes, N defines the 
distribution of energy among modes [24]. The very small 
value of these parameters results in sharing of frequency 
components with near-by modes. Whereas the very large 
value leads to mode duplication. Thus, it is necessary to 
fix these parameters to get most accurate decomposition of 
PCG signals. The values of all the parameters used in the 
proposed work is given in Table 1.

3.3  Appropriate mode selection

The GS-PCG signals are decomposed into three different 
modes, which is followed by the selection of appropriate 
mode for further processing. The selection of suitable mode 
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is important for the segmentation of fundamental sounds. 
Inspired from [10], the mode selection is done using the 
mode central frequency and energy of each mode. Figure 4 
represents the frequency spectrum of the obtained modes. 
From Fig. 4 it is clear that the lower VMD modes carries 
more information regarding the PCG signal and posses more 
energy than higher modes. Moreover the lower modes have 
low central frequencies. As the mode number increases, the 
central frequency value also increases. From literature it is 
evident that the fundamental heart sounds are usually occur 
within the range of 10–50 Hz [4, 9, 10]. Thus the criterion 
adopted to select the suitable mode for segmentation is with 
the mode central frequency in the range of 10–75 Hz with 
maximum energy. As shown in Fig. 4, the experiments per-
formed on normal and abnormal PCG waveforms on noisy 
and noise-less conditions reveals that the first VMD mode 
( f1 ) holds this condition and hence this mode is selected for 
further processing.

3.4  Hilbert envelope extraction and thresholding

The final step of the proposed method is Hilbert envelope 
(HEnv) extraction and thresholding for fundamental heart 
sound segmentation. The selected first mode ( f1 ) is then 
processed to extract the Hilbert envelope. Hilbert transform 
(HT) is a simple linear operator which gives the correspond-
ing analytical representation of the given signal in discrete 
domain. The Hilbert transform is defined as,

Here, ∗ represents the convolution operation. That is, the 
above operation is equivalent to computing the convolution 
integral of the given signal with 1

�t
 . Now, the instantaneous 

envelope is computed by extracting the magnitude of the 
resulting complex numbers 

(
f1(t)

)
H

 . Further, a threshold 
value (0.05) based on the experimental observations is fixed 
to detect the boundary locations of the detected segments. 
The entire methodology of the proposed hybrid approach 
for fundamental heart sound segmentation is discussed in 
Table 2.

(5)
(
f1(t)

)
H
=

(
�(t) +

j

�t

)
∗ f1(t)

Table 1  VMD parameters used for PCG signal decomposition

VMD parameters Value

Data fidelity parameter ( �) 2500
Number of modes ( N) 3
Noise tolerance parameter ( �) 0
DC importing parameter 0
Initialization of � 1
Convergence tolerance 0
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4  Results and discussions

This section describes the experiment evaluations per-
formed on signal records obtained from four different 
PCG databases namely (1) eGeneralMedical (EGM), (2) 
Littmann heart sound (LHS), (3) Washington heart sounds 
and murmur (WHSM), and (4) Michigan heart sound and 
murmur (MHSM). The experiments are performed under 
following three categories.

1. Effectiveness of group sparsity denoising.
2. Effectiveness of fundamental heart sound segmentation.
3. Evaluation using performance matrices.

4.1  Effectiveness of group sparsity denoising

The signals considered for evaluation of the effectiveness of 
the GSD consists normal signals, split S1 and S2, pulmo-
nic regurgitation, arterial septal defect, ejection clicks, and 
various murmurs. The clean PCG signals are synthetically 
corrupted with additive white Gaussian (AWGN) noise on 
different noise levels. The denoising performance is evalu-
ated based on signal-to-noise ratio (SNR) metric.

4.1.1  Fixing of � and group sparsity window size K1 and K2

The proposed group sparsity approach depends on two 
input parameters such as regularization parameter, � and 
group sparsity window sizes, K1 and K2 . By controlling � 
and window size of GS, different levels of smoothness are 
achieved in the noisy PCG signal. This offers an interac-
tive environment for accurate decision making. Figure 5 
demonstrate the effect of � on controlling the smoothness 
at various degree. In this study a series of experiments 
are conducted to fix these two input parameters based 
on higher output SNR value. During the experiment it 
is observed that the � parameter for all the PCG signal 
records which gives high SNR falls in the range 0.002–0.8. 
As the noise level increases, the � value has to be increased 
in the range for maximum smoothing. The GS window 
size is selected based on the procedure explained in [15, 
16]. Figure 6 demonstrate the performance of different 

Fig. 4  Illustrates the appropriate mode selection process. a Noisy PCG signal (SNR = 10 dB), b denoised PCG signal (SNR = 26.28 dB), c–e 
VMD modes, f–j frequency spectrum of a–e 

Table 2  Methodology of the proposed hybrid approach for funda-
mental heart sound segmentation

Input vector:
f :- Noisy PCG signal

Steps
1.Perform GSD on noisy PCG signal, f
2.Perform mode decomposition on denoised PCG 

signal using VMD
3. Perform selection of suitable VMD mode based 

on central frequency and mode energy
4.Perform envelope extraction using Hilbert transform
5.Perform S1 and S2 boundary detection using 

thresholding
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GS window sizes on various PCG signals under different 
noise levels. It is evident from Fig. 6 that the window sizes 
K1 = 8 ; K2 = 2 gives the best performance under every 
noise levels.

Table 3 shows the output SNR obtained for different 
PCG signal records at four different noisy levels. Each 
of the signal record chosen for evaluation has particular 
characteristics. It is observed that the denoising using GS 
approach, the characteristics are retained. The compari-
son of the denoising performance of the proposed method 
with VMD based denoising [21] is shown in Fig. 7. It is 
evident from Fig. 7 that the proposed GS approach out-
performed VMD based method for denoising noisy PCG 
signals with different characteristics. Further, the denois-
ing performance is compared with adaptive OGS, wavelet 

denoising and VMD based denoising by taking the normal 
PCG signal from MHSM database. The results of evalua-
tion and comparison with VMD denoising [21], adaptive 
OGS [25] and wavelet denoising are tabulated in Table 4. 
The wavelet denoising is a commonly preferred denoising 
technique and is performed using db 10 wavelet. The adap-
tive implementation of overlapping GS algorithm discussed 
in [25] has obtained a better performance than wavelet at 
15 dB noise level. The performance of VMD based denois-
ing for low input SNR range is satisfactory. However, as 
the noise level increases, the VMD performance is found 
to be decaying. It is clear from Table 4 that the proposed 
GSD has achieved improved denoising performance than 
all the other referred methods.  

Fig. 5  Illustrates the effect of � 
on inducing various degree of 
smoothness
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4.2  Effectiveness of fundamental heart sound 
segmentation

This section demonstrates the effectiveness of the proposed 
hybrid method for fundamental heart sound segmentation. 
Three different cases are considered to evaluate the perfor-
mance of the proposed method.

4.2.1  Case 1: evaluation on normal PCG signal

This case evaluate the performance advantage of the pro-
posed hybrid method to segment a normal PCG signal 
without any abnormalities. The normal PCG waveform 
is taken from MHSM database. It is recorded from apex 
area at a sampling rate of 44.1 kHz. Initially, the meas-
ured PCG signal is denoised using GSD and then the 
denoised signal is separated into corresponding modes 
using VMD. The measured and denoised PCG signals are 
shown in Fig. 8a and b. Further based on the mode energy 
and mode central frequency, first mode is selected for 
Hilbert envelope extraction followed by a thresholding. 
The selected first mode is shown in Fig. 8c, the extracted 
Hilbert envelope is shown in Fig. 8d, and the boundaries 
detected after thresholding is shown in Fig. 8e. Finally, 
the detected starting and ending locations of PCG wave-
forms are marked and is shown in Fig. 8f.

4.2.2  Case 2: evaluation on abnormal PCG signal

The performance of the proposed hybrid method to seg-
ment an abnormal PCG signal is presented by taking a 

Table 3  Performance evaluation of group sparsity based PCG denois-
ing

Signal characteristics Output SNR (dB)

− 5 dB 0 dB 10 dB 20 dB

EGM database
Normal 14.8495 18.5971 26.2747 33.5254
Late-systolic murmur 13.4997 17.3205 24.8342 32.3274
Normal split 14.3232 18.4359 26.5274 33.7973
Diastolic rumble 13.3612 17.3653 24.9863 33.0471
S3 13.8781 17.8630 25.6877 33.4297
LHS database
Diastolic rumble 13.3612 17.3059 24.9863 33.0471
Late-systolic murmur 13.4997 17.3205 24.8342 32.3274
Pan-systolic murmur 12.0598 15.4998 22.8009 31.4767
S3 13.7102 17.8630 25.2285 33.4297
S4 14.4155 18.3829 25.6367 33.5493
WHSM database
Split S2 18.2394 22.4319 30.1949 35.5784
S4 17.2882 21.6971 29.5798 35.8398
S3 17.2630 21.6465 29.3422 35.8942
Ventricular septal defect 14.7986 19.5012 27.9602 35.1876
 Normal 18.9404 23.1163 30.6989 33.2067

MHSM database
Split S1 18.7050 22.7760 30.4555 36.2695
S4 18.1340 22.4438 30.8417 37.5633
Mid-systolic murmur 20.1238 24.4469 32.0261 38.5396
S3 17.5612 21.7341 30.7322 37.9225
Split S2 17.8546 22.3791 30.1435 37.1692
Arterial septal defect 15.2965 19.5679 29.0614 36.2986
Pulmonary valve stenosis  18.5485 20.9181 28.9181 36.2262
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Fig. 7  Performance comparison on denoising with VMD based denoising [21]. a Input SNR = 10 dB, b Input SNR = 20 dB
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signal from EGM database, sampled at 11.25 kHz. The 
signal consists of pan-systolic murmur, begins at S1 
and lasts till S2. These murmurs are normally caused by 
mitral or tricuspid regurgitation and ventricular septal 
defect. Figure 9a and b represents the measured abnormal 
PCG signal and corresponding denoised signal. Based 
on the specified criterion, first mode is then selected for 
future processing and is shown in Fig. 9c. Extracted Hil-
bert envelope and the detected boundaries are shown in 
Fig. 9d and e. Figure 9f represents the marked starting 
and ending locations of S1 and S2 segments.

4.2.3  Case 3: evaluation on noisy PCG signal

To demonstrate the performance advantage on noisy con-
ditions, a corrupted PCG signal with SNR of − 5 dB is 
considered from LHS database. The signal contains late-
systolic murmur and is sampled at 11.25 kHz. The late-
systolic murmurs are caused due to the prolapse of mitral or 

tricuspid valves and dysfunction of papillary muscle. This 
case evaluates the performance of the proposed hybrid algo-
rithm to segment the fundamental heart sounds by remov-
ing murmurs and noises without losing signal features. The 
simulation results are shown in Fig. 10. The proposed GSD 
efficiently denoises the signal by utilizing the group sparse 
periodicity of PCG signals and preserves the actual PCG 
signal characteristics. The denoised PCG signal is shown 
in Fig. 10 and the corresponding SNR is 10.45 dB. Fig-
ure 10c–e represents the selected first mode of VMD, Hilbert 
envelope of the first mode and detected boundaries using 
thresholding. It is clear from Fig. 10f that the heart sound 
delineation and segmentation is performed accurately using 
the proposed methodology.

To highlight the potential of the proposed fundamental 
heart sound segmentation in noisy scenarios another PCG 
waveform from EGM database is taken. The signal has 
normal split characteristics and is measured at a sampling 
frequency of 11.25 kHz. The PCG signal is corrupted with 
0 dB noise and is shown in Fig. 11a. Figure 11b represents 
the denoised signal obtained using GSD. The correspond-
ing SNR of output signal is 17.91 dB. The SNR improve-
ment demonstrate the potential of group sparsity algorithm 
to denoise the noisy PCG signal. The first mode obtained 
through VMD decomposition is shown in Fig. 11c and the 
corresponding Hilbert envelope is shown in Fig. 11d. The 
detected boundaries of S1 and S2 heart sounds are given 
in Fig. 11e. Finally, Fig. 11f shows the starting and ending 
starting and ending locations of fundamental heart sounds.

Table 4  Comparison of PCG signal denoising performance on signal 
from MHSM database

Method Output SNR (dB)

− 10 dB 15 dB

Proposed 14.56 35.26
VMD denoising [21] 8.23 29.47
Adaptive OGS [25] 7.92 28.31
db 10 wavelet 14.76 26.90

Fig. 8  Illustrates the effectiveness of the proposed hybrid method on 
normal PCG signal. a Normal PCG signal, b denoised PCG signal, c 
selected first mode of VMD decomposition, d extracted Hilbert enve-

lope, e detected boundaries after thresholding, f denoised PCG signal 
with starting and ending locations of fundamental heart sounds
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4.3  Evaluation using performance matrices

The performance advantage is confirmed by measuring the 
results using standard performance matrices such as sensi-
tivity (Se), positive predictivity (PP), accuracy (A) and de-
tection error rate (DER). They are defined as,

(6)Se =
TP

TP + FN
× 100

(7)PP =
TP

TP + FP
× 100

Fig. 9  Illustrates the effectiveness of the proposed hybrid method on 
abnormal PCG signal. a Abnormal pan-systolic murmur signal, b 
denoised PCG signal, c selected first mode of VMD decomposition, d 

extracted Hilbert envelope, e detected boundaries after thresholding, f 
denoised PCG signal with starting and ending locations of fundamen-
tal heart sounds

Fig. 10  Illustrates the effectiveness of the proposed hybrid method on 
noisy PCG signal. a Noisy PCG signal (SNR = − 5 dB), b denoised 
PCG signal (SNR = 10.45 dB), c selected first mode of VMD decom-

position, d extracted Hilbert envelope, e detected boundaries after 
thresholding, f denoised PCG signal with starting and ending loca-
tions of fundamental heart sounds
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where TP;FP;FN denotes true positive, false positive and 
false negative respectively. The experiments are done on 
segments taken from four different datasets. The evalua-
tion results of the proposed hybrid method are depicted in 
Table 5. The number of segments considered from EGM, 
WHSM, MHSM, and LHS databases and the corresponding 
performance measures are given in Table 5. It is clear from 
Table 5 that the proposed hybrid method performed well on 
different PCG signals. The segmentation performance of the 
proposed hybrid method is compared with various bench-
mark methods and the results are tabulated in Table 6. The 
methods used for comparison are VMD-SEE [10], FD [13], 
improved EMD [8], wavelet [26], and adaptive wavelet [26]. 
It is clear from Table 6 that the proposed hybrid method has 

(8)A =
TP

TP + FP + FN
× 100

(9)DER =
FP + FN

TP
× 100

attained a satisfactory performance for fundamental heart 
sound segmentation. The main advantages of the proposed 
method are (1) robustness against severe noises, (2) less 
dependency on optimal parameters, (3) less complex, and 
(4) accurate for automated detection of fundamental heart 
sounds.

Fig. 11  Illustrates the effectiveness of the proposed hybrid method. 
a Noisy PCG signal with 0  dB noise, b denoised PCG signal with 
SNR = 17.91  dB, c selected first mode of VMD decomposition, d 

extracted Hilbert envelope from first mode, e detected boundaries 
after thresholding, f denoised PCG signal with starting and ending 
locations of fundamental heart sounds

Table 5  Evaluation of the 
proposed method using 
performance matrices

Data Segments TP FN FP Se PP A DER

EGM 126 126 0 0 100 100 100 0
WHSM 128 126 0 2 100 98.43 98.43 1.5
MHSM 177 177 0 0 100 100 100 0
LHS 139 138 0 1 100 99.28 99.28 0.7

Table 6  Performance comparison for fundamental heart sound seg-
mentation

Method Data Se PP A DER

Proposed EGM 100 100 100 0
Proposed MHSM 100 100 100 0
VMD-SEE [10] EGM 100 100 100 0
VMD-SEE [10] MHSM 100 100 100 0
FD (5 dB noise) [13] MHSM 96.97 99.58 3.55 96.58
Improved EMD [8] Own data – – 99.74 –
Adap. Wavelet [26] Clinical 93.24 – – –
Wavelet [26] Clinical 81.64 – – –
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5  Conclusion

In this paper, we presented a novel hybrid method for fun-
damental heart sound segmentation. In the proposed hybrid 
method, the heart sound signals are denoised using 2D group 
sparsity algorithm that exploits the group sparse property of 
PCG signals. The denoised GS-PCG signals are then decom-
posed into modes of distinct spectral characteristics. Then, 
based on the mode central frequency and mode energy, the 
first VMD mode is selected. It is then followed by the extrac-
tion of Hilbert envelope and thresholding to segment the 
fundamental S1 and S2 heart sounds. The experiments are 
performed on standard databases eGeneralMedical (EGM), 
Littmann Heart Sound (LHS),Washington Heart Sounds and 
Murmur (WHSM), and Michigan Heart Sound and Mur-
mur (MHSM) containing normal and abnormal PCG signals. 
The proposed hybrid algorithm has achieved a sensitivity 
of 100%, positive predictivity of 98%, accuracy of 98% and 
detection error rate of 1.5%. The promising results obtained 
suggest that the proposed hybrid method can be considered 
for automated heart sound segmentation. We would pursue 
the detection of low pitch sounds S3 and S4 as a future work.
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