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Abstract

Purpose To illustrate a systematic procedure for mechanical

characterization or mechanical behavior of biological tissues

with a semi-empirical method based on mathematical models.

Methods The method is composed of a series of procedures:

construction of cell elements on the specimen, image

processing, continuum mechanics, hyperelasticity and so on.

An element used in the method, which is similar to finite

element methods, is defined by placing markers on the

specimen. The change of the locations of the element during

a motion is monitored to calculate the displacement for stress

estimation owing to external impacts or forces.

Results The validity of the method for mechanical

characterization or mechanical behavior of biological tissues

is shown through material test simulations with mathematical

models, resulting in good agreement overall.

Conclusions A general review of mathematical modeling of

biological tissues is served and a semi-empirical method,

which makes good use of both finite element methods and

mathematical models based on the phenomenological

modeling technique, is introduced to assess the stress-strain

responses of biological tissues subjected mechanical loadings.

Keywords Biological tissue, Hyperelasticity, Mechanical

characterization, Soft tissue, Virtual surgery, Brain injury,

Mathematical modeling.

INTRODUCTION

Studies on numerical simulations of biological tissues under

physiological environment are growing popular for a long

time owing to ever increasing demands from academia as

well as industry. A fundamental procedure for establishing a

mathematical model is to conduct a comparison of data

generated from experiments and mathematical models. Once

the model is validated with experiment data, it is ready for

carrying out various numerical simulations. With the aid of

the recent development in theoretical and experimental

research on the field, more accurate material models to fit a

broad scope of mechanical conditions have been developed.

Despite the recent attempts in establishing a systematic

modeling framework for biological tissues, it would take

another decade or so to attain even a primitive goal close to

the realness. Since experiments of biological tissues can be

severely limited under various constraints, employment of

numerical analysis is inevitable for studying a wide range of

mechanical behavior subjected different mechanical conditions.

An extended review of recent mathematical modeling of

biological tissues can be found in the literature [1, 2]. In order

to get numerical simulations run correctly and efficiently,

firstly a material model and experiment data must be given

as primary input. A material model thus contains the

parameters to be identified through many material tests such

as tension, compression, biaxial and shear tests and so on.

Once forece versus deformation relation is settled down on

a form of a constitutive equation, it needs to be verified through

numerical simulations conducted by means of numerical

methods such as finite element methods. The range in which

mathematical modeling is applied may be as large as the

number of current biological materials. Furthermore, interesting

subjects are of electrostatics, aortic aneurysms, anisotropic

vascular membranes and anisotropic hyperelasticity with

logarithmic strain, indentation and tensile measurement of

the elastic modulus for soft tissues, compression material

tests and development of the measurement of the ex vivo

tissue samples.
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There exist interesting studies on the nonlinear viscoelastic

behavior of brain tissues and structures, human annulus

fibrosis, vessel walls, porcine coronary artery tissue, collagenous

soft tissues, skeletal muscle tissue, anisotropic hyperelastic

modeling of soft tissues, Mullins softened filled rubbers,

shearing of soft tissues and virtual reality machine being

capable of realistic haptic response to medical doctors when

touched. Furthermore, it should be mentioned that other

issues have attracted attention recently: the recent maturation

of modern techniques such as electromechanical modeling

for human heart function simulation and identification of

material properties of the ovine mitral valve in vivo via

inverse finite element analysis, with installed radiopaque

markers on the soft tissues to measure the shift during the

cardiac cycles.

This article is organized as follows: Firstly, a discussion of

rather a worldwide critique of the existing mathematical

modeling of biological tissues is addressed as categorized as

the accompanying sub-topics: measurement, rubber-like

materials, brain tissues, blood vessels, virtual surgery machine

and other biological tissues. Secondly, a procedure to set up

mathematical models is laid out in detail. Lastly, an application

of a semi-empirical method based on mathematical models

to capture the behavior of biological tissues under mechanical

loadings is clearly narrated with numerical examples.

MATHEMATICAL MODELING

It is obvious that the treatment of a whole range of mathematical

modeling of biological tissues with various mechanical

loadings is simply not possible; thereby only some of

interesting works related to the modeling to be brought out

in the present study will be referred. Mathematical modeling

of biological tissues is a rather formidable task in every

aspect, because it demands researchers be exposed to a huge

amount of knowledge of continuum mechanics, mathematical

analysis, and experiment data of chemical, biological and

electrical features. Narrowing down the scope which will be

apportioned in this article, hereafter only topics related with

mechanical properties are brought up in particular. Once an

appropriate mathematical model is constructed, yet impossible

to incorporate exactly various external or internal mechanical

conditions into experiments, an immediate benefit of which

may be being able to numerically simulate mechanical

behavior of soft tissues without conducting rather expensive

experiments.

Fundamental material tests such as uniaxial tension,

compression, biaxial tension and shear tests result in mechanical

properties of soft-tissues, which can be best exemplified by

the relationship between load versus stretch. A material

model based on mechanical behavior of soft tissues, normally

refers to a constitutive model, which presents the strain-strain

responses to various mechanical loading conditions. Once

experiment data are obtained, a curve-fitting to identify material

parameters by minimizing the error between experiment data

and a mathematical model is conducted. With the material

parameters obtained from curve-fitting process plugged into

a material model, the procedure for obtaining a mathematical

model is complete and ready to be used in various numerical

simulations. 

There are two types of methods to construct mathematical

models: One is about micro-structures of soft tissues; the

other is about phenomenological method. The former is

mostly theoretically oriented approach that requires accurate

pieces of information on micro-structures of materials. Since

a soft tissue consists of many different parts with different

mechanical, electrical and chemical properties such as cells,

fibers, and biological factors, mathematical models are

extremely hard to be determined as a result. On the contrary,

there exist somewhat simpler models, which may simplify

complex structures of soft tissues, for example, a structure

with only one or two differently aligned fibers in directions.

Nevertheless, without fully understanding interactions among

other elements, but the usage of more characters in

mathematical models might not give good results to fit real

world simulations. A core idea of the phenomenological

modeling technique is as follows: a material model is rather

directly related to experiment data that no a priori knowledge

of micro-structure is necessary. Since a realm of micro-

structure incorporated method is huge to deal with in a single

article that in the present study only discussion on

phenomenological method is directed. The phenomenological

method, which mainly depends on curve-fitting methods

with experiment data to identify the material parameters, is

preferred among researches because of its simplicity compared

to the theoretical method mentioned above. Thereby, only

phenomenological modeling is discussed in the following

section.

Rubber-like materials

Rubber-like materials are materials that consist of chain-like

molecules closely connected to each other via cross

connections. Soft biological tissues are in similar with rubber-

like materials in terms of mechanical behavior; it is thus

important to mention here mechanical characterization of

rubber-like materials. As a result, many mathematical models

based on rubber-like materials for various parts of human or

animal body have been developed to date: brain tissues,

arterial wall mechanics using chain extensibility constitutive

models, heart and heart valve models, orthotropic active

strain models, seat-cushion material models for passenger

comfort and so on. A large collection of mathematical models

of the materials has been established through frameworks of
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hyperelasticity, which make use of energy density functions

of hyperelastic materials to come up with the mechanical

behavior of materials [3, 4]. Furthermore, an extensive study

of the strain energy functions of different kinds of materials

was performed [5]. Indeed, a lot of mathematical models of

the materials have been announced from with least to most

complexity. In fact, a simple elastic model cannot follow the

mechanical behavior of rubber-like materials because of

nonlinearity in both geometric nonlinearity and nonlinear

constitutive equations at most cases. It is, thus, nonlinear

models that fit to such nonlinearity should be employed.

Several different approaches to obtain numerical data from

material models have been proposed: a multi-scale model

with micro-structures of rubber-like materials [6], a survey of

different material models of rubber-like models [7], a model

with compressibility and chain extensibility [8], slightly

compressible materials [9]. Moreover, cases with complicated

loadings such as monotonic or cyclic loadings, also have

been proposed: a study on parameter identification of rubber-

like materials under monotonic loadings [10]. Furthermore,

under cyclic loadings consisting of simple tension and

compression, rubber-like materials show nonlinear behavior

that a linearity of stress-stretch relation does not fit in depicting

the mechanical behavior of such materials. It is thus more

elaborated constitutive models need to be used, in particular,

the Mullins effect must be brought into account for embracing

complex nonlinear mechanical behavior of rubber-like materials

[11, 12]. 

Recent numerical methods available for material modeling

incorporating experiment data as well as the mechanical

behavior of materials are based solely on finite element methods

because of their versatility and efficiency. Nevertheless, it is

well known that numerical analyses of nonlinear mechanics

problems are extremely difficult to deal with owing to

nonlinearity; thus, various numerical schemes, material

models and algorithms have been offered yet, just some of

them are as follows: A study on finite element implementation

of rubber-like materials was proposed [13], in which

displacements, pressure and dilatations are treated as

independent variables. In addition, a displacement-pressure

algorithm has been applied to establish an elasto-plastic

material model for rubber-like materials [14]. In order to deal

with the incompressibility of a material with nonlinearity, the

multiplicative technique onto the deformation gradient was

suggested [15] and a three-field mixed formulation of a

transversely isotropic model [16]. Moreover, a new algorithm,

which can be applied to reduce the complexity of the finite

element formulation owing to incompressibility of a material,

was proposed, replacing a conventional framework of

decoupling of deformation gradient with the proposed one

[17]. It is also of interest to see an application of the inverse

method with the known deformed configuration of

incompressible material in order to design an object [18, 19].

In short, studies on mathematical models of rubber-like

materials are still found attractive as an interesting research

subject.

Brain tissues

It is reported that about four thousand people get a traumatic

brain injury (TBI) each day in the United States [20]. Some

excellent reviews on brain injury can be found in the

literature [21, 22]. Moreover, it is interesting to see a study

on mechanisms and mechanics of brain injury [23-25]. In

addition, diffuse axonal injury (DAI) is one of the most

common traumatic brain injuries, which injury occurs in

moderate and mild brain injury in a specific area, occurring

over even a wide area [26]. Also, numerical simulations with

finite element methods on DAI was carried out [27].

Furthermore, there exist an important study, which is mainly

focused on injuries in infants and young children [28, 29].

Identification of material parameters to construct mathematical

models for axonal injury, which refers to the brain and spinal

cord injuries, is extended out through the inverse methods,

by which minimizing the error between the force-stretch

curve from the calculation and the experiments [30]. It is

therefore that brain tissue modeling must be closely linked

with brain injury simulations or mechanisms. Since brain

injury is primarily caused by a force, that is, tensile, compressive

and/or shearing stresses, it is important to recognize how

much stresses exerted on brain tissues when an impact are

loaded. For instance, during an impact, the head is subjected

to an external load and the payload is transported to the brain

tissue in several ways. If the applied mechanical force on the

brain tissue exceeds a certain level, brain injury would be

occurred. Therefore, profound understanding of the event is

strongly required to improve medical and mechanical

measures and diagnosis of brain injury. Indeed, in order to

calculate stresses, material models for brain tissues, which

can convey constitutive relations as closely with experiment

data as possible, are strongly required. However, a brain

tissue is a quite delicate subject to study in many ways, in

particular, from mechanical points of perspective. Besides its

non-accessibility in vivo, having low mechanical stiffness

makes it more difficult to install any stiffer sensors in order

to detect motions or other physical entities during complex

motions owing to an impact or an external force. Conventional

experimental methods are about seeking displacements and

stresses with data from various sensors installed on a specimen

or an object: measurement devices are strain gauges,

accelerometers, load cells, potentiometers and so on, which

are all physically associated with the specimens. For instance,

a set of strain gauges is used to account for the change in

dimension of a specimen. Once measured data are collected

from experiments, all is undergone with procedures that
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result in a displacements or loads. Thus, displacements are

utilized to calculate stress fields with the help of material

constitutive equations. Nevertheless, a strain gauge is not

practicable to measure the deformation of brain tissues. To

simply put, the material is too soft to install the stiffer device

on it. It is thus most experiments are performed with specimens

in vitro. As a result, some studies on a comparison of

experiments of in vivo versus in vitro or live versus dead

tissues were reported [31-33]. A measurement of mechanical

anisotropy of white matter, which is a part of a brain tissue,

was carried out [34] as well as numerical simulation [30].

Since TBI is a most important and interesting topic, most

researches on brain tissue modelings are also solely focused

on seeking the mechanism of TBI occurring in the real

world. In fact, the mechanical behavior of brain tissues can

be changed significantly depending on types of external

impacts or loads; thereby, it is necessary to investigate as

many cases as possible. A broad review on the subject can

be found in the literature [35]. It is obvious that researches

on the subject may be divided into different categories

according to type of impacts, models or external loading

conditions. For example, a high rate tension device (HRTD)

is developed to obtain dynamic properties of brain tissues, by

which device experiment data are used to set up mathematical

models for the dynamic properties of brain tissue based on

hyperelastic models of Ogden, Fung and Gent [36]. Likewise,

the effects of dynamic impacts were studied [37-39]. Likewise,

written reports on the effect of rotational impact causing TBI

have been proposed [40-44] and axisymmetric impact [45],

torsional motions [46], compression [38] and tensions [47].

Mechanical impairment of brain tissue can be split into two

classes depending on the mechanism of it: the volumetric

and shear types. Finite element simulation based on an

elastoplastic and a viscoelastic model of the brain injury

owing to frontal and oblique head impacts is conducted [48].

In addition, a viscoelastic model is developed to simulate the

dynamic behavior of porcine brain tissues. The material

parameters are identified by fitting the model to the axial and

volumetric test data. The robustness of the model are assured

by comparing model predictions with the tissue response in

compression at high strain rate and with data in uniaxial

tension. This may thereby provide a mathematical model to

be used with simulations of impact, leading to TBI [49] and

numerical simulations were executed using viscoelastic models

[50]. Also, numerical simulations with the framework of

finite elasticity, by modeling a soft tissue as a homogeneous,

isotropic, incompressible, hyperelastic material are conducted

and compared with experiment data [51]. In order to set up

a material model, one needs to have the parameters of a

model fit to experiment data, which is called parameter

identification [52]. Moreover, it is interesting to see the

discussion of whether how much brain tissue can be

regarded as incompressible in vivo [53]. More advanced

subjects on TBI such as the coupling of fluid and brain

tissues are found in the literature [54]. Even considering

intensive researches to date, which have been performed

successfully in both theoretical and experimental fields, it

should be noted that the studies on brain tissues are far from

mature; thus, further study is strongly required in the future.

Blood vessels

Each year 15,000 deaths owing to abdominal aortic aneurysm

(AAA) in the United States are reported [55]. Aneurysm is

a disease that stems from a local bulge of a blood vessel, for

example, the aorta. A bulge swells with a constant pressure

of moving blood over time. Once the size of the bulge

reaches a critical value, it may collapse, putting a life in a

severe danger. It is thus important to study mechanisms of

aneurysm occurring in the aorta wall and mathematical

models of blood vessels, in particular, to be used for calculation

of the wall stress exerted by blood flow. Therefore,

mathematical modeling of arterial walls and blood vessels

has drawn much attention from the biomechanical field for

years because the disease related to mechanical or physiological

deterioration of blood vessels may cause severe health

problems such as aneurysms. Hence, it is a principal goal of

research to figure out an accurate wall stress distribution of

blood vessels in vivo. The research sets out by applying

mathematical models to be applied in mathematical analysis,

which adjust the mechanical behavior of blood vessels. A

pioneering attempt of mathematical modeling of arteries may

start out with an introduction to pseudo-elasticity, which

bears on the stress-strain relationship and the strain energy

function based on hyperelasticity [56]. Primarily, mathematical

models of the blood vessels are similar to rubber-like

materials that many models are derived from rubber-like

material models such as a model with chain extensibility.

As for various mechanical characteristics of blood vessel,

the strain-hardening, which refers to a phenomenon of revealing

nonlinear stress-strain behavior, with higher extensibility in

the lower stretch range and progressively lower extensibility

with increasing stretch when uniaxial tests on vascular walls

are studied. In order to capture this, power-law models and

limiting chain extensibility models are viewed in a vertical

string of arterial tissue and an internally pressurized

cylindrical tube, which are compared with the experiment

data [57, 58] as well as experimental approach was conducted

[59]. Blood vessels have been mostly considered as an

incompressible matter for the sake of simplicity in both

theoretically and experimentally; however, owing to the

complexity of deformation, it is quite interesting to verify the

compressible property observed in many experiments [60-

62]. A blood vessel consists of multiple layers with different

mechanical properties and micro-structures that it is quite
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challenging to define comparable material models, which

thus should not be considered as a simple homogeneous

isotropic material. A more elaborated model is composed of

matrices and randomly aligned fibers, which produces

anisotropy and the nonlinear anisotropic elastic behavior of

healthy porcine coronary arteries is studied [63]. Besides the

properties and structures, it is known that blood vessels are

subjected to residual stresses in vivo, which inclines to get

the modeling more complicated. Since it is impossible to

bring into account every boundary condition exerting tissues

in vivo, development of the mathematical models has been

confined to employment by kind of simpler ones. Thus much

study has focused on the subject of hyperelastic elastic

model with fibers through continuum mechanics framework.

For example, hyperelastic modeling of arterial layers with

distributed collagen fiber orientations is conducted [64]. More

researches on the wall stress have been performed to date

[65-70] and it is obvious the wall stress may change depending

on the model used in aneurysm computer simulation, for

example, a comparison of modeling technique was reported

[71] and for a three-dimensional model [72]. For mathematical

models to be used in various mechanical loading conditions,

other than uniaxial test such as biaxial test or shear test

should be carried out. Compared to uniaxial test, it is more

expensive to conduct biaxial test or shear test owing to the

increasing complexity of experiment device. With biaxial

testing device, an equal force is applied to each side of a thin

tissue. It is of interest to study the mechanical behavior of

arterial walls or blood vessels when higher physiological

blood pressure applies in a cyclic manner to them and

physiological pulses may be simplified as cyclic pressure or

tension-compression loadings. Hence, blood vessels may

become damaged due to excessive physiological loadings over

time. Also, a damage model is built up with a continuum

damage assumption [73]. In addition, a modeling failure

criterion was suggested in the form of an energy limiter [74].

Other than modeling of blood vessels, it is recognized that

the interaction between arterial walls and blood flow can

play an important role to expand the size of an aneurysm;

hence such an advanced topic with a fluid-solid coupling has

been actively studied [75-78]. It is interesting to acknowledge

that the comportment of the constraint of the tissues nearby

should be hired into consideration when in vitro and in vivo

measurements of the mechanical attributes of vascular

vessels are conducted. A fact that surrounding tissues also

can ingest a substantial quantity of the intravascular pressure

that reduce a good sum of the wall stress was described [79].

Furthermore, application of medical images is getting popular

to study aneurysms: the stability of aneurysms was studied

with the help of abdominal CT images [80] and the interaction

between blood flow and vessel wall was performed based on

medical images [81].

Unlike most researches about a mechanical side of aneurysm

mechanism, interestingly, the effect of calcifications on the

wall stress was studied [82]. In addtion, some other topics on

aneurysms are also announced, for example, the effect of age

and pressure on the wall stress [83], the strain energy density

function for arteries obtained fro topographical sites [84], local

mechanical properties of aneurysms [85], and automatic

generation of surface topologies for aneurysm models [86].

The motion of cardiac tissue is energized by

electromechanical momentum; thereby, it is important to

take into account field variables of electro-physiology and

electromechanics, which are coupled in the governing

equations. The coupled reaction-diffusion equations for the

electrical problem and the momentum equations for the

mechanical part transform into weak forms to be implemented

in finite element methods. A stable algorithm and mixed

finite element formulation are studied to solve the multi-

physics problem [87]. Mathematical modeling of cardiac tissue

is also of interest through acknowledgement of two major

different characteristics: passive and dynamic properties. In

order to imitate the motion of cardiac tissue, a material

model that is capable of capturing both properties should be

prepared. Both of the schemas are considered with passive

and active deformation to yield behavior simulations of

cardiac tissue [88].

Other biological tissues

A study on the annulus fibrosis, which is the wrapping that

takes up the outside portion of the intervertebral disc

protecting the nucleus pulposus located in the center of the

disc, is indefensible for human to live a healthy life because

degeneration and ageing can lead to joint pain. By employing

hyperelasticity and continuum mechanics, a strain energy

that comes up with different constituents such as matrix,

fibers, and other elements and the interactions among them,

is developed to be used for numerical simulations [89]. A

study of the passive length-tension properties and the active

response of skeletal muscle tissue is conducted to develop

mathematical models [90]. Mathematical models of skeletal

models are important to improve seating comfort, which is

directly related to the seat and the seated-human/seat

interactions. The interactions among bones, skins, and seats

should be considered as a core subject to provide passengers

with better quality of seating comfort [91]. Stress calculation

in osteoarthritis of the knee was conducted [92] and a strain

analysis of soft biological membranes is also reported [93].

Measurement techniques

If one can come up with an accurate stress distribution of

blood vessels in vivo, more reliable material models could be

developed. However, stress estimation of the tissues in vivo

is simply not possible owing to many difficulties including
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ethical issues. Thus, in order to circumvent such unsolved

problems, a noninvasive approach such as a method with in

vivo image can be established. Thereby the image is

considered as a deformed tissue in vivo. Once the initial

shapes of the tissues are known with an inverse analysis, a

patient-specic abdominal aortic aneurysm model can be set

up [94, 95]. In order to obtain the material properties of

mitral valve (MV) leaflets in vivo, miniature radiopaque

markers are sewn to the MV annulus and the coordinates of

biplane video fluoroscopic marker images are also obtained

during three complete cardiac cycles. With the obtained data

to be used to identify the material parameters of a mitral

valve model, it is expected that one may be able to simulate

the dynamic motion of the valve [96]. As studies with

conventional material tests such as a uniaxial tensile test and

compression test to find the material parameters to set up

mathematical models grows, recently new measurement

techniques have emerged such as imaging technology with

high-tech device. For example, elastography is proposed to

image tissue elasticity based on imaging methods collectively

called elastography. While progress in developing these

systems has been rapid, the basic understanding of tissue

properties to interpret elastography images is mostly lacking.

The measurement technique consists of indenting an

unconfined small block of tissue while measuring the resulting

force. The elastic modulus of the tissue is constructed from

the measured displacements using an inverse method with

the help of elstography technique [97].

There is another measurement technique for tissue elasticity

based on magnetic resonance elastography in which a tissue

specimen encased in a gelatineagarose block undergoes

cyclical compression with resulting displacements measured

using a phase contrast MRI technique: Young’s modulus

measurements of soft tissues [98-100], for mechanial properties

of breast tissues [101] and the use of three-dimensional finite

element modeling using MRI data [102].

Virtual reality surgery machine

One of premium results of mathematical modeling of

biological tissues may be something that is linked up to

computer-integrated or robot-aided surgery machine, which

could be utilized as an automatic surgical device in case of

emergency where no doctor is available for surgical operation.

In order to have an automatic surgical tool or machine to do

such life-saving procedure for patients, the realistic material

response must be provided by the mechanical properties of

the tissues activated accordingly. In the close future, it may

be anticipated that medical students or physicians may

practice realistic surgical operation with the patient specific

virtual machine. If one can come up with accurate mathematical

models of important soft tissues like brain, kidney, and liver

and so on, inexpensive surgical practice with the virtual

machine may become huge benefit to both patients and

doctors. In order to set up virtual surgical machine, establishing

mathematical models that can simulate the behavior of

tissues and the interactions between surgical instruments and

tissues is a primary task. Instead of simple linear elastic

models, the nonlinear model is enforced to the simulation to

have a more realistic mechanical response [103]. An algorithm

for the mechanical behavior of soft tissues is developed to be

applied to real-time surgical simulation, which is based on

finite element methods. In order to avoid numerical instability,

the explicit time integration is employed [104].

Another interesting application of computer based medical

machine is about fittings of a prosthetic socket because a

misfit can cause pressure ulcers or a deep tissue injury (DTI:

necrosis of the muscle flap under intact skin) in the residual

limb. A real-time patient-specific finite element method is

set up to provide better fittings of a prosthetic socket, which

is an extremely important step in the process of rehabilitation

of a trans-tibial amputation (TTA) patient [105]. A mathematical

model with nonlinear response of living tissues, the nite

element simulation of palpation a human cornea is carried

out [106]. The heart is a most important, yet complex organ

that the volume of research on the establishment of

mathematical models is large in quantity. Under cardiac

cycles, the heart system consisting of four different chambers

makes it extremely difficult to set up an accurate model to be

used for numerical heart simulations. Furthermore electro-

mechanical behavior of the heart makes the modeling even

more complicated. Computer simulation of the heart is

conducted with respect to electro-mechanical governing

equations [107]. It is of interest that a brain tissue model was

proposed upon surgical procedure simulations [108].

PHENOMENOLOGICAL MODELING

In this section, a brief introduction to the phenomenological

modeling is addressed. The phenomenological modeling is a

modeling technique that makes the use of both a mathematical

model and experiment data. A key notion of this modeling is

about not concerning the micro-structure of the tissue, but

considering the use of the combination of a material model

and the corresponding experiment data. A collaboration of a

mathematical model and corresponding experiment data is

an essential procedure for the identification of mechanical

parameters. Interestingly, most mathematical models available

to date are based on hyperelasticity, which is a solid theoretical

ground for various soft tissues because of its simplicity in the

derivation of stress versus strain relation. Taking a derivative

of a strain energy function with respect to deformation or

strain to obtain a stress-strain relation is a rather simple

procedure compared to the use of other material models such
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as hypoelastcity-based models. Thus, stress can be expressed

as a function of strain without considering the deformation

history, which gives researchers much freedom in testing

various mathematical models to meet different realistic

conditions. There are a few material models based on

hyperelasticity such as neo-Hookean, Mooney-Rivlin, Ogden

and so along. Prilimarily, biological soft tissues are mostly

incompressible, which means the volume preserves during

large deformation. The significant ingredients of soft tissues

are nonlinear elastic, isotropic, incompressible and independent

of strain rate. In this section a procedure of defining a

mathematical model for biological tissues based within the

phenomenological way is addressed [109].

The neo-Hookean model [1, 2], which is one of the

simplest models with a single parameter μ to be determined,

for which the hyperelastic energy function ψ(Λ) is given by:

(1)

where Λ1, Λ2 and Λ3 are the stretches in the three principal

directions, respectively. For example, as for a uniaxial

tension with incompressibility, refer to Table 1 for the stretch

data. In fact, the nominal stress Tmath is obtained by

(2)

The strain-strain response for a uniaxial tensile test, thus

can be obtained with Eq. (2) along with the stretches

corresponding to the experiments. Similarly, the stress-stretch

relations from the other tests such as biaxial and shear tests

can be also calculated with the data listed in Table 1 without

any difficulties. The plot of the stress-stretch response of

three different tests, uniaxial, biaxial and shear tests, are also

shown in Fig. 1. It is interesting to see the results from the

uniaxial test and biaxial test show a significant discrepancy

between two different tests, whereas the difference between

the uniaxial test and pure shear test can be so small that two

results appear identical. Indeed, the large discrepancy

prompts that different tests other than uniaxial tests should be

conducted to capture complex mechanical behavior of

biological tissues; thereby a mathematical model should also

be installed in order to be integrated with a extensive range

of movements and loading conditions. Differently, it should

be mentioned that a simple mathematical model based only

on uniaxial test may not correctly interpret the mechanical

behavior of biological tissues in many complex cases of

mechanical loadings. 

Typical material tests consist of simple tension, compression,

biaxial, simple shear, pure shear, and volumetric compression.

It should be mentioned that the tests need to be conducted in

principal stretch mode so that the mathematical formulation

of materials may be made without conducting complex

calculation owing to the transformation of coordinates. Once

multiple tests are posted out, obtained data are set out into a

curve fitting routine in order to identify material parameters

through the following form: 

(3)

where N is the number of data. That is, minimizing the stress

error or difference between those of experiment Texp and

mathematical model Tmath in Eq. (3) with respect to unknown

parameters completes a material identification procedure.

For example, it is required of a material parameter μ of the

neo-Hookean model. In fact, there exist various curve-fitting

algorithms among which the least-square fitting is most

popular. Hence, it is noted that the definition of the error

need not be the same as above. Other forms of errors such as

relative error can be also defined to meet any specific

interest. For example, if three different experiment data from

uniaxial, biaxial, shear experiments are available, one may
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∑

Table 1. The corresponding stress and stretch for three different
tests, where Texp being the nominal stress defined as F/A0, that is,
the ratio of the force applied F to the initial cross-sectional area A0

of a specimen. The stretch ratio Λ is defined by l/l0, where l is the
current length and l0 the initial length of a specimen. The change
in length of a specimen and the applied force can be easily
collected through experiment device such as a universal testing
machine, which are converted into nominal stress versus stretch
ratio diagram.

Experiment Stress Stretch

Uniaxial tension T exp Λ1 = Λ, Λ2 = Λ3 = 1/   

Biaxial tension T exp Λ1 = Λ2 = Λ, Λ3 = 1/Λ2

Pure shear T exp Λ1 = Λ, Λ2 = 1, Λ3 = 1/Λ

Λ
Fig. 1. The plot of the normalized nominal stress (T/μ) versus stretch
Λ generated with the neo-Hookean material model in Eq. (2)
subjected to a uniaxial, biaxial and pure shear tests, respectively.
The material parameter of a mathematical model is to be determined
via curve-fitting technique with accordance with experiment data.
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define the least-square type of error as follows:

(4)

where N, M and S are the number of respective experiment

data. Similarly, by minimizing the error in Eq. (4) with

curve-fitting algorithms, the material parameters can be

obtained, which completes the whole procedure for a

mathematical model. 

SEMI-EMPIRICAL METHOD

It may be not always guaranteed that the results from

numerical simulations could represent the mechanical behavior

correctly, in particular, under complex loadings or motions.

To answer this difficult question, all necessary conditions

arising during experiments such as mechanical boundary

conditions of biological tissue specimens must be recognized

and converted as inputs into the computer program for

numerical simulations; however, it is just not possible to

reckon all information of these boundary conditions.

In this segment, a semi-empirical method, which is called

the cell element method, is presented to capture the

mechanical behavior of a biological tissue under complex

mechanical motions or loadings. A key concept of the

method is about only having displacement data to be

employed for the stress calculation; thus, the estimation of

stress in a deformed portion of a tissue can be obtained by

taking snapshots of the apparent movement of cell elements

owing to forces or motions. This method consists of a series

of experiments and numerical procedures: preparation of

specimens, construction of cell elements, image processing

and deformation calculation and so on.

As an instance of application of the method, it necessitates

to be made in such a way that three markers are set along a

specimen in order to build a triangular element shown in

Fig. 2. That is, the cell element is a term to denote a physical

element constructed by markers placed on a specimen. Once

the element is constructed, snapshots are taken with the high-

speed camera shown in Fig. 3 during a motion owing to

external forces, which then to be processed by an image-

processing program to generate the coordinates of the

element in the current configuration. The deformation of the

element thus can be held with the mapping among the

configurations: the parent, the initial, and the current

min
μ

Ti

exp
Ti

math
–( )uniaxial

2

i=1
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∑ Tj

exp
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math
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Fig. 2. Schematic of the coordinate transformation: Three red
markers representing the nodes of a triangular element are set on
the surface of a soft tissue. A change of the coordinates between
the initial configurations and the current configuration owing to
external forces is observed upon a change of three markers’
locations. The mapping function x = φ(X) maps the initial material
point X into the current coordinates x. By adopting isoparametric
elements, the elements in the initial configuration and the current
configuration are readily transformed into that in the parent
configuration to be used for the cell element method.

Fig. 3. Left: The high-speed camera capable of capturing up to a thousand frames per second, which can track down the motion of the
markers on the specimen. Center: The photo taken with the high-speed camera. Right: The result of executing the image-processing
program with the photo taken. The image-processing program, written in Python script language, successfully recognizes the markers’
coordinates on a specimen.
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configurations as shown in Fig. 2. In the figure, only three

markers are used to construct a triangular finite element;

however, the number of markers can be easily added

depending on what type of an element has to be employed.

For example, two markers can be placed in an interval

element and a quadrilateral element for four markers shown

in Fig. 4, respectively.

The coordinates of the markers or nodes in the initial

configuration are denoted as X, which is addressed as the

material points. The current coordinates are expressed as x.

The displacement u denotes thus merely the difference

between those two coordinates: u = x − X. The calculated

displacements are to be used as boundary conditions for a cell

element. The calculation of the changes in the coordinates of

the element between two different configurations is of a most

importance. Employing kinematics, a motion of the element

can be identified with the mapping function φ connecting

two coordinates each other as shown in Fig. 2 and is

expressed in the form: x = φ(X), where φ is the mapping

function interacting between two frames. Moved over the

cell element concept, the markers are handled as the nodes of

finite element methods. The cell element is thus constructed

with the markers on the specimen. It is more useful for

isoparametric element to be processed in the cell element

method because types of cell element don’t need to be

confined to a triangular finite element with a right angle

shown in Fig. 2. This means that there is much freedom to

decide the locations of markers in the initial form. The initial

and the current coordinates are expressed in terms of the

nodal values and the shape functions. The shape function is

defined in the parent configuration; that is, N(ξ) where ξ is

the parent coordinate. Hence the current coordinates are

given as x(ξ) = NI(ξ)xI, where n denotes the number of

nodes in an ingredient. Likewise, the coordinates in the initial

configuration are expressed in the form: X(ξ) = NI(ξ)XI.

Note that both the initial and current coordinates are

expressed in terms of the shape function in the parent form.

The coordinates of the markers are expressed as XI for the

initial configuration and xI for the current configuration.

Employing the concept of isoparametric elements widely

used in finite element methods, the coordinates of the

location of three marked points are given in terms of the

shape functions and nodal values of the deformed element

x = N
α
x
α
. The deformation gradient F plays an important

role to depict the motion of a cell element, which is defined

by

(5)

where Grad is the gradient with respect to X and

, (6)

In the final stage, the last procedure of the cell element

method for stress calculation is exemplified through the

accompanying examples in the following segment. 

Variational formulation

The mechanical behavior of such a material has been known

by employing hyperelastic material models. With the help of

the mathematical model, the stress can be simply obtained

from an elastic energy function by conducting some

mathematical manipulations. Once a hyperelastic material

model is put on a test to fit experiment data in terms of a

constitutive relation, numerical analysis are required among

which finite element method stands out to calculate the

mechanical behavior of the material under various complex

boundary conditions. It is the variational formulation on

which finite element method is mathematically based;

thereby, a brief introduction to this formulation of nonlinear

problems is given as follows [14, 110].

The potential energy Π of a material over the domain Ω
and the boundary Γ subjected to boundary conditions is

given by 

(7)

where Ψ is the hyperelastic energy function and  is

traction at the boundary Γ. The stationary condition for the

potential energy in Eq. (7), i.e. δΠ = 0 is expressed as 

(8)

where δF = Grad δu and D is the directive derivative. If the

stationary condition is enforced by figuring out the equation

δΠ = 0 for the displacement, strains and stresses would be
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Fig. 4. A quadrilateral cell element with four nodes of which
coordinates are (0.0), (1,0), (1,1) and (0,1) for node 1, 2, 3 and 4,
respectively.
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derived accordingly. However, hyperelastic material models

for a soft tissue are usually nonlinear with respect to the

displacement. Therefore, Eq. (8) needs to be linearized with

respect to the displacement. 

For the sake of brevity, it is convenient to employ an

abstract framework hereafter. According to the functional

analysis theory, an approximate solution (finite-dimensional

solution) to a problem must be sought in an appropriate

solution space. The solution space V is defined as V = {u|u

∈ H1(Ω), u =  on Γ}, where H1(Ω) = {u ∈ L2(Ω)| grad, u

∈ L2}, L2(Ω) = {v| } and  is the displacement

boundary condition on Γ. Converting the variational form in

Eq. (8) into an abstract form to yield a problem of finding a

function u ∈ V such that 

    (9)

where a(●, ●) is the bilinear form a : V × V →R and l(●) is

the linear form l : V →R and

,  

Since the solution u to Eq. (9) is not exact but approximate

that the residual R(u) is inevitable to exist as follows: 

(10)

Since the residual equation Eq. (10) is nonlinear that it

needs to be linearized in the direction of Δu: 

where

   

also an explicit form: 

Employing an iterative numerical scheme such as Newton-

Raphson algorithm to solve the nonlinear equation in Eq. (10),

(11)

where k is the iterative index and Δuk = uk+1 − uk. Eventually,

the iterative process for solving Eq. (11) continues until the

designated error condition is met. 

RESULTS AND DISCUSSION

In summary, it is noted that the cell element method makes

use of a collaboration of experiment data as well as the finite

element concept originated from finite element methods in

order to obtain stress induced when a specimen is subjected

to complex motions. This method thus consists of three

distinctive steps: Cell element → Image capture &  processing

→ Stress calculation. What follows is a brief explanation of

the tests. In the first step, a construction of a cell element on

a specimen is done by placing markers(nodes) on it. The

movement of the nodes owing to external forces or impacts

is also captured with a high speed camera. Based on the

movement of the nodes, the displacements of these nodes are

easily determined to be used for determining the deformation

gradient. Ultimately, this gradient is used to obtain the stress

in Eq. (13). This concludes the procedure typically

performed in the cell element method.

In order to verify the validity of the cell element method,

we have conducted three numerical examples simulating

different material tests, which are biaxial tension tests, simple

shear tests, and a complex motion test. Note that all the

instances in the present work were done with fictitious data;

yet, the method can be promptly applied to various

experiments, keeping most part of the method unchanged.

Throughout the examples, a soft tissue based on the

compressible neo-Hookean model [1, 2] was used for which

energy function is given by

(12)

where the right Cauchy-Green tensors C = FT F, the Jacobian

J = detF and the material parameters μ = E/(2(1 + v)) and

λ = Eν/((1 + ν)(1 − 2ν)) with elastic modulus E = 1,000 Pa

and Poisson’s ratio ν = 0.4. The Cauchy stress is typically

defined in the form:

(13)

Once the deformation gradient is determined along with

respective motions, the stress can be calculated with Eq. (13).

As the first example, two directions of the specimen as

shown in Fig. 4 being perpendicular to each other are loaded

with tensile forces, respectively. That is, biaxial tension tests

were performed with a quadrilateral element of which

coordinates of the nodes are given by (0,0), (1,0), (1,1) and

(0,1), respectively. The results are given in four different

cases: (λ1 = 0.05, λ2 = 0.05), (λ1 = 0.1, λ2 = 0.1), (λ1 = 0.05,

λ2 = 0.1) and (λ1 = 0.1, λ2 = 0.15) for cases A, B, C and D,

respectively. Moreover, the deformation gradient of the

biaxial tension test is F = λ1e1 e1 + λ2e2 e2 + e3 e3. In

order to obtain the displacement, four marked points are used

as nodes as shown in Fig. 4. Once the displacement is known

through captured images, the stress can be readily calculated

with Eq. (13). Numerical simulations for the comparison are

also made with 983 finite elements for finite element methods
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as shown in Fig. 5a. Finally, the comparison between the

biaxial test simulations of the cell element method and finite

element methods is shown in Fig. 6, this comparison of

stresses obtained between two methods shows an excellent

agreement over four different cases. It is thus concluded that

the cell element method can be used for typical material tests

such as biaxial tension test. 

As the second example, simple shear tests are performed

for γ = 0.1 ~ 0.5, where γ is the shear strain. Thereby, the

deformation gradient for a simple shear test is F = e1 e1 +

γe1 e2 + e2 e2. The finite element model is composed of

2,244 finite elements as shown in Fig. 5b. Upon observing

the results shown in Fig. 7, as it is expected that the shearing

stress is not quite going well at the comparison. There might

be a few reasons of discrepancy, one possible reason among

which may be the use of a constant strain element when

shear strain γ > 0.1. In this situation, given severely distorted

elements owing to a large shear deformation, even simply

increasing the number of finite elements seems to be no help

to thin out the errors. The calculated shearing stress with the

cell element might be overestimated as the shear stress

increases. Since only four nodes are employed for a cell

element in this example, it may be hardly to get accurate

results unless going with more elements. On the other hand,

an advantage of the cell method is that it takes just over a

small part of a specimen not the entire domain for calculation;

therefore, relatively poor results are understandable by the

use of a single element. A remedy for the error may be use

of higher degree elements; even so, it is out of scope in the

present work.

The last example is of complex motions owing to external

forces or impacts. The simulation is performed with a

triangular element in four different cases listed in Table 2. It

is also noted that the coordinates of the element in A denote

the initial configuration of the element and the others

represent some other situations owing to different boundary

conditions generated through external forces or impacts. The

simulations were conducted in such a fashion that the motion

 ⊗
 ⊗  ⊗

Fig. 5. The simulation results from two different material tests: (a)
Finite element model with 983 finite elements for the biaxial
simulations, (b) Finite element model with 2244 finite elements
for the simple shear test simulations (γ = 0:1).

Fig. 6. Comparison of von Mises stress vs stretch relations for
biaxial tension test simulations of the cell element method and
finite element methods. The biaxial tension tests are done with a
quadrilateral element for four different cases: (λ1 = 0.05, λ2 =
0.05), (λ1 = 0.1, λ2 = 0.1), (λ1 = 0.05, λ2 = 0.1) and (λ1 = 0.1, λ2 =
0.15) for cases A, B, C and D, respectively.

Fig. 7. Comparison of stress versus shear strain obtained the cell
element method and finite element methods.
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of the element begins at configuration A, and then it shifted

to next configurations B, C and D in turn. As is seen in

Fig. 8, the stresses were tracked down over the time sequences

from A to D. The results confirm that the cell-element

method can be used for obtaining kinematic motions as well

as stress calculation of a specimen subjected to complex

loadings. Furthermore, it can be deduced that the more

complex motion applies, the more segments needed for the

entire movement.

We have demonstrated that the cell element method can

play an important role to grab up the motion of a soft tissue

subjected to an external force or an impact. With a high-

speed camera, instantaneous motions of the specimen in

responding to external stimuli can be captured to be used to

measure the deformation. An in-house image processing

program written in Python script language successfully

identifies the coordinates of the elements from the images

taken with the camera as shown in Fig. 3. For example, three

nodes are to construct a triangular element on the surface of

a soft tissue and the camera takes pictures of the specimen

during the motion. The pictures are shipped to be processed

through an image-processing program to key out the

coordinates of the nodes automatically. Thus, the obtained

coordinates are to be employed as an input for the cell

element program. Throughout the examples, the cell element

method is carefully examined to see if it works in various

situations correctly. In order to reduce the numerical error, as

mentioned before, the size of a cell element needs to be

smaller, which means the markers should be placed closer

together when placed on a specimen. Since finite element

methods are of an entire domain, if such a complicated

motion applies as shown in Fig. 8, it is awkward to find

appropriate boundary conditions. On the reverse, the cell

element method requires information on the coordinates of a

diminished part of the consistence, that is, only the displacement

boundary conditions are needed. Thus, the method may find

its best usefulness in those fields where local stress estimation

is needed, such as brain damage estimation in car accidents.

CONCLUSION

The article starts out with a general review of mathematical

modeling of biological tissues yet focused on the

phenomenological modeling, which only considers overall

mechanical behavior compatible with experiment data. In the

phenomenological modeling framework, a mathematical

model with material parameters can be established by

minimizing the error between a hyperelastic material model

and the corresponding experiment data with curve-fitting

algorithms. Once a mathematical model is obtained, it can be

implemented in finite element methods for diverse forms of

numerical simulations. However, it is difficult for numerical

simulations take into account every mechanical condition

arising in real world situations. Furthermore, a soft tissue,

such as a brain tissue will not allow any sensors made of

Table 2. Fictitious experiment data for the cell element method.
The coordinates of the nodes of the triangular element in the initial
coordinate in A and three different configurations in B, C and D.

Nodes A B C D

1 (0.0, 0.0) (0.3, 0.1) (0.6, 0.3) (0.8, 0.5)

2 (1.0, 0.0) (1.4, 0.3) (1.4, 0.6) (1.5, 0.9)

3 (1.0, 1.0) (0.6, 1.1) (0.3, 0.9) (0.9, 1.3)

Fig. 8. The simulation results of the complex motion described in Table 2: (a) Schematic of a series of fictitious motions of the triangular
element marked on the surface of a specimen. The motion is divided into four different configurations A, B, C and D. Each configuration
becomes the current configuration at that time, (b) Calculated stresses σx, τxy, σy and σvM (von Mises stress) with the cell element method
subjected to the complex motion described in Table 2 for cases A, B, C and D.
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hard materials installed on it because of extremely low

stiffness. A semi-empirical method, which are validated in a

full usage of both finite element methods and mathematical

models based on phenomenological approach, is introduced

to evaluate the stress-strain responses of biological tissues

subjected mechanical loadings. In summary, the present

method consists of a series of experimental and numerical

procedures, in which there is a development of specimens,

construction of cell elements, image processing and deformation

assessment. The method could be expanded to more complex

arrangements such as three-dimensional motion analysis of

head tissues, liver tissues, or blood vessels, where conventional

experimental methods fail to function right.
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