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Abstract

Fiber optics miniaturization and advances in signal acquisition

and processing have allowed the development of fiber-based

optical imaging catheters that permit instantaneous luminal

organ imaging. This technique is applicable in clinical

settings for diagnosing various diseases. Intravascular optical

coherence tomography (IV-OCT), a catheter-based optical

imaging technique, acquires high-resolution cross-sectional

human coronary arterial wall imaging, enabling precise

assessment of coronary atherosclerosis. OCT with a balloon-

centering catheter or a tethered capsule acquires comprehensive

three-dimensional images of the distal esophagus for

diagnostic imaging in patients with esophageal diseases,

including Barrett’s esophagus. Spectrally encoded confocal

microscopy (SECM), an advanced type of confocal microscopy

that uses diffraction grating and a broadband laser source to

laterally scan the sample without mechanical motion, has

been developed as a tethered confocal endomicroscopy

capsule to diagnose and monitor eosinophilic esophagitis, an

allergic condition in the esophageal wall. In this review, the

authors describe the recent development of fiber-based

imaging catheters with rotary scanning for diagnosing various

diseases in luminal organs, including the coronary artery and

esophagus. Further developments, including miniaturization

of optics, increased speed, and multimodal acquisition, could

significantly improve diagnostic capability to improve patient

care.
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INTRODUCTION

Medical optical imaging has emerged as an effective diagnostic

tool and provides many advantages over traditional

radiological imaging [1]. First, optical imaging is non-

ionizing, which significantly reduces safety issues for

patients and physicians as well as researchers and allows for

multiple serial imaging acquisitions over time [1]. This non-

or minimally-invasive feature is very important for diagnostic

or monitoring applications. Second, optical imaging can

provide both structural and functional information with a

high spatio-temporal resolution. In fact, numerous optical

imaging modalities with unique functionalities are becoming

available for various clinical applications [2-7]. Since each

tissue has different absorption, emission, and scattering, light

extracts rich information by interacting with the tissue, using

broadband spectrum [8]. Third, optical imaging can provide

microscopic information, which allows diagnosis and moni-

toring of various diseases at a cellular-level. This microscopic

information can be quantified for objective analysis [2].

One fundamental limitation of optical imaging is tissue

penetration depth, which can range from tens of micrometers

to several centimeters depending on the imaging modality

and the type of tissue, due to the strong scattering and

absorption of light [9-11]. Although some researches have

focused on extending the penetration depth of optical

imaging, the entire human body is difficult to image and the

depth is limited to the surface layers. Due to the relative

difficulty of accessing the internal organs, the eyes and skin

have been primary targets of various optical imaging methods

[5-7, 12-14]. Endoscopy is one of the most successful

internal optical imaging techniques and is widely used in

clinic to diagnose gastrointestinal diseases and aid in surgical

procedures. Recently, novel endoscopic imaging techniques

have been developed for patient diagnosis, monitoring, and

treatment, based on advances in fiber optics and lasers,

development of image processing devices, and optic component

miniaturization [15, 16]. 
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Endoscopic optical coherence tomography (OCT) and

confocal endomicroscopy have emerged as a clinical diagnostic

tool and provide real-time optical tissue biopsy within the

internal organs, such as the esophagus and coronary artery, in

the procedure room [3, 4, 17-19]. Specifically, the fast

imaging speed and spiral scanning that use a rotary scanner

allowed full three-dimensional imaging of luminal organs,

which was previously impossible due to the limited field of

view of transverse scanning. Endoscopic OCT and confocal

endomicroscopy with a fiber-based imaging probe, using

rotary scanner, has become an important application for

diagnosis, monitoring, and screening of luminal organs. In

this review, fiber-based imaging catheters with rotary scanning

for luminal organs will be discussed. We will specifically

focus on technical advances and medical applications in

cardiology and gastroenterology. 

IMAGING CATHETERS IN CARDIOLOGY

Optical coherence tomography

OCT is an optical imaging technique that allows noninvasive

cross-sectional imaging of internal structures in biological

samples using the interference nature of light [20]. OCT is

one of the most successful optical imaging techniques and is

applied as a clinical diagnostic tool as well as a research

technique [14, 21-23]. The early version of OCT, often

referred to as time-domain OCT (TD-OCT), used mechanical

scanning of the reference mirror to acquire depth information

[20]. Due to this mechanical scanning, the imaging speed

and the sensitivity were limited. There have been many

studies focused on improving the speed of mechanical

scanning, for example, using a piezo-electric crystal [24] or

galvano mirror [25]. Despite these efforts, the imaging speed

of TD-OCT has limited usability in various clinical

applications. Fourier-domain OCT (FD-OCT), which was

developed in the early 2000s, has overcome these problems.

FD-OCT achieves a depth profile of the biological tissue

using frequency variation of the interference spectrum that is

proportional to the optical path difference instead of

mechanical scanning of the reference mirror [26, 27].

OCT imaging catheters

OCT is particularly appealing for clinical imaging because it

provides three-dimensional tomographic images of semi-

transparent biological tissue with a high spatial resolution as

well as a fast imaging speed. Combined with a fiber optics

and a rotary scanning method, an OCT imaging catheter can

depict the inside of luminal organs, such as the coronary

artery and esophagus, thus making the OCT catheter very

useful in cardiology and gastroenterology. In 1996, Tearney

et al. developed a catheter-endoscope for OCT, which

combined OCT with a miniaturized imaging catheter to

image luminal organs [28]. The imaging probe was fabricated

with a Gradient Index (GRIN) lens, then combined with TD-

OCT by a rotary fiber scanner (Fig. 1) [25] . In the following

study, in vivo imaging of rabbit esophagus and trachea were

successfully acquired, demonstrating the feasibility of this

technique in clinical applications (Fig. 2) [25].

Intravascular OCT

It was not long before the OCT catheter was applied in

interventional cardiology [18, 29-32]. The first human

intravascular OCT (IV-OCT) visualized coronary atherosclerotic

plaques in living patients [18, 29]. Compared to intravascular

ultrasound (IVUS), OCT showed significantly improved

spatial resolution of approximately 10 µm [18]. In a comparison

study of OCT and histology, it was demonstrated that OCT

is feasible and reliable for visualizing atherosclerotic plaque

morphology with a high resolution, which was sufficient for

characterizing different types of plaques [30].

Intravascular optical imaging is particularly challenging

Fig. 1. (a) Schematic of the endoscopic OCT system. (b) Schematic of the OCT catheter-endoscope. (c) Photograph of the catheter-
endoscope (From Tearney et al. [25]; with permission).
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because blood in the vessel causes light to scatter and degrades

coherence. The solution to this problem is temporarily

removing blood from the imaging region by injecting saline

or a contrast agent [18]. However, due to the low imaging

speed of TD-OCT (4 to 8 frames per second), imaging long

vessel segments was very challenging. Endoscopic FD-OCT

with a faster imaging speed resolved this problem and

enabled comprehensive volumetric imaging [33]. With a 90-

fold increase in imaging speed, an approximately 30-fold

increase in A-line acquisition rate and a 3-fold increase in

ranging depth compared to conventional TD-OCT, this IV-

OCT system used helical scanning to acquire three-dimensional

microscopic images of swine coronary arteries in vivo

(Figs. 3 and 4) [33]. The first trial in human patient using this

technology demonstrated volumetric imaging of coronary

wall microstructures, including stent struts and lipid core,

without balloon occlusion and was completed within a few

seconds [3]. IV-OCT has emerged as a useful clinical

diagnostic tool and has enabled numerous clinical research

approaches in interventional cardiology [19, 34-36].

Recent technical advances in IV-OCT

There have been many technical advances for improving IV-

OCT performance, such as improving the image acquisition

rate [37, 38], reducing motion artifacts [39], and three-

dimensional visualizing technique [40]. The IV-OCT imaging

rate has been improved by up to 350 frames per second,

using a high-speed wavelength-swept laser and a high-speed

fiber optic rotary junction, either to shorten the imaging time,

which maintains longitudinal resolution, or to improve the

longitudinal imaging pitch with a given imaging time (Fig. 5)

[38]. Combining a micro-motor with the imaging probe is a

good approach for helical scanning, because it could solve

some technical difficulties in the rotary junction system, such

as non-uniform rotational distortion and insertion loss, and it

can also significantly increase the scan speed [37, 41-43].

Shadow artifacts due to electrical wires are problems that

remain unresolved [37]. In addition to image acquisition

speed improvement, there was a study on motion compensation

utilizing the Doppler Effect by integrating wavelength

division multiplexed monochromatic beams with an IVOCT

imaging catheter to compensate for a distortion caused by

cardiac motion [39]. Three-dimensional rendering of OCT

data could allow clear visualization of complex vessel anatomy,

such as stent fracture [40] and spontaneous coronary artery

Fig. 2. (a) OCT image of a rabbit trachea. (b) Corresponding
histology (From Tearney et al. [25]; with permission).

Fig. 3. Schematic of the endoscopic OFDI system. (From Yun et

al. [33]; with permission).

Fig. 4. OFDI image of a porcine coronary artery in vivo (a)
Volumetric cut-away of the right coronary artery. (b) Cross-
sectional imaging at the denoted area. (c) A longitudinal section of
volumetric imaging. (d) Magnification of the boxed area in c
(From Yun et al. [33]; with permission).
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dissection [44]. An image processing algorithm for OCT to

automatically detect stent struts and vessel lumen, or to

assess stent coverage may provide useful information for

understanding stent pathology [45-47]. 

Multimodalities in IV-OCT

OCT acquires microstructural information from blood vessels,

such as thin fibrous cap, lipid pool and macrophage

accumulation [3]. Although OCT provides morphological

information required for diagnosing coronary artery disease

(CAD), stand-alone OCT is limited for complete assessment

of plaque [48-50]. To accurately understand progression and

pathophysiology of CAD, it is necessary to determine not

only morphological information, but also molecular information,

which cannot be acquired by OCT alone [48, 49]. There are

also some morphological ambiguities in OCT images, which

cause difficulties in interpretation [50]. Also, OCT has

limited penetration depth due to the strong scattering and

absorption. To compensate the OCT limitations, complementary

imaging modalities are needed [50-55]. 

Near infra-red fluorescence (NIRF) imaging can provide

molecular or compositional information of atherosclerotic

plaque, such as macrophage activation and necrotic lipid

core presence [48, 49, 56]. Yoo and Kim et al. [48] reported

an integrated OCT-NIRF catheter system comprising a

double-clad fiber (DCF), dichroic mirror and optical filters

(Fig. 6). Intravascular imaging was conducted on a rabbit

atherosclerosis model with a cysteine protease-activatable

NIRF agent in vivo. The integrated system simultaneously

showed microstructure and inflammatory enzyme activity. In

another study, OCT was integrated with NIRF using a

wavelength division multiplexer (WDM) and a DCF combiner

[43]. They performed ex vivo imaging on atherosclerotic

rabbit aortas with Annexin V-conjugated Cy 5.5, which

targets macrophage accumulation, and simultaneously showed

blood vessel microstructure and macrophage activation.

Recently, Lee, et al. [49] reported an integrated OCT-NIRF

imaging technique in vivo with indocyanine green (ICG),

which is the only FDA-approved NIRF dye and specifically

bonded to lipids and macrophages [57]. In vivo structural/

molecular imaging of lipid-rich inflamed plaque has been

demonstrated using ICG (Fig. 7), bringing the multimodal

intra-vascular imaging technique one step closer to clinical

applications. 

Near infra-red spectroscopy (NIRS) acquires molecular

Fig. 5. Three-dimensional, volume-rendered intravascular OFDI
images. (a) Longitudinal cutaway view of a 45-mm-long rabbit aorta.
(b) Longitudinal cutaway view with 34-µm longitudinal pitches
with a high frame rate system. (c) 200-µm longitudinal pitches
with a conventional frame rate system. (d) Fly-through view with
34-µm longitudinal pitches (d) 200-µm longitudinal pitches (From
Cho et al. [38]; with permission).

Fig. 6. Schematic of the integrated OFDI-NIRF catheter for microstructural and molecular imaging. OFDI and NIRF systems are
combined in one system by a dual-modality rotary junction that contains a dichroic mirror and optical filter (From Yoo et al. [48]; with
permission).
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and compositional information by analyzing the spectrum

that returns from the tissue. NIRS combined with intra-

vascular ultrasound (IVUS) has been successfully translated

into clinical applications to image high-risk plaques [58]. A

combined OCT-NIRS system was designed by Fard et al.,

using a double clad fiber coupler (DCFC) and a separated

collection part of NIRS from OCT using a DCF combiner to

enable deeper imaging [50]. They carried out cross-sectional

imaging on human coronary arteries ex vivo, demonstrating

that portions showing similar morphologic features in OCT

images are distinguished by NIRS, which provides information

about the presence of lipids (Fig. 8). This deep penetration of

NIRS could overcome the OCT penetration issue by

providing lipid information from deeper tissue portions.

Fluorescence lifetime imaging microscopy (FLIM) provides

biochemical tissue information by measuring the fluorescence

temporal decay. An integrated OCT-multispectral FLIM

system was reported by Park et al. [55]. They performed

microstructure and biochemical B-scan imaging ex vivo on a

longitudinally opened human coronary artery. Collagen and

lipid were distinguished by FLIM and a lifetime map was

overlaid on 3D OCT rendering images. Also, an intravascular

catheter that combines multispectral FLIM and IVUS has

been reported to show the feasibility of mapping biochemical

features provided by FLIM on structural features provided

by IVUS [59].

Although IVUS and OCT both provide structural information

about tissue, they are complementary because IVUS has a

Fig. 7. Structural/molecular cross-sectional images of an atherosclerotic rabbit artery in vivo. OCT/NIRF cross-sectional images of the
aorta (a) at a normal portion with ICG, (b) at a plaque portion with ICG, (c) at a plaque portion with saline (From Lee et al. [49]; with
permission).

Fig. 8. Structural-compositional cross-sectional images of cadaver
coronary artery ex vivo. Although both OCT images seem similar,
they show different NIRS signals. (b) indicates the presence of
high lipid; however, (a) does not (From Fard et al. [50]; with
permission).

Fig. 9. Cross-sectional images of (a) OCT, (b) IVUS, and (c)
integrated OCT-IVUS on a human coronary artery ex vivo (From
Yin et al. [60]; with permission).
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deep penetration with a poor resolution and OCT has

excellent resolution with limited penetration; therefore,

IVUS combined with OCT could provide complementary

information for diagnosing CAD. Yin et al. reported the first

integrated intravascular OCT-IVUS system [51]. Simultaneous

cross-sectional OCT-IVUS images of rabbit arteries in vitro

demonstrated both micro-scale and deep tissue imaging via

an integrated OCT-IVUS system [51-53]. Additional studies

have demonstrated OCT-IVUS imaging of rabbit abdominal

aorta in vivo and human coronary arteries in vitro [54, 60]

(Fig. 9).

IMAGING CATHETERS IN GASTROENTEROLOGY

Upper endoscopy

The current standard of care includes endogastroduodenoscopy

(EGD), also called upper endoscopy, and pinch biopsy of at-

risk tissue for upper gastrointestinal (GI) disease screening,

diagnosis, and monitoring. This includes the esophagus,

stomach, and duodenum. However, biopsy incorporates

significant random error since the samples are taken without

knowledge of the presence of disease and the whole affected

area cannot be examined [61, 62]. To minimize random error

and the risk of missing a lesion, a systematic approach is

used to diagnose GI disease that involves multiple excessive

biopsies [63]. Because a high number of repeated endoscopes

and biopsies are often used to manage GI diseases, less

invasive and more cost-effective methods could significantly

improve patient care. 

OCT imaging catheters in gastroenterology

Since the first invention of the in vivo OCT catheter-

endoscope [25] and the application for human patients

(Fig. 10) [23, 64], the technology has been extensively

developed for diagnosing esophageal tissues, including

developing an algorithm for image analysis [65], adapting

the FD-OCT for faster and more sensitive imaging [33], and

combining a balloon-centering catheter for comprehensive

imaging [66]. Because the clinical study has successfully

shown that the comprehensive microscopic imaging of the

whole distal esophagus can be performed safely with a

balloon catheter-based OCT (Fig. 11) [67-69], this technology

has become a strong candidate for monitoring and screening

Barrett’s esophagus. Recently, NinePoint Medical has

launched an OCT balloon-based imaging catheter to evaluate

esophageal tissue microstructure (www.ninepointmedical.com/).

To incorporate the large diameter of esophagus, which is

approximately 20 mm, a balloon-centering sheath has been

used in many studies to maintain the luminal tissue within

the imaging range (Fig. 12) [33, 66, 67, 70-72]. Additionally,

GRIN lens-based fiber-optics with a micro-prism has been

used to fabricate the imaging core (Fig. 13) [23, 25, 33, 66,

Fig. 10. Barrett’s esophagus. (a) Endoscopic view demonstrating
irregular squamocolumnar junction. (b) H&E section of a biopsy
demonstrates Barrett’s esophagus. (c-e) Cross-sectional OCT image
shows normal squamous mucosa (red arrow, expanded in d) and
Barrett’s esophagus (blue arrows, expanded in e). (f) Longitudinal
section across the gastroesophageal junction showing the stomach,
Barrett’s and normal squamous mucosa. Scale bars, 1 mm (From
Suter et al. [67]; with permission).

Fig. 11. The balloon-centering imaging catheter. (a) Field of view
is limited due to centering offset and irregular lumen shape. (b) A
balloon-centering catheter allows full circumferential imaging of
the esophagus. (c) Schematic and picture of the balloon catheter
(From Vakoc et al. [66]; with permission).

Fig. 12. Schematic and a picture of the optical imaging core for
OCT (From Gora et al. [71]; with permission).
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67, 71], which provides a long working distance compared to

ball lens-based imaging probes. To minimize the influence of

astigmatism induced by the sheaths, a cylindrical lens was

used to correct aberrations [66, 73-75]. 

One concern regarding imaging through the balloon

sheath is the influence of pressure on tissue morphology. To

study this issue, a double-balloon endoscopic OCT catheter

has been developed and tested in human patients [73].

During the image acquisition, there is significant motion

interference due to the physiology, including respiration and

heart beats. An automated registration algorithm improved

the visualization by suppressing image distortion [76].

Additionally, ultrahigh speed imaging is appealing because it

reduces imaging time and motion artifacts. Recent development

of VCSEL technology combined with a micro-motor was

applied in vivo 3D-OCT imaging in the rabbit gastrointestinal

tract and has demonstrated a frame rate of 400 fps [72]. These

technical advances could promote a wide range of clinical

applications. In a clinical pilot study, the 3-D endoscopic

OCT successfully acquired microstructural images of colon

tissue and showed an ability to distinguish normal from

pathologic colorectal tissue [77]. In a pre-clinical study using

a murine model, OCT was utilized to obtain esophageal

images for differentiating esophageal sub-layers and monitoring

structural changes, which could potentially be applied to

eosinophilic esophagus, an allergic disorder in the esophagus

[78].

More recently, tethered capsule endomicroscope that

incorporates high-speed OCT has been developed [79, 80].

Tethered capsule endoscopy, which consists of an easy-to-

swallow capsule and a cable that contains optic fibers and

electric wires, is an attractive alternative technology for

esophageal disease screening because of its performance and

cost-effectiveness [81]. The tethered capsule endomicroscope

with an OCT imaging core can be easily swallowed to

provide rapid microstructural tissue images of the upper GI

tract in a simple procedure and does not require sedation

(Fig. 14) [80].

Imaging catheter for microendoscopy 

A major drawback of OCT in GI imaging is low-spatial

resolution on the order of 10 µm, which is not sufficient for

detecting cellular and sub-cellular changes, crucial aspects of

accurate diagnosis. Confocal microendoscopy is an attractive

tool for sub-cellular imaging of GI tissue, since it generates

micron-resolution images [17, 82, 83]. However, this optical-

biopsy technology is subject to random sampling error,

similar to the EGD followed by pinch biopsies [84].

Spectrally encoded confocal microscopy (SECM) has been

Fig. 13. Tethered capsule endomicroscopy for OCT. (a) The capsule
is attached to a tether that contains an optical fiber. The capsule is
swallowed by a patient and the capsule’s location is controlled by
the tether. The OCT image of the esophageal wall is collected by
the OCT system. (b) Schematic of the imaging capsule. Imaging core
containing a GRIN lens and a prism acquires three-dimensional
volumetric images with helical scanning provided by a driveshaft
(From Gora et al. [80]; with permission).

Fig. 14. (a) Photograph of the SECM tethered capsule. (b) Large-area
SECM image of swine esophagus in vivo. (c) Magnified image of
the red rectangular area in the panel. (b) Nuclei of epithelial cells
(arrows) (From Tabatabaei et al. [88]; with permission)
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introduced to overcome this problem [84, 85]. SECM is a

type of confocal microscopy that uses a diffraction grating to

simultaneously detect multiple reflection signals from the

tissue along a transverse line by laterally dispersing broad-

band light [85]. Since mechanical scanning, which limits the

imaging speed, can be eliminated in one direction, image

acquisition is much faster than conventional confocal imaging

method. This feature enables comprehensive large-area

imaging of biological tissue with microscopic resolution [62,

84, 86]. Endoscopic SECM probes have been developed for

imaging large areas of the esophagus ex vivo and in vivo at

the cellular scale [61, 87], demonstrating the feasibility of

comprehensive microscopic imaging of a large area esophageal

tissue. In this study, helical scanning, similar to IV-OCT, was

adopted to scan the esophagus. Recently, an SECM capsule

has been developed for diagnosing and monitoring eosinophilic

esophagitis (EoE) in unsedated patients [88]. In this study,

eosinophils were clearly visualized from a biopsy sample

taken from an EoE patient, and microscopic cellular features

were clearly delineated in SECM images of swine esophagus

mucosa in vivo [88].

CONCLUSIONS

Optical biopsy, enabled by miniaturized endoscopic imaging

of tissue at a cellular resolution, could impact and improve

patient care strategies. We have discussed high resolution

imaging techniques, including OCT and SECM, combined

with helical scanning, which have emerged as diagnostic

tools for luminal organ imaging, such as the coronary artery

and esophagus. By providing cellular-resolution images from

intact tissue in vivo, optical imaging catheters acquire

valuable information regarding disease diagnosis, particularly

in cases where biopsies are impossible or very risky.

Additionally, comprehensive imaging within a short time

enables entire luminal organ scanning, thus eliminating the

sampling error associated with random biopsies. Several

aspects of these optical imaging catheters are still being

developed. A higher imaging speed is needed for screening

entire organs and further miniaturization of imaging optics

helps minimally invasive diagnosis. Multimodal imaging

for complete lesion assessment might provide a better

understanding of disease. Finally, more clinical data should

be assessed and updated to support the clinical benefits of

using these novel diagnostic tools, which could greatly

impact clinical practice.
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