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Abstract 
PurposeAppropriate amount of liquid intake is crucial for
maintaining human physiological operations. Traditionally,
researchers have used self-reported questionnaires for
estimating daily liquid intake, which has been proven to be
unreliable. In this study, we developed an instrumented
system for liquid intake monitoring to reduce estimation
subjectivity by complementing self-reporting information
with instrumented data.
MethodsLiquid intake can be detected by the way of detecting
a person’s swallow events. The system works based on a key
observation that a person’s otherwise continuous breathing
process is interrupted by a short apnea when a swallow
occurs as a part of the intake process. We detect the swallows
via recognizing apneas extracted from breathing signal
captured by a wearable sensor chest-belt. Such apnea
detection is performed using matched filters and machine
learning mechanisms with both time and frequency domain
features. Spectrum analysis, artifact handling, and iterative
template refinement were also proposed, analyzed and
experimented with. 
ResultsIt is demonstrated that the proposed matched filter
method on an average can provide true positive rates up to
82.81% and false positive rates as low as 3.31%. It is also
demonstrated that the machine learning method using
Decision Tree (J48) provides the best true positive rates up
to 97.5% and false positive rates as low as 0.7%. 
ConclusionsThe experiments and analysis suggest that the
proposed liquid intake monitoring system and algorithms
through breathing signal shows potential for being used for
liquid intake monitoring. 

Keywords Wearable sensing, Swallow detection, Liquid
intake monitoring, Breathing pattern analysis, Matched filter

INTRODUCTION

Motivation
Appropriate amount of liquid intake is crucial for maintaining
human physiological operations. Prolonged low liquid intake
can lead to dehydration and many other undesirable side
effects. Dehydration can be a persistent problem for populations
such as elderly [1] (especially who live alone) and young
athletes undergoing rigorous physical training [2]. It is,
therefore, highly desirable to monitor liquid intake as a
preventative measure to avoid dehydration and the related
problems.
Traditionally, researchers have used self-reported
questionnaires for estimating daily liquid intake [3]. In most
studies, it is found that self-reporting by elderly population is
often unreliable due to their poor memory situations. These
make questionnaire-only methods subjective and unreliable
[3-5]. An instrumented system for monitoring can reduce
subjectivity by complementing such self-reported information
with instrumented measurements.

Prior work
Many non-invasive swallow analysis methods are used in the
literature. Surface electromyography (SEMG) and sound
signal are used in [6] to detect the activation of muscles and
the sound of swallow. Fifteen electrodes from the face and
throat are used in [7] to record SEMG data during swallowing
to analyze dysphagia. The SEMG electrodes are normally
attached to the bare skin in the neck region, which raises user
acceptability issues due to cosmetic and safety reasons. A
two-microphone system is developed in [8] for recording
swallow sounds through the ear canal as well as externally
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through the air. Placement of such microphones too gives rise
to cosmetic issues and therefore its suitability for prolonged
practical usage is questionable.
In [9-12], microphones are placed in the neck area near
laryngopharynx for detecting the sound of swallowing.
Although such methods can provide promising results, it has
been shown [13] that placing such equipment on the neck
can be uncomfortable and can actually impact the swallowing
behavior. Kandori [14] developed a novel magnetic swallow
detection system using a magnetic field generating coil and
a detection coil installed on a elastic holding structure and
placed on two sides of thyroid cartilage. Damouras [15] used
a dual axis accelerometer affixed to the thyroid notch for
swallow detection in strictly controlled settings. Both of
these are not applicable for day to day practical applications.
Piezoelectric sensors are used in [16] to measure the
movement of the larynx during swallowing. This method,
however, was found to be not very effective for women for
whom the larynx movement during swallows is not very
prominent. Respiratory Inductance Plethysmography (RIP)
is used in [17] for swallow detection by measuring the
changes in the cross-sectional area of the rib cage. The RIP
belts used for this method are too involving and expensive to
be useable for prolonged daily use.

Proposed mechanism
The sensor system and detection algorithms developed in
this paper work based on a key observation that a person’s
otherwise continuous breathing process is interrupted by a
short apnea during a swallow, which is a part of the intake
process [18]. We first detect swallows by the way of detecting
apneas extracted from breathing signal captured by a wearable
wireless chest-belt. Afterwards, swallow pattern analysis is
used for identifying drinking swallows. Together with self-
reporting at the high level of overall liquid intake habits (i.e.,
the types of drinks etc.), the instrumented detection of liquid
swallow counts can offer an objective way to monitor the
liquid intake trends. 

Key contributions
Contributions of the paper include: 1) proposing a new system
level approach towards instrumented swallow detection, 2)
developing a number of specific signal processing mechanisms
for extracting swallow signatures from breathing signals, and
3) developing an embedded hardware/software platform for
implementing and validating the proposed mechanism.
Note that instrumented monitoring for solid food intake
can be an equally relevant technology solution. From preliminary
experiments we observed different swallow signatures for
liquid and solid swallows. In this paper, we focus only on the
liquid intake aspects. Results from a general system covering

both liquid and solid swallows will be reported in a future
publication.

MATERIALS AND METHODS

Sensor system 
Fig. 1 shows the developed wearable sensor system belt worn
on the chest while collecting and transmitting breathing
signal to a PC through a 900 MHz wireless link. The wearable
system contains: 1) a piezo-respiratory belt for converting
the changes of tension during breathing to a voltage signal,
2) an amplifier and signal shaping circuit for formatting the
raw signal to an ADC compatible format, 3) a processor and
radio subsystem (Mica2 mote (Crossbow Technology, San
Jose, California)) running TinyOS operating system [19],
and 4) two AAAA batteries. The entire package weighs
approximately 20 grams, and the two 600 mAh AAAA
batteries last for more than 30 hours of continuous operation.
We used a piezo-electric respiratory belt for measuring
breathing signal, which provides high sensitivity [20] and
linearity over a wide range of chest movements. The signal
from the belt is sampled by a 10-bit ADC at 30 Hz.
After the signal is received by the 900 MHz access point,
it is fed into a PC (processing server) through USB port for
detecting swallow events either offline or in real-time. The
advantage of using an embedded wireless link is that the
developed swallow sensor can be networked with other
physiological [21] and physical activity sensors [22] to
develop a networked sensing/detection system to provide a
complete health monitoring instrumentation package in future.

Fig. 1. Wearable wireless food intake monitoring system with a
piezo-respiratory chest belt, signal shaping hardware, wireless
transceiver, processor, 900MHz wireless link, and a wireless
access point connected to a PC for out-of-body processing.
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Breathing, apnea, and swallow signature 
Fig. 2 demonstrates two representative human breathing
signal segments. The ADC readings in the figure are directly
proportional to the elongation of the piezo-electric sensing
belt shown in Fig. 1. A breathing cycle can be either normal
(i.e., Normal Breathing Cycle or NBC) or elongated due to a
swallow-triggered apnea. A cycle that is elongated due to an
apnea at the beginning of an inhale (see Fig. 2a) is termed as
Breathing Cycle with Inhale Swallow (BC-IS). Fig. 2b shows
swallows (i.e., apnea) during the exhale process which are
termed as Breathing Cycles with Exhale Swallow (BC-ES).
The objective is to be able to classify NBC, BC-ES, and
BC-IS with high accuracy. The challenges in detection stem
from the fact that there is significant variability in breathing
waveforms across different: 1) subjects, 2) measurement
instances for the same subject, and most importantly, and 3)
the location and duration of the apnea with respect to its
breathing cycle.

Matched filter based detection
In what follows we present the performance of a matched
filter [23] based template matching mechanism for swallow
detection. The template signals for matched filters are chosen
from NBCs, BC-ESs, and BC-ISs, so that a breathing cycle
can be classified as one of those three by observing the
similarity score produced by the respective filters.
As shown in Fig. 3, the signal sampled by ADC at 30Hz
is first fed into a low-pass filter for removing any quantization
noise. The second step is to extract individual breathing
cycles through a peak and valley detector. The next module
is for normalizing the extracted cycles in both time and
amplitude, so that both input waveform and the reference
waveforms of the matched filters [16] have the same
amplitude and the number of sample points. Each breathing
cycle is normalized to be between 0 and 100 (ADC output
units) vertically, and interpolated to 128 sample points.
Considering the average length of a breathing cycle of 3.77
seconds in our experiments, the normalized sampling rate
after interpolation is approximately 34 Hz. Note that the
time-normalization provides a way to handle variable duration

breathing cycles and variable duration apnea (i.e., caused by
different amount of liquid intake in one swallow) by creating
a uniform duration swallow signature. Such a uniform
duration signature is then presented to the proposed matched
filter and machine learning algorithms.
The normalized breathing cycle waveforms are fed into
three separate filters, each with a specific type of reference
template waveform. The filters use reference waveforms
corresponding to NBC, BC-ES, and BC-IS. The similarity
score outputs are compared in order to classify a breathing
cycle as one of the above three types of BCs. 
Note that the bottom part of Fig. 3 shows how the shaped
signal is used for feature extraction and swallow classification
of using machine learning based methods.

Machine learning based detection
A machine learning approach with time domain features is
applied using all 128 sample points in a normalized breathing
cycle. The Toolkit Weka [24] was used for implementing
three different classifiers, namely, Support Vector Machine
(SVM), Decision Tree (J48), and Naïve Bayes. The classifier
parameters are optimized to provide the best accuracy. For
SVM, polynomial kernel function is used and the features
are normalized. All the other parameters are set to default
values. A 10-fold validation approach is used in which the
collected breathing cycles are randomly divided into 10
subsets of equal size and a classifier is run for 10 times. In
each run, one subset is used for testing while the others are

Fig. 2. Examples of Breathing Cycles (BC), Normal Breathing
Cycles (NBC), Breathing Cycles with Inhale Swallow (BC-IS),
Breathing Cycles with Exhale Swallow (BC-ES) and apnea.

Fig. 3. Apnea signature extraction scheme using matched filter and
machine learning methods. The top part shows different stages of
signal extraction and shaping before applying the swallow detection
methods. The middle and bottom parts show matched filter based
and machine learning based methods for swallow detection,
respectively.
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used for training. 10-fold validation method is used to avoid
over-fitting [25].
Breathing signal power at different frequencies, computed
using FFT, is also used as features in machine learning. Since
FFT is applied on normalized 128-point breathing cycles
with a normalized sampling frequency at 34Hz, it produces
spectral coefficients for frequencies up to 34 Hz with a
granularity of 0.27 Hz. As each normalized breathing cycle
is a real finite length series, the resulting 128-point power
spectrum are symmetric on fs /2 [26]. Therefore, the first 64
spectral power values are used as the features for driving the
classifiers.

Artifact handling
Breathing signal quality often suffers from artifacts including
body movements and speech, and liquid intake detection
method can be affected by spontaneous swallows [27].
Although anatomically, it is not possible to swallow while
talking, people often talk right before or after swallowing.
One approach to deal with the talking artifact is to detect
talking from the breathing signal itself, and halt the swallow
detection process while the talking continues. Fig. 4
demonstrates an example breathing signal segment which
contains such speech artifact. Observe that the exhalation
parts of the cycles have larger slopes and more undulation,
which is caused by modulated air flow through vocal folds
while the subject was talking. In this work, we use power
spectral density analysis to identify breathing cycles with
talking artifacts.
Since upper body movement during food/drink intake is
quite common, we conducted experiments with exaggerated
upper-torso movement and analyzed the corresponding
breathing signal for detecting the movement artifacts.
Spontaneous swallow is a protective aero-digestive reflex
for airway protection, and it is caused by accumulated saliva
and/or food remnants in the mouth [27]. For healthy
subjects, the frequency of spontaneous swallows is about
1.22 times per minute [28]. Due to the fact that the volume
of the accumulated saliva and/or food remnants in the mouth
is usually small compared to intentional liquid intake, proper
parameter training using the matched filter method or machine

learning method is able to distinguish liquid swallows from
spontaneous swallows. Specifically, we group spontaneous
swallows as NBCs during the training phase. This allowed
us to differentiate spontaneous swallows from intentional
liquid intake with high accuracy.

RESULTS

Experiments using the system in Fig. 1 were carried out with
seven subjects (five male and two female) without any known
respiratory or swallowing disorders. The belt was worn
immediately below to sternum, where the best signal strength
was found across all subjects. Each subject performed three
sessions, 10 minutes each. In the first 5 minutes, the subject
was asked to drink water from a flask with a swallow
instruction given once in every 20 seconds. Then the subject
conversed with the experimenter for 3 minutes, and in the
last 2 minutes, the subject shook their upper body and drank
every 20 seconds. Breathing signals from the first 5-minute
phase were used for swallow detection, and those from the last
5 minutes were used for artifact handling. The first phase of
each session resulted in approximately 80 Normal Breathing
Cycles (NBCs) and 20 breathing cycles with swallows (both
BC-ESs and BC-ISs as shown in Fig. 2). Note that spontaneous
swallows (i.e., swallowing saliva) were also included. For
the first phase of each session, approximately 100 breathing
cycles were recorded in total. For each subject, a library
containing cycles from three such sessions (i.e., around 300
cycles) was then formed.
The experiments have been approved by Biomedical and
Health Institutional Review Board of Michigan State University
with IRB number 13-979.

Results for matched filter based detection 
Templates or reference waveforms for the matched filters are
computed based on cycles from the library as constructed
above. A template for NBC is created by sample-by-sample
averaging of three randomly chosen NBC breathing cycles
from the library. Such randomness adds to the desired
variability while forming the template. Similar process is
adopted for constructing the templates for BC-IS and BC-ES
breathing cycle types. One set of NBC, BC-IS and BC-ES
cycles is referred to as a template combination.
Fig. 5 shows the performance of matched filter based
swallow detection method while using a large number of
template combinations as the reference signals (i.e., S(n)) for
all three breathing cycle types. For each subject, 3500
different template combinations are first created from the
library by choosing different random combinations of NBC,
BC-IS and BC-ES cycles while forming the templates. Then,
each waveform in the library is classified to be one of NBC,Fig. 4. Breathing signal variability before, during, and after talking.
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BC-IS or BC-ES using the matched filter-based detection.
An ROC pair (True Positive Rate, False Positive Rate) is
finally computed for each of the 3500 template combinations.
Fig. 5 shows the resulting ROC distributions.
The cluster of high value columns in Fig. 5 indicates that
even with arbitrarily chosen template combinations, majority
of them offer high True Positive and low False Positive
rates. The spread in the distribution indicates that there exist
NBC, BC-IS, and BC-ES waveforms which, if chosen to
generate templates, can indeed degrade the system performance.
Overall, the true positive rate and false positive rate of all the
subjects with all templates are averagely 82.81% and 3.31%
respectively.
We experimented with different number of cycles (i.e.,
three for the above results) for generating the matched filter
templates. It was observed that with more cycles, the spread
in ROC performance were relatively shorter. 

Performance for machine learning based method with
time domain features
Classification accuracies for machine learning based methods

using time domain features are summarized in Table 1.
Results are reported on per-subject basis as well as on
combined data from all seven subjects. In the subject specific
case, SVM and J48 perform better in terms of both True and
False Positive rates. In the combined case, J48 provides the
best swallow detection performance. 
The results of discrimination power analysis of the time-
domain features (i.e., all 128 sample points of a breathing
cycle) are shown in Fig. 6. Fig. 6a depicts the overall
importance of each feature in swallow classification in terms
of merit. The merit here refers to information gain [29],
which is defined as the reduction in class entropy (i.e., H(*))
with additional information provided by the feature about the
target classes. Assuming A is the feature, C is the set of
classes, a and c are instances in A and C respectively, and p()
indicates the probability, the following two equations indicate
the class entropy before and after providing the feature:

A feature with higher merit indicates lower class entropy
when this feature is adopted. It also indicated higher utility of
a feature, which can be used as a guidance factor when
feature reduction is needed in the presence of limited
computational and storage resources. 
There are three distinct utility peaks in Fig. 6a, which can

HC() pc()log2pc()
c C∈
∑–=

HCA( ) pa() pca( )log2
c C∈
∑ pca( )

a A∈
∑–=

Fig. 5. ROC distribution for all seven subjects with arbitrarily chosen
reference templates.

Table 1. Performance of classifiers using time domain features.

Subject Classifier
True Positive 
Rate±std (%)

False Positive 
Rate±std (%)

Individual 
subject

SVM 98.69±2.03 0.14±0.16

J48 98.8±0.49 0.32±0.14

Naïve Bayes 97.7±2.62 2.63±2.3

Combined 
data set

SVM 87.6 1.5

J48 97.5 0.7

Naïve Bayes 85.5 9.5

Fig. 6. Utility of the time domain features for Subject-1; three
peaks in (a) are caused by different types of breathing cycles with
feature distribution shown in (b).
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be explained using the breathing cycles shown in Fig. 6b.
The sample points in peak region A are instrumental in
distinguishing NBC from BC-IS and BC-ES, and those in
region B help distinguishing BC-IS. Finally, the sample
points in region C distinguish all three breathing cycle types.
The implication of these results is that if a feature reduction
is needed, unimportant samples can be eliminated from the
areas not in the vicinity of the peaks in Fig. 6a. While the
results in Fig. 6a are for subject-1, we have observed very
similar patterns of discrimination power for all seven subjects.

Performance for machine learning based method with
frequency domain features
Table 2 shows the frequency domain detection performance
of 3 classifiers on seven subjects using a 10-fold validation.
Similar to the time-domain results, SVM and J48 provides
better True and False Positive rates for subject-specific
classification. When classification is done on combined data
from all seven subjects, J48 outperforms the other two. Note
that in Tables 1 and 2, the standard deviation comes from the
variation of true and false positive rates across the subjects.
Since for the combined data set scenario in both the tables,
the data from all seven subjects are combined into a single
data set, standard deviation does not apply to that scenario.
Fig. 7a depicts the overall importance of the spectral
power at each frequency. The power in the frequency range
0 (i.e., DC) to approximately 3 Hz contains the most
information for differentiating the three target breathing
cycle types. Fig. 7b reports the ROC graph with both time
and frequency domain features, when only up to 5 features
are allowed. The feature sets are selected using the subset
evaluation method [29] as follows. 

The first feature is selected using the method illustrated in
last section which ensures the largest possible reduction in
class entropy. The resulting first features are the 10th sample
point (out of 128) in time domain, and the DC spectral power
in frequency domain. These first features in time and
frequency domains can be observed in Fig. 6a and Fig. 7a
respectively. Using the same procedure as above, the rest of
the four features are added iteratively while maximizing the
reduction in class entropy [17].
With more features, the difference in detection performance
between the time and frequency domain approaches is
negligible. When only one feature is used, however, the
frequency domain approach outperforms the time domain
approach for the following reason. Fig. 7a demonstrates that
the DC component has the highest discriminative power,
which can be expressed as:

where   represents the area under curve of the breathing
cycle waveform. For BC-ES, since the apnea is located at the
beginning of an exhale, its area under curve is much higher
than that of NBC and BC-IS. Moreover, majority of the
swallows are found to be BC-ES, which is why   alone
can be used to achieve considerable detection accuracy.
However, no single feature in time domain is able to provide
similar discriminative power. 
Table 3 summarizes the comparison between the matched
filter method and the machine learning method. Observe that
machine learning can provide higher detection accuracy
compared to the matched filters, although they require a-
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Table  2. Performance of all three classifiers using frequency
domain features. Performance on both individual dataset and the
combined dataset are presented in this table.

Subject Classifier
True Positive 
Rate±std (%)

False Positive 
Rate±std (%)

Individual 
subject

SVM 99.29±1.25 0.09±0.15

J48 98.8±0.51 0.37±0.17

Naïve Bayes 95.96±3.03 2.96±1.26

Combined 
data set

SVM 88.8 2.2

J48 96.6 0.8

Naïve Bayes 82.1 4.8

Fig. 7. (a) utility of frequency domain features, (b) comparison
between time and frequency domain features; results are presented
with limited number of features that are chosen using a method as
described.

Table  3. A comparison between matched filter and machine learning method in liquid intake detection.

Matched filter method Machine learning method

Advantages Smaller training data set required Higher detection accuracy

Disadvantages Inferior performance comparing to machine learning method Larger training data set
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priori training. The matched-filters, on the other hand, can
achieve acceptable performance using the iterative template
refinement algorithm.
It should be noted that both the presented mechanisms are
subject-dependent and require personalized training. The
subject-dependency stems from the wide diversity of the
breathing signals across subjects and their inherently different
breathing patterns. In spite of such diversity, however, the
swallow signatures were found to be detectable through
appropriate algorithm training as proposed for both the
techniques.

ADDITIONAL MECHANISMS AND DISCUSSIONS

The performance of matched filter based detection method
heavily depends on the selection of reference waveforms. As
shown in Fig. 5, improper selection of reference waveform
can deteriorate the performance significantly. In what follows
we present an iterative template refinement algorithm for
incrementally improving the swallow classification performance
in a manner that is not very sensitive to the quality of the
initially selected templates. 

Iterative template refinement
In the first step, an NBC, a BC-IS, and a BC-ES waveform
are chosen from the breathing cycle library. Second, all
collected breathing cycles are classified using those three
waveforms as the templates to the three matched filters. At
this stage, each collected cycle is classified as NBC, BC-IS,
or BC-ES. Third, all cycles that are classified as NBC are
sorted based on their similarity score obtained from the NBC
matched filter in the second step. Now, the top 50% of those
NBC cycles are sample-by-sample averaged to create the
NBC template for the second iteration. The same process is
also executed for BC-IS and BC-ES to form the templates
for the second iteration. The second and third steps are

iteratively repeated till the breathing cycles selected in the
third step for generating templates stabilize. 

Stabilization is defined as when the differences between
the matched filter similarity scores across consecutive
iterations reduce below a pre-defined threshold, which in
turn, dictates the overall error performance of the mechanism.
The algorithm is summarized in Algorithm 1.
Observe that the overlapping among the three types of
breathing cycles is much less in the right graph compared to
the left one. This indicates a clear improvement of the
matched filter template quality, leading to improved separation
of different classified cycle types. The tighter clustering of
the points in the right graph provides additional indication to
better template quality compared to the starting set. The
patterns in Fig. 8 have been consistently observed for a wide

Algorithm 1: Iterative template refinement algorithm

Fig. 8. Similarity score space for: (a) initial matched filter template used as a starting point, and (b) the final template obtained at
stabilization of the iterative algorithm. The tighter clustering of the points in the right graph indicates iterative improvement of the
template quality.
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range of initial template quality applied to the data from all
seven subjects.
Fig. 9 shows the representative performance of iterative
template refinement for a specific subject (i.e., subject-2).
The evolution of true and false positive rates are reported for
three different starting template sets, termed as, Good Starting
Point (GSP), Moderate Starting Point (MSP), and Poor
Starting Point (PSP). GSP represents the NBC, BC-IS, and
BC-ES combination in the breathing cycle library that
provides the highest true positive rate and the lowest false
positive rate as evaluated in Fig 5. PSP, on the other hand,
represents the combination in the library that provides the
lowest true positive rate and the highest false positive rate.
Finally, MSP is chosen to be a combination for which the
true positive and false positive rates are somewhere in between.
Observe that the true positive rate for PSP consistently
improves with iterations. For MSP, such rates either improve
or remain constant. With GSP, true positive rates go down
slightly, although the decrement is always observed to be
much less than the improvements observed for PSP, thus
establishing the effectiveness of the approach. 
Note that for few PSPs with highly deformed BC-ES or
BC-IS waveforms, the false positive rates temporarily go up
with iterations before they settle down to lower values. This
explains the temporary increase in the false positive rate in
Fig. 9b. For the majority of the PSPs, however, the false
positive rate remains acceptably low. Results with waveforms
from other subjects demonstrated very similar performance
patterns.

Artifact handling
We analyzed the undulated exhalation of breathing cycles
during talking using power spectral density (PSD). Fig. 10
shows the comparison between PSD of breathing signals
during talking (solid lines) and those during NBCs and
swallows (dashed lines), while not talking. The density is
computed over 4.27-second windows to facilitate 128-point
FFT for the 30 Hz sampling rate (4.27 second=128 pts/30 Hz).
Observe that the PSDs with talking contain many more
variations between 0 and 2 Hz mainly because of the

undulations during exhalation as illustrated in Fig. 4. This
was consistently observed across a large number of subjects
and sessions.
Using the difference in variance between the PSD of
received breathing signal and the reference NBC signal, it is
possible to identify talking so that the swallow detection
process can be halted during talking. Detection of talking is
accomplished by using a threshold (of difference in variance),
which can be either manually set or can be trained using
variance of difference as a feature. 
In order to analyze the impacts of upper body movements,
in the last 2 minutes of each experimental session, the
subject shook their upper body and drank every 20 seconds
to simulate changing postures and rocking, which often
occurs during drinking. Fig. 11 shows the breathing signals
for a subject both with and without such upper torso
movements while swallowing. 

Fig. 9. Iterative template refinement performance; (a) true positive
rate, and (b) false positive rate evolution with iterations.

Fig. 10. Power spectral density (PSD) of breathing signals with
talking and without talking, when normal breathing or breathing
with swallows are executed. 

Fig. 11. Breathing signal: (a) with upper body rocking movement,
and (b) without movement.
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By comparing the signals with and without artifacts, one
can observe that such movement artifacts do not introduce
any noticeable changes to the breathing signal, mainly due to
the fact that such movement does not change the circumference
of the chest area where the belt is placed. Because of this
minimal impact, the swallow signatures are well preserved,
and can still be clearly discerned using the mechanisms
described earlier in the paper. As a result, the proposed
mechanism for swallow signature detection does work even
when natural upper body movements are present during a
swallow process. This observed pattern was consistent across
all the other subjects that we have experimented with.
Based on the results, it can be concluded that spontaneous
swallows can be accurately detected as NBCs. During each
10-minute session of the experiment, 20 liquid intakes were
executed, and according to [28], about 8 spontaneous
swallows were present. The overall true positive rate and
false positive rate using matched filter method are 82.81%
and 3.31% respectively, and 97.5% and 0.7% for machine
learning method using time domain features. This high
accuracy proves that most of the spontaneous swallows were
properly classified. 

CONCLUSION AND ONGOING WORK

This paper reported the design, system details, and algorithms
for a wearable liquid intake monitoring system. A matched
filter based template matching framework, along with a
number of template design mechanisms, both static and
iterative, were developed for swallow detection with high
true positive and low false positive performance. The paper
also presented classifier based detection results using both
time and frequency domain features. Finally, talking and
upper body motion artifacts were analyzed. Ongoing work
on the project includes investigating other modalities and
methods to detect the volume of liquid consumption, and
developing detection algorithms that are capable of handling
both solid and liquid swallows.
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