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Abstract

Purpose Automated classification of brain magnetic resonance

(MR) images has been an extensively researched topic in

biomedical image processing. In this work, we propose a

new approach for classifying normal and abnormal brain MR

images using bi-dimensional empirical mode decomposition

(BEMD) and autoregressive (AR) model.

Methods In our approach, brain MR image is decomposed

into four intrinsic mode functions (IMFs) using BEMD and

AR coefficients from multiple IMFs are concatenated to

form a feature vector. Finally a binary classifier, least-squares

support vector machine (LS-SVM), is employed to discriminate

between normal and abnormal brain MR images.

Results The proposed technique achieves 100% classification

accuracy using second-order AR model with linear and

radial basis function (RBF) as kernels in LS-SVM.

Conclusions Experimental results confirm that the performance

of the proposed method is quite comparable with the existing

results. Specifically, the presented approach outperforms

one-dimensional empirical mode decomposition (1D-EMD)

based classification of brain MR images. 

Keywords Magnetic resonance imaging (MRI), Bi-dimensional

empirical mode decomposition (BEMD), Intrinsic mode

function (IMF), Autoregressive (AR) model

INTRODUCTION

Magnetic resonance imaging (MRI) is commonly used

method for investigating brain abnormalities [1]. Images of

brain with some abnormalities are characterised by abrupt

changes in image textures. For example, cancer in brain

magnetic resonance image is characterised by large cells

with high contrast [2], thus making it feasible to differentiate

them from normal brain magnetic resonance images.

Alzheimer's disease [3] is the common cause of age-related

dementia. Multiple sclerosis [4] is a neurological disorder

that results in various dysfunctions. Other abnormalities

related to the brain include glioma, herpes encephalitis and

metastatic bronchogenic carcinoma etc. [5-7]. Images of

brain having above mentioned diseases are characterized by

large cells and high contrast. Many methods have been

proposed in the literature to identify brain magnetic resonance

(MR) images having aforementioned abnormalities. Abnormal

images may have one or multiple abnormalities.

Generally, the classification of medical images is performed

using a two-step procedure. In first step, discriminating

information or features are extracted from medical images. In

the second step, a classifier utilizes the extracted information

to form a decision on the category of the input image.

Classification approaches are of two types, supervised and

unsupervised. Supervised methods include support vector

machines (SVM) [5, 8], artificial neural networks (ANN) [6]

and k-nearest neighbor (k-NN) [9]. Unsupervised classification

techniques include self-organization map (SOM) [5, 8] and

fuzzy c-means [10]. Supervised methods are more common

than unsupervised methods because they usually provide

better accuracies [11].

In recent years, extensive research has been done in the

area of automated classification of MR images of normal and

abnormal brain. Two-dimensional discrete wavelet transform

(2D-DWT) based approaches have been extensively explored

for classification of brain MR images. Specifically, the

approaches presented in [5, 12] explored approximation
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coefficients at level 2 and level 3 for discrimination, while

the work in [13] presented an approach based on 2D-DWT

for feature extraction, principal component analysis (PCA) for

feature space reduction and back propagation neural network

for classification of MR images. In another related work [14],

generalized autoregressive conditional heteroscedasticity

(GARCH) was employed to model wavelet coefficients of

detail sub-bands. Authors in [8] used the coefficients of the

approximation sub-band of two-level 2D-DWT of brain

MRI as features, and SOM based neural network and SVM

for classification. Maitra et al. [15] applied slantlet transform

on intensity histogram of the image and employed back-

propagation neural network (BPNN) for classification.

Authors in [6] proposed a method for brain MR image

classification using wavelet transform and PCA. Scaled

conjugate gradient was used for optimal weight setting in

BPNN for classification. Saritha et al. [16] used wavelet

entropy based spider web plots for feature extraction and

probabilistic neural network for classification to achieve

maximum classification accuracy. In [17], authors proposed

a three-stage approach for brain MR image classification

using features extracted from LH and HL sub-bands of two

level 2D-DWT with ensemble classifier. Subsequently, authors

in [7] employed 2D-DWT followed by Gabor filter banks on

HH sub-band of 2D-DWT for feature extraction and SVM

for classification. Lahmiri et al. [18] employed one-dimensional

empirical mode decomposition (1D-EMD) to generate intrinsic

mode functions (IMFs) from brain MR images, conversion

of brain MR image to one dimensional signal is done by

concatenating successive rows of the image from left to right

and top to bottom. Statistical features were extracted from

the IMFs and an entropy based selection process was

employed to identify the most informative features from

each IMF followed by SVM for classification. A detailed

survey of computer aided diagnosis of human brain tumor

using MR images is presented in [19]. Authors in [19] also

proposed a new approach employing the feedback pulse

coded neural network for image segmentation followed by

discrete wavelet transform (DWT) and PCA for feature

extraction and forward BPNN for classification.

In the presented work, we have developed an approach for

classification of normal and abnormal brain MR images.

Based on our knowledge, this is the first time that bi-

dimensional empirical mode decomposition (BEMD) is

applied for classification of brain MR images. Experimental

results show that the proposed approach has outperformed

existing approaches in terms of classification accuracy.

METHODOLOGY

The classification of brain MR images is carried out in a

three-step process. Firstly, BEMD is used to decompose the

image into the IMFs. This is followed by modelling of

individual IMFs using AR model to generate feature vectors

in the form of AR coefficients. Finally, based on the extracted

features least-squares support vector machine (LS-SVM)

makes a decision as to whether the input brain MR image is

of normal or abnormal human brain. The schematic diagram

of the proposed methodology is presented in Fig. 1.

Empirical mode decomposition

Empirical mode decomposition (EMD) [20] is a multi

resolution decomposition technique. EMD represents a

non-stationary signal as a sum of zero-mean amplitude

modulation-frequency modulation (AM-FM) components

[21]. The decomposition process is adaptive and signal

dependent. It is suited for the analysis of one-dimensional

(1D) nonlinear and non-stationary signals. EMD decomposes

a 1D signal into a set of band-limited signals called intrinsic

mode functions (IMFs). The procedure used to extract IMFs

from the signal is termed as sifting. The decomposition is

based on the following assumptions [20, 22]:

1. The signal should have at least one maxima and one

minima.

2. The time scale depends on the time interval between the

extrema points.

3. If the data does not have any extrema and contains only

inflection points, then it can be differentiated multiple

times to obtain the extrema. The integration operation

can be applied after the processing of these components.

For signal x(t), sifting process can be summarized as

Fig. 1. Schematic diagram of the proposed approach for classification
of brain MR images.
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follows [20]:

1. Let g(t) = x(t).

2. Obtain the extrema from g(t).

3. Find out upper envelope eu(t) and lower envelope el(t)

by connecting maxima and minima respectively.

4. Compute the mean envelope em(t) by averaging these

two envelopes as:

5. Subtract em(t) from the signal g(t) to generate g(t) = g(t)

− em(t).

6. Determine whether g(t) is a valid IMF or not, by

applying conditions of IMF.

7. If g(t) is not a valid IMF, repeat steps 2 to 6 until a valid

IMF is obtained.

Once a valid IMF is obtained, assign D1(t) = g(t). Obtain

r(t) by applying subtraction operation as r(t) = x(t) − D1(t).

Replace x(t) by r(t) i.e. x(t) = r(t). To generate the next IMF,

repeat steps 2 to 7 by considering g(t) = r(t). The signal x(t)

can now be represented as follows [20]:

(1)

where M represents total number of the IMFs present in the

signal and rM(t) is the residual component of the signal.

EMD has been successfully applied in various areas such

as electroencephalogram (EEG) signal analysis [23-29], gear

fault diagnosis [30], analysis of center of pressure (COP)

signals [31] and speech signal analysis [32].

Bi-dimensional empirical mode decomposition

Bi-dimensional empirical mode decomposition (BEMD)

extracts two-dimensional intrinsic mode functions (2D-IMFs)

during the sifting process. A 2D-IMF can be considered as a

zero-mean two dimensional (2D) AM-FM component [22].

Bi-dimensional sifting process [22, 33] can be summarized as:

1. Locate the maxima and minima points of the image $I$

by morphological reconstruction based on geodesic

operators [34].

2. Interpolate the surface between all the maxima and all

the minima with RBF to build the 2D envelope Xmax

and Xmin, respectively [35].

3. Determine the mean envelope Xm by averaging the two

envelopes as follows:

4. Subtract out the mean from the image to get h1 = I − Xm.

5. Repeat the above mentioned process till h1 satisfy

conditions of an IMF.

BEMD has applications in many areas such as texture

analysis [36, 37], image denoising [38], image watermarking

[39], iris recognition [40], image fusion [41], image feature

extraction [42], image classification [43], texture classification

and segmentation [44], etc. For our experiments, BEMD

code available at MATLAB central file exchange [45] has

been used.

Autoregressive model

A 2D autoregressive (AR) model for analysis of image blur

using residue image of BEMD is explained in [46]. In our

experiments, 2D AR model is employed on 2D-IMFs of the

brain MR images. In order to analyze 2D-IMFs with 2D AR

model, it is considered as a 2D random field x[p, q], (p, q) ∈ Z2.

For the N1 × N2 image I = {x[p, q] : 0 ≤ p ≤ N1 − 1,0 ≤ q

≤ N2 − 1}, 2D AR (r1, r2) model is defined by the following

difference equation [46]:

(2)

where w[p, q] is a stationary white noise field with variance

σ2, r1 and r2 represent order of the AR model and the

coefficients aij are the parameters of the 2D AR model.

In Eq. (2), the image x[p, q] can be interpreted as the

output of the linear time-invariant (LTI) causal system with

transfer function H(z1, z2) and a white noise as an input. The

transfer function is given as [46]:

(3)

with a00 = 1. Assuming that the noise sequence w[p, q] are

known, the parameters in the AR model as described by

Eq. (2) can be determined by the least-squares (LS) method

as follows [46]:

(4)

where

(5)

and

(6)

The matrix form of Eq. (4) for p = L + 1, ..., N1 − 1 and

q =M + 1, ..., N2 − 1 for arbitrary L > r1 and M > r2, provides

[46]:

(7)

where
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,

and Φ is given as [46]:

Assuming that Φ is known, a LS estimate of the parameter

vector θ in Eq. (7) can be obtained as [46]:

(8)

AR model has been employed for many applications such

as shape classification [47], EEG and electrocardiogram

(ECG) signal classification [48, 49], image texture analysis

[50], etc.

Least-squares support vector machine

SVM was introduced in [51]. It is based on statistical

learning theory. To classify the data, SVM constructs optimal

separating hyperplane which maximizes the margin between

the two nearest data points which belongs to two different

classes. Consider N number of data points , where

xi ∈R
d is d-dimension input feature and yi ∈ {+1, −1} is

class label. For two class classification problem, separating

hyperplane is given as [52]:

(9)

where Ω is n-dimensional weight vector and g(x) is a

mapping function that maps x into the n-dimensional space

and β is a bias. The least-squares version of SVM, which is

known as least-squares SVM (LS-SVM) was introduced in

[52], the classification problem using LS-SVM can be

formulated as [52]:

(10)

subject to the following equality constraint,

(11)

where .

The Lagrangian multiplier αi for Eq. (10) can be defined

as [52]:

(12)

On solving Eq. (12) by considering the optimal conditions,

LS-SVM classifier is obtained as [52]:

(13)

where K(x, xi) is kernel function. In the presented work,

different kernel functions have been used which are defined

as follows [53]:

1. Linear kernel function:

   K(x, xi) = xxi (14)

2. Polynomial kernel function:

   K(x, xi) = (xxi + 1)
d (15)

   where d is the degree of the polynomial.

3. Radial basis function (RBF) kernel:

   (16)

   where σ controls the width of RBF function.

LS-SVM has been widely used for classification of EEG

signals [54, 55], ECG signals [56], electromyogram (EMG)

signals [57], MR images [58], etc.

EXPERIMENTAL RESULTS AND DISCUSSION

Experimental evaluation of the proposed method was

performed on a publicly available AANLIB database of

Harvard medical school [59]. Fig. 2 presents a set of brain

MR images from the database. For our experiments, a total

of 88 axial, T2-weighted brain MR images are used, out of

which 25 images correspond to normal human brain and the

remaining 63 images correspond to human brain affected by

diseases such as alzheimer’s, glioma, herpes encephalitis,

metastatic bronchogenic carcinoma and multiple sclerosis.

Number of images corresponding to each of these diseases is

presented in Table 1.

In our experiments, BEMD is applied on each of the brain

MR images to extract 2D-IMFs. Figs. 3 and 4 show sample

brain MR images and corresponding IMFs for normal and

abnormal category, respectively. As can be observed from

x
i
, y

i
{ }

i=1

N

Table 1. Distribution of abnormal brain MR images in database.

Disease Number of images

Alzheimer’s 10

Glioma 12

Herpes encephalitis 16

Metastatic bronchogenic carcinoma 11

Multiple sclerosis 14
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these figures, the visual information contained in 2D-IMFs

decreases as the mode of 2D-IMFs is increased. Therefore,

in our experiments, only the first four 2D-IMFs are used for

further processing.

In our approach, each of the 2D-IMF is modeled using a

2D AR model. In this way, we obtained AR coefficients for

each of the IMFs, which are concatenated to form the feature

vector. The class discrimination ability of AR coefficients as

feature vector is quantified using Kruskal-Wallis statistical

test [60]. The results are presented in Figs. 5, 6 and 7 for 1st,

2nd and 3rd order AR coefficients respectively for discrimination

of normal (N) and abnormal (AN) brain MR images. Also,

the p-values obtained from the test are presented in Table 2.

Fig. 2. Sample brain MR images in the AANLIB database.

Fig. 3. Sample normal brain MR image and corresponding IMFs.

Fig. 4. Sample abnormal brain MR image and corresponding IMFs.

Fig. 5. Box plot of 1st order AR coefficients of normal and abnormal
brain MR images.

Fig. 6. Box plot of 2nd order AR coefficients of normal and abnormal brain MR images.
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As the p-values are very small, it can be concluded that AR

coefficients as features are statistically significant and are

effective for classification of normal and abnormal brain MR

images. Finally, LS-SVM is employed for classification of

brain MR images with AR coefficients as feature vector.

A set of experiments have been performed to investigate

the performance of our approach with different orders of the

AR model and different kernel functions of LS-SVM.

Specifically, the performance of the proposed methodology

is evaluated with linear, polynomial and RBF kernel

functions in LS-SVM for 1st, 2nd and 3rd order AR models. In

addition, in order to study the effect of kernel parameters on

the classification accuracy, we performed experiments by

varying the degree of the polynomial kernel from 2 to 4 in

steps of 1. Similarly, the σ value of RBF kernel function was

varied from 0.1 to 10 in steps of 0.1. Specifically, we have

performed 10-fold cross validation experiments.

Performance of the proposed method was evaluated using

performance measures such as accuracy, sensitivity and

specificity. Suppose TP and TN denote the number of

correctly classified positive and negative samples and FP

and FN denote the number of falsely classified negative and

positive samples respectively. The performance measures are

defined as follows [61]:

1. Accuracy (ACC): It is defined as the fraction of correctly

classified positives and negative samples out of the total

number of test samples and it is given as:

(17)

2. Sensitivity (SEN): It is defined as the ratio of numbers

of correctly classified positive samples to the total

number to positive test samples and it is given as:

(18)

Fig. 7. Box plot of 3rd order AR coefficients of normal and abnormal brain MR images: (a) AR01-AR20, (b) AR21-AR33.

Table 2. p-values of AR coefficients obtained from Kruskal-Wallis
test.

p-Value 1st order 2nd order 3rd order

p1 1.9×10-9 1.32×10-9 1.32×10-9

p2 3.43×10-9 1.32×10-9 1.32×10-9

p3 1.32×10-9 1.32×10-9 0.0007

p4 - 1.32×10-9 1.32×10-9

p5 - 1.32×10-9 1.32×10-9

p6 - 1.32×10-9 1.32×10-9

p7 - 1.32×10-9 3.68×10-6

p8 - 0.0276 1.32×10-9

p9 - - 1.32×10-9

p10 - - 0.0005

p11 - - 0.079

p12 - - 3.878×10-7

p13 - - 2.71×10-9

p14 - - 0.0204

p15 - - 0.0022
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3. Specificity (SPF): It is defined as ratio of number of

correctly classified negative samples to the total number

of negative test samples and it is given as:

   

   (19)

A plot of classification accuracy versus degree of polynomial

kernel function in LS-SVM is shown in Fig. 8, from which

it can be observed that 1st order AR model provides the least

classification accuracy consistently for 2nd, 3rd and 4th degree

polynomial kernel function. On the other hand, 2nd and 3rd

order AR models achieve maximum accuracy for 2nd degree

of polynomial kernel function in LS-SVM.

Fig. 9 presents a plot of classification accuracy versus

sigma values for RBF kernel function in LS-SVM obtained

by varying σ values from 0.1 to 10. It can be observed from

the Fig. 9 that accuracy of 1st order AR model varies

significantly for different values of σ and the accuracy

decreases as σ value is increased. 1st order AR model

achieves accuracy less than 97% for all values of σ, whereas

2nd order AR model achieves 100% accuracy for σ values

greater than 8 and 3rd order AR model achieves 100%

accuracy for σ values greater than 6.5. Thus, it can be

concluded that 3rd order AR model achieves the maximum

accuracy for the least value of σ.

The results of our experiments using 10-fold cross validation

method are summarized in the Table 3. From the results, it

is observed that the 2nd order linear and RBF kernel function

achieves 100% accuracy, sensitivity and specificity. Polynomial

function achieves a maximum classification accuracy of 99%

for 2nd degree polynomial and 2nd order AR model. Also it

can be noticed that in the case of 2nd order AR model, linear

kernel function provides better accuracy as compared to

polynomial (non-linear) kernel function. This may be due to

overfitting, which occurs when model is excessively complex

and size of training dataset is too small in comparison to

model complexity. Overfitting can be considered as a situation

when model begins to memorize training data rather than

learning to generalize from the trend. Due to small number

of samples for each abnormal class in the database, partitioning

of the database for 10-fold cross validation might result in

very few abnormal samples in some of the subsets. In order

to address this concern, experiments are also performed

using 2-fold and 3-fold cross validation methods and results

are summarized in Tables 4 and 5 respectively. It may be

observed that performance trend remains similar, achieving

100% accuracy consistently for 2nd and 3rd order RBF kernel

functions.

The performance of the proposed methodology is compared

with that of the existing approaches on the same database

and the classification accuracy is shown in Table 6. In the

literature, different approaches have been used to partition

the dataset for classification. Some of the existing methods

used fixed approach, in which some percentage of the data is

used for training and remaining data is used for testing.

However, the percentage of the data used for training and

testing vary from method to method. Other existing works

used leave-one-out method (LOOM). The proposed work has

been evaluated using the standard 10-fold cross validation

method. In addition, we present classification accuracy of

our method using LOOM for a fair comparison with some of

the existing works. It can be observed that proposed method

outperforms the existing methods, specifically our results are

better than the 1D-EMD based approach presented in [18]. It

is also important to note that the approach based on 1D-

EMD achieved 99% when evaluated using leave-one-out

method, which tends to result in higher accuracy than 10-

fold cross validation. A major drawback of the 1D-EMD

based technique for MR image classification is that it

requires vectorization of the image before decomposition. In

the process, important spatial information (including spatial

frequency and correlation) is completely lost. This is a

Fig. 9. Plot of classification accuracy versus sigma of RBF kernel
function in LS-SVM.

Fig. 8. Plot of classification accuracy versus degree of polynomial
kernel function in LS-SVM.
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plausible explanation for superior performance of our approach

as compared to 1D-EMD based approach.

CONCLUSION

In this work, we have proposed a new method based on the

bi-dimensional empirical mode decomposition (BEMD) for

classification of magnetic resonance (MR) brian images. The

features extracted from the autoregressive (AR) model of bi-

dimensional intrinsic mode functions (IMFs) have been

proposed for classification of brain MR images. The least-

squares support vector machine (LS-SVM) together with

radial basis function (RBF) kernel function has provided

maximum classification accuracy for classification of brain

MR images. In the proposed method, the kernel parameters

have been selected based on the trial and error method. In

future, it would be of interest to develop an automatic

strategy for selecting kernel parameters and kernel function.

The proposed technique for classification of brain MR

images has been studied on limited database. It is necessary

to study proposed methodology on large database before

applying this for clinical purpose.
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