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Abstract
PurposeBody worn inertial sensors could be used to assess
rehabilitation of patients with impaired upper limb motor
control by detecting and classifying how many times particular
arm movements (exercises) are made during normal activities.
We present a systematic exploration to determine such a
system.
MethodsKinematic data was collected from 18 healthy
subjects using tri-axial inertial sensors (accelerometers and
gyroscopes) located at two positions on the dominant arm as
four fundamental arm movements were repeated 20 times
each. Ten time domain features were extracted from individual
and combinations of sensor axes data, and were used to train
a classifier. Three different classifiers were investigated: linear
discriminant analysis (LDA), quadratic discriminant analysis
(QDA) and support vector machine (SVM). Each was verified
using a leave-one-subject-out technique for a generalized
classification model, and a ten-fold cross validation technique
for a personalized classification model.
ResultsLDA repeatedly gave the better results when using
features extracted from individual sensor axes data. When a
personalized learning model is used with LDA, only a single
tri-axial sensor (accelerometer or gyroscope) is required to
classify all four of the upper limb movements with a sensitivity
in the range 92-100%, using as few as 6-10 time-domain
features. By comparison, the generalized model using LDA
exhibited lower sensitivity and generally required more features

(12-18), reflecting the greater variability inherent in a training
set comprised of more than one individual’s data.
ConclusionsWe demonstrate that body worn inertial sensors
can classify elementary arm movements using a low complexity
algorithm. 

Keywords Accelerometer, Activity recognition, Gyroscope,
movement classification, Remote health monitoring, Wireless
body area network (WBAN)

INTRODUCTION

Advances in Wireless Sensor Networks (WSN) and Information
and Communication Technology (ICT) are playing a key
role in a wide array of applications such as remote health
monitoring, human computer interaction and sports medicine
using various forms of low-cost, body-worn, miniaturised
inertial sensors that are capable of capturing kinematic data
[1, 2]. The information extracted from such data can for
example be used to produce a quantitative measure of a
physical activity or a qualitative measure such as the
classification of the type of activity, depending on the
application area [3-5]. In healthcare, concerns regarding an
ever increasing ageing population and their associated
healthcare costs, particularly those related to the treatment of
chronic arthritis, cardiovascular or neurodegenerative diseases
have prompted an interest in telemedicine based systems that
make possible rehabilitation within the home environment
[3, 4, 6]. Wireless monitoring of various body parts is also
being extensively used in a wide range of sporting activities
[7]. Furthermore wireless sensing networks form a core part
of ubiquitous computing and in particular, wireless body area
networks (WBANs) are being developed as controllers for
intelligent social user interfaces (ISUIs) [8, 9]. The use of
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wearable inertial sensors coupled with the advantages of
wireless communication has become an integral part of
many such applications.
From the long-term system operation perspective, when
implementing a wireless body area network that comprises a
number of various sensors, it is essential to select data analysis
algorithms that are computationally of low complexity. The
main reason is that in such a wearable system the data
analysis primarily needs to be carried out at the sensor node,
which has been shown to yield a more energy efficient
solution compared to the more conventional continuous data
transmission based remote monitoring approach [6]. Since
the sensors are likely to be battery powered and because
energy consumption is proportional to the computational
complexity of the data processing algorithm used, the use of
high-complexity algorithms (although they may be more
‘accurate’) will drain the battery faster, defying the objective
of long-term monitoring.
In principle there are three steps for activity recognition
using inertial sensors: 1) data capture by appropriate sensor;
2) segmentation of the captured data to identify the
beginning and end of an activity and 3) recognition of the
activity using appropriate classification techniques. Although
the final two steps are in practise interrelated, individually
they pose significant research challenges owing to the possible
qualitative non-uniqueness of an activity pattern exhibited by
an individual subject. Therefore these are treated as two
individual research problems: event detection and activity
recognition. In this paper we concentrate only on the second
research problem, activity recognition, on the assumption
that the start and stop time of the target activity is known.
Sensor-based human activity recognition involves two phases
– training a model with a given set of observations and
evaluating the trained model with new sets of observations
(testing).
In this paper we describe a systematic exploration to
recognise four fundamental movements of the upper limb,
that are associated with basic activities of daily living, using
data collected from inertial sensors attached to the limb
proximal to the wrist and elbow. These positions were chosen
with respect to the arm movements being investigated, which
were (along with examples of their daily occurrence):
extension/flexion of the forearm (reach out and retrieve
object); rotation of the forearm about the elbow (lift cup to
mouth); rotation of the arm about the shoulder in the
horizontal plane (reaching out for an object sideways); and
rotation of the arm about the mediolateral axis (opening a
door or using a key. Our aim was to investigate the appropriate
data analysis and classification schemes to enable consistent
and accurate detection of these basic arm movements using
the minimum number of inertial sensors located at these two
positions, with particular attention to developing a robust

training model accounting for temporal and inter-subject
variability. The detection and classification of particular arm
movements (e.g. prescribed exercises) can over time provide
a measure of arm rehabilitation progress in remote health
monitoring applications, especially in neurodegenerative
pathologies such as stroke or cerebral palsy. Enumerating
occurrences of these movements over time can act as an
indicator of rehabilitation progress since the frequency of
these movements is more likely to increase as the motor
functionality of the patient improves.
For this investigation, experiments were performed with
18 healthy subjects (age range 24 to 50, male and female,
both left and right arm dominant) each completing the four
tasks 20 times. From the kinematic data collected, 10
features were computed and used as the inputs for a number
of different classification algorithms to determine the best
combination of sensor type, features and classification
algorithm to correctly identify each of the tasks. Our results
show that under certain conditions, a tri-axial accelerometer
or a tri-axial rate gyroscope placed near the wrist or elbow
can independently recognise all four tasks performed by an
individual.
The remainder of this paper is organized as follows.
Section 2 presents a brief background study on human activity
recognition and identifies the motivation for this research.
The experimental protocol is discussed in Section 3 whilst
Section 4 describes the data processing and feature extraction
techniques. The classification methodologies used in our
work are detailed in Section 5 and the analysis of the
experimental results is provided in Section 6. Conclusions
are drawn in Section 7.

BACKGROUND

Human activity recognition in natural settings is an active
research area that has been applied widely in the field of
chronic disease management and rehabilitation [10-14].
Various types of wearable sensors have been used for
activity recognition such as accelerometers, gyroscopes and
magnetometers [5, 13-14]. Radio-frequency identification
(RFID) has also been used to monitor the movement of
objects within the home environment that are typically
encountered during daily living [15]. Another approach
being used is fusing data from vision systems and inertial
sensors to complement each other. This approach is, however,
mainly restricted to indoor activities within a defined region
under the un-hindered surveillance of the vision system.
Furthermore, the use of high complexity image processing
algorithms can result in slower analysis which can be
particularly challenging if real-time information gathering is
required [12].
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Analysis of collected data is generally performed using
statistical signal processing involving the primary steps of
feature extraction, feature selection and classification [10]. In
terms of classification, a review of the literature shows that
different machine learning techniques have been used depending
on the application area, e.g. Support Vector Machines (SVM)
[10, 13], Decision Trees (DT) [3, 10], Naive Bayes (NB)
[10], Multi-Layer Perceptron (MLP) [11], Artificial Neural
Networks (ANN) [3], or a combination of these techniques
[12]. The accuracy of any classification technique will
depend on the system requirements covering important areas
– type of activities, number of activities, type of sensors,
number of sensors, placement of sensors [16], multiple sensor
fusion, etc. 
Very little work has been reported in terms of activity
recognition for elementary limb movements. By comparison,
the majority of the published research on human activity
recognition has been devoted to monitoring simple, gross,
dynamic movements, such as sleeping, sitting, standing,
cycling, running etc. [5] and monitoring of gestures involved
during opening or closing curtains [17] and feeding motion
[18]. However, it is not clear whether in these studies critical
aspects such as optimising sensor selection and placement or
the use of low-complexity data processing and classification
techniques had taken priority. Further, an aspect which has
not been investigated are the differences prevalent among
individuals performing the same activities, which is essential
considering the variability inherent within a subject population
due to physical factors such as age, sex, body shape, etc. [19].
This therefore motivated us to make a thorough investigation
on the basic requirements of a sensor-based arm activity
recognition system which included selecting the best sensor
type, investigating the effect of sensor location and determining
the best sensor signals. This methodology was used to develop
training models based on:

● a generalized approach where movement data is collected
from a group of subjects and evaluated with a ‘leave-
one-subject-out’ validation process,

● a personalized approach where data is collected from
individual subjects and evaluated using a 10-fold cross
validation process.

EXPERIMENTAL PROTOCOL

In this investigation, experiments were performed at the
University of Southampton (UoS) with 18 healthy subjects
(age range 24 to 50, male and female, both left and right arm
dominant) each completing the four movements 20 times.
Experiments were performed within an open laboratory
under the supervision of the research team. 

Movement selection
We selected four elementary types of arm movement that
might typically be used during daily activities, these are:

● Movement A – Reach and retrieve an object monitoring
extension and flexion of the forearm.

● Movement B – Lift cup to mouth and return to table
focusing on rotation of the forearm about the elbow.

● Movement C – Reach out for an object sideways by
swinging arm 90° in horizontal plane and return.

● Movement D – Rotate wrist with arm fully extended
through 90° and return.
In principle, these simple movements also resemble task
numbers 8, 9, 1 and 15 respectively of the standard Wolf
Motor Function Test (WMFT); an established clinical
assessment method for testing the functional ability of mild
to moderate stroke patients [20-22].
All of the tasks were performed by the subjects in a seated
position in the laboratory. Each subject performed 20 trials of
each task separated into four groups of five repetitions with
each group of trials being separated by approximately three
minutes. This was done to avoid the generation and collection
of unrepresentative data due to fatigue and/or boredom, as
well as the effects of unconscious self-learning of the activities.
The subjects were generally encouraged to perform the tasks
in a natural way, as they would normally do when extending,
lifting, bending or turning the arm during daily activities. In
addition, there were no restrictions on the various physical
factors of the experiment such as the seating position, height
of the chair, distance between the chair and the table,
position of the objects on the table and the time required to
complete the tasks. Un-constraining the experiment in this
manner helps to generate a wider range of variability in the
data paving the way for a robust arm movement classification
system.

Sensor selection and placement
The commercially available Shimmer 9DoF wireless kinematic
sensor module, consisting of mutually orthogonal tri-axial
accelerometers, rate gyroscopes and magnetometers, were
used as the sensing platform (cf. Fig. 1) [23]. Two positions
on the dorsal side of the dominant arm (forearm proximal to
the wrist, and upper arm proximal to the elbow) were used
as the sensing positions and were chosen as those locations
were likely to produce the largest sensor responses to the arm
movements being investigated. The XY plane of the sensor
module was in contact with the dorsal side of the forearm,
the X-axis points toward the hand and the Z-axis points away
from the dorsal aspect. The Shimmer sensors were attached
to the arm using elastic straps, providing an intimate, secure,
yet un-constraining hold.
The Shimmer sensors have an internal 2 gigabyte data
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storage capacity (smart card) as well as low power radio
communication capabilities (Bluetooth and IEEE 802.15.4)
allowing both long-term data acquisition and real-time
monitoring for experimental purposes. The Shimmer sensor
module weighs 27 g and measures 53 × 32 × 19 mm, thereby
posing minimal obtrusion and discomfort for use over long
periods [23]. For our experiments we only use the tri-axial
accelerometer and the tri-axial rate gyroscope; we chose not
to use the magnetometer since this can be affected by the
presence of ferromagnetic materials which are expected to be
present in the natural environment (e.g. cooker, wheelchair,
etc.) [24]. Sensor data is collected at a rate of 50 Hz, deemed
sufficient for assessing habitual limb movement which is on
the higher side compared to assessing holistic activity as in
[10, 11]. The accelerometer and gyroscope ranges are selected
at ± 1.5 g and ± 500o/sec respectively. The sensors transmit
kinematic data along with a time stamp to a host computer
using the Bluetooth wireless standard. Data from multiple
streaming sensor modules is synchronised with respect to
their individual time stamps and each activity performed by
a subject is marked to record the start and end of the task
during the trial.

DATA PROCESSING AND FEATURE EXTRACTION

The key steps involved in our data processing are illustrated
in Fig. 2 and described in detail in the following sections.
Acquisition & Pre-processing - The captured data is first
pre-processed to get rid of any inherent noise and artefacts
generally associated with the data acquisition process. The

raw sensor data is low-pass filtered with a 3rd order Butterworth
filter having a cut-off frequency of 12 Hz to attenuate the
high frequency noise components. The resultant data is passed
through a high-pass 3rd order Butterworth filter having a cut-
off frequency of 0.1 Hz which attenuates the low frequency
artefacts introduced in the data due to physical effects such
as drift [10]. The filter order and cut-off frequency values
were experimentally determined using Matlab.
Data Mining – The two Shimmer 9DoF sensor modules
transmit data in real-time from a total of 12 individual
sensors [(3 × accelerometers and 3 × gyroscopes) × 2
positions], providing a wealth of data from which to search
for characterising patterns. Because one of our aims of this
study is to determine which sensor position plays an important
role in classifying arm movements, we also generate fused
data signals that represent the modulus of the total
acceleration or total rate of rotation experienced by these
individual limb segments, as given by Eq. (1). This results in
4 new signals, 2 each for the wrist and elbow sensor modules.
Temporal variations in these signals indicate periods of
activity of the underlying limb segment.

(1)

We further create fused signals, based on an a priori
consideration of the expected trajectory of the subject’s arm
in relation to the sensor position on the arm and the
orientation of the sensor axes when performing the required
tasks. For example, Table 1 lists the specific accelerometer –
gyroscope combinations that are expected to be the most
active for each task as a function of their location on the arm.

Ma AccX
2
AccY

2
AccZ

2
+ +=

Mg GyroX
2
GyroY

2
GyroZ
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+ +=

Fig. 1. Sensor module showing the coordinate system for the positive direction of the accelerometer axes and rotation for the gyroscope
(left); when worn on the wrist showing the X and Y axis, the Z axis points away from the plane (right).

Fig. 2. Methodology used to evaluate data types and learning
algorithms.

Table 1. Definition of fused signals for each arm movement.

Movement Wrist Elbow

A AccX × GyroY AccY × GyroZ

B AccY × GyroZ AccY × GyroZ

C AccY × GyroZ AccY × GyroZ

D AccZ × GyroY AccZ × GyroY
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There are 3 unique sensor combinations for the wrist and 2
for the elbow to potentially identify the four tasks. Fusion of
these signals takes the simple form of multiplying together
the pre-processed data from the appropriate sensor
combinations, thus creating 5 unique signals. We do not
consider fusing data from different sensor nodes because we
aim to find the minimum number of sensor locations.
Feature Extraction – Although each of the sensors
exhibits signal patterns that are distinctive for each of the
arm movements and which may be recognisable to the
human eye, in order for a machine to recognise these patterns
a set of characterising features need to be extracted from the
signals. Typical feature sets for human activity recognition
include statistical functions, time and/or frequency domain
features, as well as heuristic features [10].
In this investigation, we consider 10 time-domain features
as follows: 1) standard deviation, 2) root mean square (rms),
3) information entropy - measure of the randomness in a
signal [25], 4) jerk metric - rms value of the second derivative
of the data normalized with respect to the maximum value of
the first derivative [26], 5) peak number - obtained from
gradient analysis of the signal, 6) maximum peak amplitude
- measure of the amplitude of the peaks obtained after
gradient analysis, 7) absolute difference - absolute difference
between the maximum and the minimum value of a signal,
8) index of dispersion - ratio of variance to the mean, 9)
kurtosis - a measure of the ‘peakedness’ of a signal assuming
a normal distribution in the data, 10) skewness - a measure
of the symmetry of the data assuming a normal distribution
in the data. Although the last two features are usually
associated with defining the shape of a probability distribution,
they can still be used as classifying features if they routinely
return values that distinguish one pattern of data from
another. All the 10 features are extracted from each of the
individual sensor data streams (AccX, AccY, AccZ, GyroX,
GyroY and GyroZ) and from the two modulus signals (Ma
and Mg) as defined by Eq. (1) for each of the wrist and elbow
sensor modules, as well as from the five fused data signals
described above in Table 1.
Feature Selection – The most common multi-class feature
ranking/selection algorithms in the field of human activity
recognition are the RELIEF algorithm [27, 28] and the
Clamping technique [11, 29, 30], though both of these are
computationally intensive. Accordingly, we choose not to
use these algorithms due to our objective of utilising only
low-complexity analysis algorithms. We normalize the extracted
features and then follow the Wrapper approach using the
sequential forward selection technique which selects various
feature vector combinations to test for the minimal classification
error probability and is computationally simple [31]. Therefore,
depending on the purpose of our investigations, we select the
best features for a given classification algorithm from: a).

individual X, Y, Z data streams from each accelerometer and
gyroscope placed on the wrist and elbow (a total of 120
features), b). modulus signals Ma and Mg from the wrist and
elbow (a total of 40 features) and c). 3 fused signals from the
wrist and 2 fused signals from the elbow (a total of 50
features). This process helps in feature reduction since we
only select the optimal number of features thereby reducing
the computational load and helps in achieving the best possible
classification accuracy. However the number of optimal
features depends strongly on the employed classification
algorithm. Therefore we made a thorough exploration in this
respect and the corresponding results are shown in Section 6.

MOVEMENT CLASSIFICATION METHODOLOGY

Although there are several well-known classification techniques
used for human activity recognition, from the perspective of
low/moderate computational complexity and to satisfy our
own requirements we restrict our study to three different
classifiers – Linear Discriminant Analysis (LDA), Quadratic
Discriminant Analysis (QDA) and SVM. SVM is a very
popular technique in machine learning community and
generally produces high accuracy rates with moderate
computational complexity (depending on the number of
support vectors used) [10, 11]. In principle it is a binary
classifier but has been extended to handle multiple classes
using the ‘one versus all’ or the ‘one versus one’ scheme
[32]. However both of these methods can be computationally
intensive depending on the number of target classes. Hence
we used the toolbox LIBSVM which is a library for SVM
that is efficient for multi-class classification [33]. Overall
(average) correct classification or accuracy is generally used
to measure the performance of a binary classifier which
might not always be applicable for multi-class classification
because of possible dissimilar classification rates of different
classes affecting the overall performance measure. Hence we
measure the sensitivity of a given class from the confusion
matrix N following the scheme proposed in [34]. The
sensitivity S of class i estimates the number of patterns
correctly predicted to be in class i with respect to the total
number of patterns in class i [34]:

(2)

(3)

where, i = 1…c and c is the total number of classes. The
diagonal and the off-diagonal elements of the confusion
matrix correspond to correctly classified and misclassified

Si
Nii
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patterns respectively. Cij represents the number of times that
the patterns are predicted to be in class j when they really
belong to class i. A sample confusion matrix N is shown in
Fig. 3. This example shows near perfect classification since
all diagonal elements approach unity and all off-diagonal
elements approach zero.
The sensitivity (S) of a class (i) can be calculated from the
confusion matrix as follows:

(4)

Therefore, the sensitivity of class A (expressed as a
percentage), can be computed as SA= =95%.
Given the huge degree of inter-person/temporal variability
for the same movement within the human population, and in
particular, for people undergoing rehabilitation, the classifier
needs to be robust enough to identify the same type of
movements in the presence of large scale variability. Therefore
the strategic choice of training the classifier is of utmost
importance and hence the target classifier was developed
using two types of approaches: generalized and personalized.

Generalized approach
The fundamental assumption behind this approach is that if
a pool of data encompassing large variability of a particular
type of movement from a population is used to train a

classifier then it would be able to successfully identify that
particular type of movement for a single subject as there is
very high probability that the characteristics of the
movement of that subject is already embedded within the
training dataset. To test this hypothesis, as shown in Fig. 4,
we perform a ‘Leave-one-subject-out’ validation methodology
wherein we leave one subject out of the training data set.
This process was repeated for all 18 subjects. Since each
subject carries out one type of movement 20 times, following
the description provided in Section 4, for each sensor signal
we have a data set consisting of 1440 samples (18 subjects
× 20 trials × 4 movements). We keep one subject’s data of 80
samples (1 subject × 20 trials × 4 movements) as the testing
set and the remaining 1360 samples as the training set in
each iteration to evaluate each of the three generalized
classifiers (using LDA, QDA and SVM algorithms) for each
of the 12 individual sensor signals and 9 fused data signals.

Personalized approach
In contrast to the generalized classification methodology, the
basic hypothesis in the personalized approach is that the
movement patterns have characteristic associations with
specific subjects which may not be possible to capture in a
generalized scenario. Personalized approach is a further
testimony to the fact that each person undergoing any sort of
rehabilitation will have different forms and levels of
impairment and thus would be prescribed different exercises

Si
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Ni,j( )
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Fig. 3. A sample structure of a confusion matrix for four classes.

Predicted ‘A’
j = 1

Predicted ‘B’
j = 2

Predicted ‘C’
j = 3

Predicted ‘D’
j = 4

Actual ‘A’, i = 1 0.95 0.05 0 0

Actual ‘B’, i = 2 0 0.9 0 0.1

Actual ‘C’, i = 3 0.02 0 0.98 0

Actual ‘D’, i = 4 0.05 0 0.05 0.9

Fig. 5. Personalized classification approach.

Fig. 4. Generalized classification approach.
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which would pertain to classifying individual movements.
Therefore, a classifier based on the training set of the
movement data of a subject (in a person-centric way) may
yield more accurate classification results for that specific
subject. The main steps for developing the personalized
classification strategy are shown in Fig 5. 
To test this hypothesis in our experiment five subjects
were asked to perform the same four movements 120 times
each under the same experimental conditions. The collected
dataset from a subject is labelled as the training database
specific to that particular subject and 10 runs of 10-fold cross
validation are carried out on the data collected for each
subject. The cross-validation process creates 10 segments of
the data sample (120 samples for each task) with each
segment having 12 samples. In each run of the stipulated 10
runs, one segment is used as the testing set while the rest of
the 9 segments are used as the training set. The whole
process is repeated for each subject as shown in Fig. 5 and

for each of the 12 individual sensor signals and 9 fused data
signals.

RESULTS 

The classification results (sensitivity for each arm movement
recognised) of the Generalized approach using the individual
sensor data, their moduli and the fused data for each of the
learning algorithms LDA, QDA and SVM for the wrist and
elbow are presented in Figs. 6 and 7 respectively. The
sensitivity for each movement using the individual sensor
signals for both the accelerometer and the gyroscope placed
on the wrist and elbow is better than the modulus and the
fused signals. The sensitivities and number of features for
classification in each case are presented in Table 2. 
The sensitivity as discussed in section 5 represents the
success rate of the classifier in detecting each respective arm

Fig. 6. Generalized classification - sensitivities for each task using the wrist accelerometer and gyroscope modulus signal (mod),
individual sensor signals (xyz) and fused signals with LDA, QDA and SVM. The number of features required for each signal and sensor
type is shown at the top of each group.

Table 2. Generalized classification results.

Classifier Signal
Wrist Elbow

A (%) B (%) C (%) D (%) Features A (%) B (%) C (%) D (%) Features

LDA Acc_mod 58 58 51 73 9 63 77 48 87 8

Acc_xyz 85 91 84 90  18  77 84 56 85  11

Gyr_mod 82 78 39 80 7 76 50 65 81 8

Gyr_xyz  96 83 83 88  12  81 81 79 84  15

Fused  81 74 60 75  13  63 67 66 64  9

QDA Acc_mod 49 61 54 72 4 56 76 45 86 7

Acc_xyz 89 92 78 91  15  81 78 70 74  18

Gyr_mod 82 71 36 85 7 74 54 64 67 7

Gyr_xyz  94 91 95 89  12  76 72 86 85  15

Fused  86 72 54 74  11  59 33 69 68  11

SVM Acc_mod 42 53 55 70  5  57 76 35 82  4

Acc_xyz 89 87 82 90 8 86 82 55 84 8

Gyr_mod 90 74 35 80 5 76 49 58 77 5

Gyr_xyz  97 85 90 89  11  88 81 78 83  14

Fused 75 71 50 69 9 55 71 56 44 9
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movement. The classifier using the least number of features
from a specific data source for successfully classifying each
arm movement is the obvious choice as it involves less
computation. The difference in the recognitions rates between
modulus and individual signals is due to the fact that when
we consider individual sensor signals we retain any bipolar
information present in the raw data, whereas the generation
of a modulus signal creates, by definition, only unipolar data.
Hence, using the individual sensor signals provides the
classifier an opportunity to select the optimum number of
features from a wider pool of features and hence the
recognition rate for the movements is reflected in the higher
sensitivities achieved. For the fused signals the sensitivity is
generally lower when compared to results obtained from
individual sensors, but better than results obtained when
considering the moduli signal. Considering fused signals
from the wrist sensors, the sensitivity falls within 60-81% for
the four movements with LDA and lies within 54-86% with
QDA and 50-75% with SVM whereas for the elbow the
sensitivities for the fused are within 60-81% with LDA, 33-
69% with QDA and 44-71% with SVM. Considering LDA
with individual sensor signals, the wrist gyroscope recognises
the four movements with sensitivities in the range of 83-96%

across all movements while the wrist accelerometer also has
a similar detection rate with sensitivities in the range of 84-
91% across all movements. However, the gyroscope uses
only 12 features as compared to the 18 used by the individual
sensor signals of the accelerometer (out of a total of 30 -
3×10 features) and hence is the obvious choice with regard
to a lower complexity solution. We can achieve a higher
sensitivity (91%) for Movement B using the accelerometer
but that involves a cost of computing 6 extra features. 
A further comparison of the wrist gyroscope results using
individual sensor signals with QDA and SVM illustrates that
the results for QDA and SVM are marginally higher than
LDA, and the number of features required for the three
algorithms is nearly the same. Hence, in view of the trade-off
between the recognition rate and the complexity involved,
LDA being computationally less complex [35] appears as the
best choice. 
The sensitivities achieved using the individual signals
from the elbow gyroscope for LDA (A: 81%, B: 81%, C:
79%, D: 84%), QDA (A: 76%, B: 72%, C: 86%, D: 85%)
and SVM (A: 88%, B: 81%, C: 78%, D: 83%) are lower
than those achieved with the individual signals from the
wrist gyroscope LDA (A: 96%, B: 83%, C: 83%, D: 88%),

Fig. 7. Generalized classification - sensitivities for each task using the elbow accelerometer and gyroscope modulus signal (mod),
individual sensor signals (xyz) and fused signals with LDA, QDA and SVM. The number of features required for each signal and sensor
type is shown at the top of each group.

Fig. 8. Personalized classification – sensitivities for each task using the wrist gyroscope individual signals, with LDA, QDA and SVM
for each of the 5 subjects. The number of features required for each subject is shown at the top of each group.
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QDA (A: 94%, B: 91%, C: 95%, D: 89%) and SVM (A:
97%, B: 85%, C: 90%, D: 89%). In fact, a close examination
reveals that in general the sensitivity for each movement for
the signals from the wrist are better than those from the
elbow, which is because the wrist is expected to produce the
largest sensor response to the arm movements investigated.
Having established the effectiveness of the individual
sensor signals over the moduli and fused signals we present
here the classification results (sensitivity for each task) for
the Personalized approach comparing 5 subjects using the
individual signals for the different sensor-position combinations
and the three learning algorithms in Table 3. In general, all
the three classifiers (LDA, QDA and SVM) applied on data
from all sensor-position combinations give high levels of
classification results across all tasks (above 90%). For sake
of brevity we present here a comparative illustration of the

classification results for the gyroscope signals from the wrist
in Fig. 8. In view of its low computational complexity, we
focus on LDA where the sensitivities achieved for all the
four sensor-positions combinations are similar within a range
of 92-100%. Furthermore, sensors placed on the wrist
require fewer features than the sensors placed on the elbow
for similar levels of sensitivity, thus computational complexity
can be reduced further selecting the former location for
sensor positioning.

CONCLUSION

In this paper we have made a systematic exploration
regarding developing a training model based on a group of
subjects doing similar movements and in a subject specific

Table 3. Personalized classification results with individual signals.

Sensor Subject
Wrist Elbow

A (%) B (%) C (%) D (%) Features A (%) B (%) C (%) D (%) Features

LDA

Acc Subject 1 99 100 100 98 7 100 100 100 99 7

Subject 2 100 100 100 99 3 100 99 96 98 5

Subject 3 98 99 97 99  7  98 100 97 99  7

Subject 4 94 100 96 99 7 94 97 96 98 9

Subject 5 100 100 100 99 5 98 99 98 100 5

Gyr Subject 1 100 100 100 100 6 100 99 92 98 8

Subject 2 100 100 99 100 4 100 100 100 100 5

Subject 3 98 100 99 99 5 100 100 99 99 7

Subject 4 98 100 99 99 6 98 99 93 97 7

Subject 5 99 100 100 98 7 99 99 97 100 10

QDA

Acc Subject 1 100 100 100 98 7 95 99 98 98 5

Subject 2 100 100 99 99 3 100 98 100 100 4

Subject 3 99 99 99 99 7 99 99 100 99 5

Subject 4 94 98 81 91 7 79 95 84 96 5

Subject 5 100 100 100 100 5 98 98 99 99 5

Gyr Subject 1 99 100 100 100  6  99 98 99 96  7

Subject 2 100 100 100 100 3 99 100 100 100 5

Subject 3 98 98 100 99 6 100 100 100 98 9

Subject 4 99 100 100 98 6 100 97 100 100 7

Subject 5 98 99 99 98  5  98 100 98 100  8

SVM

Acc Subject 1 99 100 100 99 7 100 95 99 98 6

Subject 2 100 100 100 99 3 100 99 98 99 4

Subject 3 98 100 97 99 6 98 100 98 98 8

Subject 4 91 100 90 99 6 93 98 90 99 10

Subject 5 100 100 100 100 5 99 100 98 100 5

Gyr Subject 1 100 100 100 100 7 100 99 92 98 8

Subject 2 100 99 100 100 5 100 100 100 100 5

Subject 3 99 100 100 100 7 99 99 100 99 8

Subject 4 98 100 100 98 7 93 98 93 99 10

Subject 5 98 99 98 98 6 94 98 93 99 5
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manner to cater to inter-subject variability and verify the
model using cross validation methodologies with attention
on the selection of sensor type and position, and appropriate
classification strategies for detecting four fundamental types
of upper limb movements that are used in daily life activities.
We show that a tri-axial accelerometer or tri-axial rate
gyroscope placed near the wrist or elbow can independently
classify all four movements with sensitivity in the range 92-
100% when a small set of features (6-10) is extracted from
the data from individual sensors and a Personalized learning
approach is adopted in conjunction with the LDA classifier
algorithm. Therefore any of these two types of sensor or
locating positions can be used for the target classification.
For the Generalized approach, the accelerometer and the
gyroscope placed on the wrist can classify all the four tasks
with accuracy in the range 83-96% when data from individual
sensors is used with LDA as the learning algorithm. However,
the number of features required to achieve it is on the higher
side (12-18) as compared to the Personalized approach
which implies higher computational complexity involved in
feature computation. This can be partly explained by the fact
that the classifier requires more feature-specific information
to cater to the wider variability inherent in the Generalized
database as compared to the Personalized approach where
generally there is a high degree of repeatability in the tasks
performed by each individual subject and hence can be
represented by fewer features.
By comparison, when we consider the modulus of the
accelerometer and gyroscope signals, or the fused signals we
achieve lower recognition rate. This is due in part to the fact
that when we consider individual sensor signals we retain
any bipolar information present in the raw data, whereas the
generation of a modulus signal creates, by definition, only
unipolar data. Using all the individual sensor signals, rather
than a single processed signal (i.e. moduli or fused), provides
the classifier an opportunity to select from a wider pool of
features and hence the recognition rate for the tasks is
reflected in the higher sensitivity achieved.
We further found that LDA gives comparable results when
compared with more computationally intensive classification
methods such as QDA and SVM. Therefore from the system
realization point of view, being of low computational
complexity LDA is a better choice when the training dataset
is chosen in a personalized way. The methodology described
can be used in remote healthcare systems in a resource
constrained environment such as home-base rehabilitation of
stroke patients. Typically, stroke patients are encouraged to
perform particular exercises during normal daily life that are
targeted at improving their specific impairments. Hence, a
remote system that employs activity recognition as described
here would be capable of detecting and recording the
occurrences of such exercises (arm movements), and the

analysis of their number and quality over time will provide
a measure of rehabilitative progress.
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