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Abstract In many different fields, social scientists desire to understand temporal
variation associated with age, time period, and cohort membership. Among methods
proposed to address the identification problem in age-period-cohort analysis, the
intrinsic estimator (IE) is reputed to impose few assumptions and to yield good
estimates of the independent effects of age, period, and cohort groups. This article
assesses the validity and application scope of IE theoretically and illustrates its
properties with simulations. It shows that IE implicitly assumes a constraint on the
linear age, period, and cohort effects. This constraint not only depends on the number
of age, period, and cohort categories but also has nontrivial implications for estima-
tion. Because this assumption is extremely difficult, if not impossible, to verify in
empirical research, IE cannot and should not be used to estimate age, period, and
cohort effects.
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Introduction

For more than a century, social scientists have attempted to separate cohort effects
from age and period effects on various social phenomena, including mortality, disease
rates, and inequality (e.g., Fu 2000; Holford 1983; Mason et al. 1973; O’Brien 2000;
Winship and Harding 2008). Whereas age effects represent the variation associated
with growing older, period effects refer to effects due to social and historical
shifts—such as economic recessions and prevalent unemployment—that affect all
age groups simultaneously. Cohort refers to a group of people who experience an
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event—such as birth—at the same age. Cohort effects are defined as the formative
effects of social events on individuals at a specific period during their life course
(Ryder 1965). Age-period-cohort (APC) models, in which the three variables are
simultaneously considered in a statistical equation, have been the conventional
framework for quantifying age, period, and cohort effects. Unfortunately, such APC
models suffer from a logical identification problem: when any two of the three
variables (age, period, or cohort) are known, the value of the third is
determined—that is, because Cohort = Period – Age. Because of this exact linear
dependency, there exist no valid estimates of the distinct effects of the three variables.

Various methods have been developed to address this identification problem.
For example, Mason et al. (1973) introduced the APC multiple classification
model and suggested the constrained generalized linear model (CGLM) as a
means of estimating the independent effects of age, period, and cohort. More
recently, Fu (2000) and Yang and colleagues (2004) proposed a new APC
method, called the intrinsic estimator (IE). They recommended IE as “a
general-purpose method of APC analysis with potentially wide applicability in
the social sciences” (Yang et al. 2008:1699) on the grounds that IE has
desirable statistical properties such as unbiasedness and consistency.

However, in this article, I show that IE cannot be used to recover the true age,
period, and cohort effects because IE, like CGLM, imposes a constraint on parameter
estimation that is difficult to verify using theories or empirical evidence; that is, the
validity of IE relies on assumptions that are very difficult to verify in applied practice.
In this sense, IE is no better than CGLM. In fact, IE is equivalent to the principal
component estimator, an estimator with a potential for bias that was noted by its
developers (Kupper et al. 1985). Unfortunately, this has not been understood by the
community of demographers, sociologists, and epidemiologists who have used IE in
a wide variety of research applications. As I demonstrate in this article, many
researchers have misunderstood what IE actually estimates and how IE estimates
should be interpreted, resulting in inappropriate applications of IE in empirical
research and potentially misleading substantive conclusions.

This article contributes to the literature in two ways: First, although O’Brien
(2011a) clarified that IE assumes a special constraint—the null-vector
constraint—on parameters, it is challenging for researchers to fully appreciate
and evaluate the appropriateness of this constraint when applying IE in sub-
stantive studies. In this article, I derive an easily understood form of IE’s
constraint on the linear components of age, period, and cohort effects so that
the implications of using IE to estimate the true age, period, and cohort effects
can be better understood.1

Second, although scholars agree that IE is a constrained estimator, they
debate whether IE can provide reliable estimates of the true age, period, and
cohort trends (see Fu et al. 2011; O’Brien 2011b). I address this debate using
several types of simulated data generated based on social theories. By

1 One way to characterize the effects of an interval variable like time is to break the effect into two
components: linear and nonlinear (curvature or deviations from linearity) trends. It has been known at least
since Holford (1983) that the linear components of age, period, and cohort effects cannot be estimated
without constraints because they are not identified. In contrast, nonlinear age, period, and cohort trends can
be estimated without bias.
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comparing IE estimates with the true effects in various circumstances, I show
that IE does not work better than CGLM for recovering the true age, period,
and cohort trends in empirical research.

This article is organized as follows. I begin with an introduction of the APC
multiple classification model and the identification problem. While reviewing the
methodological challenge that has hampered APC research for decades, this
section establishes a framework for discussing the nature and limitations of
different constrained APC estimators, including IE and CGLM. I then review
how IE’s developers have described IE and how applied researchers have
understood and used it in substantive studies: the two are often not the same.
As a result, many scholars have misunderstood IE, causing misuse of this
technique in empirical research. To clarify this common misunderstanding and
avoid further misuse, in the section on the linear constraint implied by IE, I
derive the constraint that IE imposes on the linear components of age, period,
and cohort effects. In the section on IE’s application scope that follows the
technical discussion of IE’s linear constraint, I use simulations to demonstrate
how this constraint affects estimation of age, period, and cohort effects. Based
on these mathematical derivations and simulation evidence, I conclude that IE
cannot and should not be used to estimate true age, period, and cohort effects
without theoretical justification.

The Identification Problem

To develop a framework for understanding the nature of IE and other constrained
estimators, I first review the identification problem that these methods are
intended to address. In APC analysis, researchers have conventionally used an
analysis of variance (ANOVA) model to separate the independent age, period,
and cohort effects:

g E Y
ij

� �� �
¼ μ þ a

i
þ b

j
þ g

k
, ð1Þ

for age groups i = 1, 2, . . . , a; periods j = 1, 2, . . . , p; and cohorts k = 1, 2,
. . . , (a + p – 1); where ∑i =1

a !i=∑j =1
p "j=∑k =1

a + p − 1
+k=0. E(Yij) denotes the

expected value of the outcome of interest Y for the ith age group in the jth period of time;
g is the “link function”; !i denotes the mean difference from the global mean 2
associated with the ith age category; "j denotes the mean difference from 2 associated
with the jth period; and +k denotes the mean difference from 2 related to the membership
in the kth cohort. The usual ANOVA constraint applies where the sum of coefficients for
each effect is set to zero.

For a normally distributed outcome Yij, the ANOVA model above can also be
written in a generic regression fashion:

Y ¼ Xbþ ε, ð2Þ
where Y is a vector of outcomes; X is the design matrix; b denotes a parameter
vector with elements corresponding to the effects of age, period, and cohort
groups; and ε denotes random errors with distribution centered on zero. Then

Assessing the Intrinsic Estimator 1947



the estimated age, period, and cohort effects can be obtained using the ordinary
least squares (OLS) method:

b̂ ¼ XTX
� �−1

XTY : ð3Þ
Unfortunately, the inverse (XTX)−1 does not exist because of the age-period-cohort

linear dependency, so the parameter vector b is inestimable. This is the identification
problem in APC analysis: no unique set of coefficients can be obtained because an
infinite number of solutions give identical fits to the data.

This identification problem can be shown more explicitly. For simplicity, suppose
that the data used are perfect, without random or measurement errors, so that ε=0;
then the problem is mathematical rather than statistical, and the regression model is

Y ¼ Xb: ð4Þ
Because of the linear dependency between age, period, and cohort, there exists a
nonzero vector b0—a linear function of the design matrix X—such that the product of
the design matrix and the vector equals zero:

Xb0 ¼ 0: ð5Þ
In other words, b0 represents the null space of the design matrix X, which has
dimension equal to 1. (The null space has dimension 1 by the specification of model
(1), and the value of b0 is given in Eq. (10).) It follows that the parameter vector b can
be decomposed into components:

b ¼ b1 þ s ⋅b0, ð6Þ
where s is an arbitrary real number corresponding to a specific solution to Eq. (4), and
b1 is a linear function of the parameter vector b, corresponding to the projection of b
on the nonnull space of the design matrix X, orthogonal to the null space. Thus, b1
and b0 are orthogonal to each other. That is, b1 is the part of b that is in the nonnull
space of the design matrix X, orthogonal (perpendicular) to the null space, so that b0
is orthogonal to b1; that is, b1 ⋅b0=0.

Given Eqs. (4) and (6), the following equation must hold:

Y ¼ Xb ¼ X b1 þ s ⋅b0ð Þ ¼ Xb1 þ s ⋅Xb0: ð7Þ
However, Xb0 = 0, and thus s⋅Xb0=0, so equation Eq. (7) is true for all values of s.

That is, s can be any real number, and each distinct value of s gives a distinct solution to
Eq. (4). Therefore, an infinite number of possible solutions exists for b, and no solution can
be deemed the uniquely preferred or “correct” solution without additional constraints on b.

To illustrate, suppose the data have three age groups, three periods, and five cohorts,
and that error is zero for ease of presentation (and without loss of generality). Table 1
presents three different parameter vectors bT= (μ,!1,!2,!3,"1,"2,"3,+1,+2,+3,+4,+5) arising
from three different values of s: namely 0, 2, and 10. In the top panel of Table 2, the
observed value in each cell is represented in terms of the unknown parameters !i, "j, and
+k. The bottom panel of Table 2 shows the fitted values μ+!i+"j+ +k based on Table 1’s
three different values of s in the same tabular form as in the top panel of Table 2. Note
that these three sets of fitted values are identical, although the parameter vectors in
Table 1 differ. In fact, these parameter vectors are not just different; their age and period

1948 L. Luo



effects change directions depending on s, and the data cannot distinguish between
different values of s.

Taken together, Tables 1 and 2 show that for a single data set, an infinite number of
possible solutions for age, period, and cohort effects exist; and each solution corre-
sponds to a specific value of s. Therefore, any solution—or alternatively, none of
these solutions—can be viewed as reflecting the “true” effects even though different
values of s give radically different age, period, and cohort effects. In social science
research, data inevitably contain random and/or measurement errors, so researchers
will not have the perfect fit of the idealized data here; however, the fundamental
identification problem remains. Various methods have been developed to address the
identification problem and find a set of uniquely preferred estimates. In the following
section, I consider IE and other solutions to the identification problem that impose a
constraint on b.

The Constrained Approach: IE and CGLM

A large body of literature dating back to the 1970s has addressed the identification
problem. Mason et al. (1973) explicated the identification problem in APC analysis

Table 1 Different values of s and the corresponding parameters

s

Age Period Cohort

!1 !2 !3 "1 "2 "3 +1 +2 +3 +4 +5

0 2 0 –2 –1 0 1 –1 –0.5 0 0.5 1

2 0 0 0 1 0 –1 –5 –2.5 0 2.5 5

10 –8 0 8 9 0 –9 –21 –10.5 0 10.5 21

Notes: s is an arbitrary real number corresponding to a specific solution to Eq. (4). Numbers in each row are
a set of age, period, and cohort coefficients corresponding to a specific value of s.

Table 2 Tabular data: Unobserved parameters and fitted values from the three different parameter vectors
shown in Table 1

Period

1 2 3

Unobserved Parameters Age 1 2 + !1 + "1 + γ3 2 + !1 + "2 + γ4 2 + !1 + "3 + γ5

2 2 + !2 + "1 + γ2 2 + !2 + "2 + γ3 2 + !2 + "3 + γ4

3 2 + !3 + "1 + γ1 2 + !3 + "2 + γ2 2 + !3 + "3 + γ3

Observed Values Age 1 11 12.5 14

2 8.5 10 11.5

3 6 7.5 9

Note: The bottom panel presents identical observed values produced by the three different parameter
vectors in Table 1.
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and proposed the constrained generalized linear model (CGLM), a coefficient-
constrained approach that has been used as a conventional method for APC analysis.
This method places at least one identifying restriction on the parameter vector b in
Eq. (2). For example, the effects of the first two age groups, periods, or cohorts are
usually constrained to be equal based on theoretical or external information. With this
additional constraint, the APC model becomes just-identified, and unique OLS and
maximum likelihood (ML) estimators exist. However, such theoretical information
often does not exist or cannot easily be verified. Also, different choices of identifying
constraint can produce widely different estimates for age, period, and cohort effects.
That is, CGLM estimates are quite sensitive to the choice of constraints (Glenn 2005;
Rodgers 1982a, b).

More recently, a group of scholars developed a new APC estimator, called the
intrinsic estimator (IE). They argued that IE has clear advantages over CGLM2 and
can produce valid estimates of the true age, period, and cohort effects (see Fu 2000,
Fu and Hall 2006; Yang et al. 2004, 2008). The most compelling evidence they
provided to support this claim is from a simulation in which IE and CGLM estimates
were compared with the true effects of age, period, and cohort (see Yang et al.
2008:1718–1719). They concluded that IE outperforms CGLM because IE estimates
are closer to the true parameters that generate the data than CGLM (Yang et al.
2008:1719–1722).

This evidence could easily be interpreted as confirmation that IE produces unbiased
estimates of the true age, period, and cohort effects. Unfortunately, few clarifications are
provided, and the developers of IE themselves are sometimes unclear about what IE
actually estimates. For example, they state that

for a finite number of time periods of data, the IE produces an unbiased estimate
of the coefficient vector. (Yang 2008:400)

Because of its estimability and unbiasedness properties, the IE may provide a
means of accumulating reliable estimates of the trends of coefficients across the
categories of the APC accounting model. (Yang et al. 2008:1711)

The IE, by its very definition and construction, satisfies the estimability condi-
tion. . . . If other estimators do indeed satisfy the estimability condition, then
they also produce unbiased estimates of the A, P, and C effect coefficients. If
not, then the estimates they produce are biased. (Yang et al. 2008:1710)

Perhaps most importantly for empirical applications of APC analysis, the IE
produces estimated age, period, and cohort coefficients and their standard errors
in a direct way, without the necessity of choosing among a large array of
possible constraints on coefficients that may or may not be appropriate for a
particular analysis. (Yang et al. 2004:105)

Many researchers conducting substantive APC analyses have interpreted these and
other statements to mean that IE produces unbiased estimates of true age, period, and
cohort effects. Consequently, they have used IE in empirical research to address
substantive issues, including mortality, disease, and religious activity (e.g., Keyes and

2 Yang et al. (2008) refer to this as “CGLIM.”
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Miech 2013; Langley et al. 2011; Miech et al. 2011; Schwadel 2011; Winkler and
Warnke 2013). These authors seem convinced that IE produces unbiased estimates of
age, period, and cohort effects:

Recent advances in modeling APC effects with repeated cross-sectional data
allow age, period, and cohort effects to be simultaneously estimated without
making subjective choices requiring constraining data or dropping age, period,
or cohort indicators from the model. In particular, APC intrinsic estimator
models provide unbiased estimates of regression coefficients for age groups,
time periods, and birth cohorts (Fu 2000). (Schwadel 2011:183)

The intrinsic estimator provides unbiased estimates of age, period, and cohort
effects. (Schwadel 2011:184)

The IE model has been recommended as a better alternative to the widely
discussed constrained generalized linear model (CGLM) (Yang et al. 2004).
We used the IE model to estimate individual effects of age, period, and cohort
for males and females separately. (Langley et al. 2011:106)

The IE is an approach that places a constraint on the model, but not a constraint
that affects the estimation of regression parameters for age, period, and cohort
in any way. That is, the regression parameter estimates are unbiased by the
constraint placed, and a unique set of regression estimates can be estimated.
(Keyes and Miech 2013:2)

Unfortunately, claims of this sort are incorrect. As I demonstrate in this article, IE
does impose constraints that are as consequential as those imposed by CGLM. To
help researchers better understand the constraint imposed by IE and make informed
decisions in choosing an APC estimator, I first derive an easily understood form of
IE’s constraint. Because an unbiased and consistent estimator is desirable and neces-
sary to produce reliable and valid results, I then address how IE’s constraint affects
these key properties:

& Unbiasedness: Is the expectation of IE the “true” age, period, and cohort effects?
& Consistency: As the sample size increases, does IE converge to the “true” effects?

The Linear Constraint Implied by IE

To understand IE’s constraint and its implications for estimation, it is helpful to
review IE’s conceptual foundation and computational algorithm. IE can be
viewed as an extension of principal component (PC) analysis, a multipurpose
technique that can be used to deal with identification problems when explan-
atory variables are highly correlated. By transforming correlated explanatory
variables to a set of orthogonal linear combinations of these variables, called
principal components, PC analysis can be a useful tool for reducing data
redundancy and developing predictive models.

In contrast, the goal of IE is neither data reduction nor prediction, but rather
estimation of the effects of, and capturing the general trends of, age, period, and
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cohort.3 IE’s computational algorithm includes five steps: (1) transform the design
matrix X to the PC space using its eigenvector matrix; (2) in the PC space, identify
the “null eigenvector”—the special eigenvector that corresponds to an eigenvalue of
zero—and the corresponding null subspace (with 1 dimension) and nonnull subspace
(with m – 1 dimensions, where m denotes the number of coefficients to be estimated);
(3) in the nonnull subspace of m – 1 dimensions, regress the outcome of interest using
OLS or ML on the m – 1 PCs to obtain m – 1 coefficient estimates; (4) extend the m – 1
coefficient estimates to the whole PC space of dimension m by adding an element
corresponding to the null eigenvector direction and arbitrarily setting it to zero; and
(5) use the eigenvector matrix to transform the extended coefficient vector estimated in the
PC space, including the added zero element, back to the original age-period-cohort space
to obtain estimates for age, period, and cohort effects (see Yang 2008; Yang et al. 2008).4

The fourth step—extend the m – 1 coefficient estimates to the whole PC space of
dimension m by adding an element corresponding to the null eigenvector direction
and arbitrarily setting it to zero—carries the key assumption of the IE approach to
APC analysis. This assumption is implicit yet has major implications for the validity
and application of the IE approach. Specifically, setting the coefficient of the null
eigenvector, s, to zero is equivalent to assuming that

b ⋅ b0 ¼ 0: ð8Þ
That is, the projection of b on b0 is zero, where b and b0 are as defined in Eq. (6).
Kupper and colleagues (1985) provided a closed-form representation for the eigen-
vector b0. Using vector notation,5

b0 ¼ 0,A,P,Cð ÞT , ð9Þ
where

A ¼ 1−
1þ a

2
, : : : , a− 1ð Þ− 1þ a

2

� �

P ¼ −1 ⋅ 1−
1þ p

2
, : : : , p − 1ð Þ− 1þ p

2

� �� �

C ¼ 1 −
aþ p

2
, : : : , aþ p− 2ð Þ− aþ p

2

� �
:

3 It is important to distinguish data reduction or prediction from coefficient estimation. Because the
identification problem does not prevent obtaining a set of solutions with good fit to the data, one can still
make good predictions. The PC technique treats such problems as data redundancy and allows obtaining
one solution. However, as noted earlier, none of these solutions is the uniquely preferred solution: the
solution that APC techniques, including IE, aim to discover. Therefore, providing a solution for the purpose
of prediction is not the same as finding a uniquely preferred solution for estimation of separate age, period,
and cohort effects.
4 Alternatively, Yang (2008:413) described the computational algorithm of IE as follows: after obtaining r – 1
coefficients in the PC space (w2, . . . , wr), “set coefficient w1 equal to 0 and transform the coefficients vector
w = (w1, . . . , wr)

T,” where w1 corresponds to the null eigenvector direction.
5 Yang et al. (2004, 2008) used b�0 ¼ b0

b0k k , where ‖b0‖ is the length of b0, so b0
* has a length of 1. b0 is used in

this article because it is simply a multiple of b0
* and is simpler for exposition and computation.
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For example, when a = 3 and p = 3 (i.e., for three age groups and three time
periods),

b0 ¼ 0,–1,0,1,0,−2,−1,0,1ð ÞT , ð10Þ
where A = (–1,0), P = (1,0), and C = (–2,–1,0,1).

What does Eq. (8) mean? What is the specific form of this constraint for data sets
with varying number of age, period, and cohort groups? To illustrate, suppose that
age, period, and cohort each have effects on the outcome variable that show a linear
trend. Denote these trends as ka, kp, and kc, respectively; the intercepts for the three
variables as ia, ip, and ic; and the overall mean as 2. Thus, the effects associated with
the three age categories are ia, ia + ka, and ia+2 ⋅ ka, respectively. Similarly, the effects
related to the three periods are ip, ip + kp, and ip+2 ⋅ kp, respectively. For the five
cohorts, the effects are ic, ic + kc, ic+2 ⋅ kc, ic+3 ⋅ kc, and ic+4 ⋅ kc , respectively. Then,
the parameter vector, b, can be written as

b ¼ μ,ia,ia þ ka,ip,ip þ kp,ic,ic þ kc,ic þ 2 ⋅ kc,ic þ 3 ⋅ kc
� �T

, ð11Þ
where the last category of each variable is omitted as the reference group. According
to the constraint for age effects in model (1), we know that

Xa

i¼1
ai ¼ ia þ ia þ kað Þ þ ia þ 2 ⋅ kað Þ ¼ 3 ⋅ ia þ 3 ⋅ ka ¼ 0, ð12Þ

which implies that

ia ¼ −ka: ð13Þ
Similarly, it can be shown using the constraint for period and cohort effects in model
(1) that

ip ¼ −kp, ð14Þ
and

ic ¼ −2 ⋅ kc: ð15Þ
Using Eqs. (13), (14), and (15), Eq. (11) can be simplified as

b ¼ μ,−ka,0,−kp,0,−2 ⋅ kc,−kc,0,kc
� �T

: ð16Þ

Because the constraint that IE implicitly imposes is b ⋅b0=0, by Eqs. (8), (10), and
(16), the specific form of IE’s linear constraint (LC) for APC data with three age
categories, three periods, and five cohorts are

b ⋅b0 ¼ μ ⋅ 0þ −kað Þ ⋅ −1ð Þ þ 0 ⋅ 0þ −kp
� �

⋅ 1þ 0 ⋅ 0þ −2 ⋅ kcð Þ ⋅ −2ð Þ þ −kcð Þ ⋅ −1ð Þ
þ 0 ⋅ 0 þ kc ⋅ 1 ¼ ka− kp þ 6 ⋅ kc ¼ 0 :

ð17Þ
In other words, when age, period, and cohort show linear trends, IE’s implicit constraint
is that these linear trendsmust satisfy Eq. (17). If, in fact, the true age, period, and cohort
trends do not satisfy this equation, then the implicit LC imposed by IE is incorrect.
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To illustrate the implications of IE’s LC, I simulate normally distributed data as
follows. For those at age i in period j, the mean response is 10 + ka ⋅ agei +
kp ⋅ periodj+ kc ⋅ cohortij, and the standard deviation of error ( equals 0.1. The number
of age and period groups is fixed at three each. I consider three sets of true ka, kp, and
kc: (1) ka = 1, kp = 7, kc = 1; (2) ka =1, kp = 7, kc = 10; and (3) ka = 3, kp = 1, kc = 4. For
each selection of true ka, kp, and kc, I simulate 1,000 such data sets by drawing
random errors. As shown in Table 3, for data set 1, the true effects for the three age
categories are –1, 0, and 1, respectively, so ka (the linear trend in age effects) equals 1.
The period effects are –7, 0, and 7, respectively, so kp is 7. Similarly, since the cohort
effects are –2, –1, 0, 1, and 2, kc is 1. For this data set,

ka − kp þ 6 ⋅ kc ¼ 1− 7þ 6 ⋅ 1 ¼ 0: ð18Þ
That is, the relationship between the linear trends in the true age, period, and cohort
effects satisfies Eq. (17), the LC implicit in IE. However, for data sets 2 and 3
generated by the other sets of true ka, kp, and kc in Table 3, Eq. (17) does not hold.
Specifically, for the second set, ka = 1, kp = 7, and kc = 10, so

ka − kp þ 6 ⋅ kc ¼ 1− 7þ 6 ⋅ 10 ¼ 54 ≠ 0: ð19Þ
And for the third set, ka = 3, kp = 1, and kc = 4, so

ka − kp þ 6 ⋅ kc ¼ 3− 1þ 6 ⋅ 4 ¼ 26 ≠ 0: ð20Þ
Table 3 presents IE estimates, averaged over the 1,000 simulated data sets, for the

three sets of age, period, and cohort effects. The bias of IE is estimated by the
difference between the truth and the averaged IE estimates. Table 3 shows that for
data set 1, IE yields good estimates because the true ka, kp, and kc in the data satisfy

Table 3 Simulation results: IE estimates for three data sets

Data Set 1 Data Set 2 Data Set 3

Truth IE Bias Truth IE Bias Truth IE Bias

Age 1 –1 –0.997 0.003 –1 5.747 6.747 –3 0.249 3.249

2 0 –0.002 –0.002 0 0.002 0.002 0 0.000 0.000

3 1 0.999 –0.001 1 –5.749 –6.749 3 –0.249 –3.249

Period 1 –7 –6.999 0.001 –7 –13.75 –6.750 –1 –4.250 –3.250

2 0 –0.002 –0.002 0 0.002 0.002 0 –0.002 –0.002

3 7 7.002 0.002 7 13.748 6.748 1 4.252 3.252

Cohort 1 –2 –2.001 –0.001 –20 –6.497 13.503 –8 –1.500 6.500

2 –1 –0.998 0.002 –10 –3.253 6.747 –4 –0.750 3.250

3 0 –0.001 –0.001 0 0.002 0.002 0 0.000 0.000

4 1 1.004 0.004 10 3.250 –6.750 4 0.750 –3.250

5 2 1.996 –0.004 20 6.498 –13.502 8 1.500 –6.500

Notes: For each data set, the IE estimates are averaged over 1,000 simulations. The bias of IE is evaluated
by the difference between the true effects and the IE estimates, averaged over 1,000 simulations. Equation
(17) holds for data set 1 but not for data set 2 and 3.
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Eq. (17), the implicit LC that IE imposes. Specifically, the estimated slopes for age,

period, and cohort are k̂a ¼ 0:999, k̂p ¼ 7:001, and k̂c ¼ 1:000, respectively. In
contrast, IE returns highly biased estimates, very different from the true effects, for
the second and third data sets because the true ka, kp, and kc do not satisfy IE’s LC.
For example, for data sets 2 and 3, the estimated age effects, averaged over the 1,000

simulations, show a downward trend (k̂a ¼ −5:750 for data set 2 and k̂a ¼ −2:582
for data set 3) when the true trend is upward. (The true age slopes are ka = 1 for data
set 2 and ka = 3 for data set 3.)

Note that Eq. (17) is derived for the simplest scenario in which the age, period, and
cohort trends are purely linear. For more complex scenarios in which these trends are
not purely linear, IE’s constraint depends on the nonlinear components of the age,
period, and cohort effects.6 For example, suppose that age, period, and cohort each
has effects on the outcome of interest that include a linear and a quadratic trend.
Denote the quadratic trends as ,

p
, and c , respectively. Using the same derivation

in this section, the specific form of IE’s constraint for APC data with three age
categories, three periods, and five cohorts is

That is, when age, period, and cohort effects include quadratic components, these
effects must satisfy Eq. (21) in order for IE to yield good estimates. Equation (17) can
be viewed as a special case of Eq. (21) when there are no quadratic or higher-order
nonlinear components in the age, period, and cohort effects. Alternatively, because
the linear dependency between age, period, and cohort does not affect the identifica-
tion of nonlinear effects, IE’s constraint can be said to bind only on the linear age,
period, and cohort trends; the specific value of the constraint on the linear effects is
determined by the nonlinear effects, which are estimable.

For any coefficient-constraint approach, such as CGLM and IE, “the choice of
constraint is the crucial determinant of the accuracy in the estimated age, period, and
cohort effects” (Kupper et al. 1985:822). Because the constraint assumption strongly
affects estimation results, no matter what constraint a statistical method assumes, that
method produces good estimates only when its assumption approximates the true
structure of the data under investigation. It follows that when there are three age
groups, three periods, and five cohorts and their effects are purely linear, IE can yield
accurate estimates only when these linear effects of age, period, and cohort satisfy
Eq. (17). Unfortunately, researchers usually have no a priori knowledge about true
age, period, and cohort effects that would allow them to evaluate whether the
constraint implied in Eq. (17) holds. Therefore, researchers cannot assess whether
IE produces unbiased estimates of age, period, and cohort effects for their data. Thus,
IE is no better than CGLM in this respect.

6 The constraint imposed by IE depends on how model (2) is parameterized. If the model is parameterized
in terms of orthogonal polynomial contrasts for each of the age, period, and cohort effects, as in Holford
(1983), then IE imposes a constraint solely on the linear contrasts of age, period, and cohort effects
irrespective of any nonlinear trends that are present. The parameterization used here is more common (e.g.,
Kupper et al. 1985), and in this parameterization, the constraint on the linear components of the age, period,
and cohort effects depends on the nonlinear components when both components are present.

k k k k k k
a p c a p c

− + ⋅ + ′ − ′ + ⋅ ′ =6
3

12 0. (21)
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More importantly, the exposition in this section indicates that the LC assumed by
IE also depends on the design matrix X—that is, on the number of age, period, and
cohort groups. For example, if one age group is added to the example presented here,
such that there are now four age groups, three periods, and six cohorts, then the LC
implied by IE is

b ⋅b0 ¼ 2:75 ⋅ ka − kp þ 11:25 ⋅ kc ¼ 0, ð22Þ

or

b ⋅b0 ¼ ka − kp þ 6 ⋅ kc
� �þ 1:75 ⋅ ka þ 5:25 ⋅ kcð Þ ¼ 0: ð23Þ

Compared with Eq. (17) for the case of three age groups, three periods, and five
cohorts, Eqs. (22) and (23) show that adding an age group dramatically changes the
constraint so that the true effects satisfying IE’s LC with three age categories no
longer satisfy this LC when an age category is added. Readers can verify that
increasing or reducing the number of periods or cohorts also greatly alters IE’s LC.

These examples demonstrate that not only does IE rely on a constraint like CGLM
does, but unlike CGLM, in which the constraint (e.g., equal effects for the first two
age groups) is explicit and rationalized by theoretical account or side information, the
LC of IE is implicit and varies depending on the number of age, period, and cohort
groups. Although this constraint has been described as minimal (e.g., Schwadel 2011;
Yang et al. 2008), in fact, it can have major implications for the quality of substantive
results, as shown.

Theoretically speaking, the limitation of IE results from a misinterpretation of the
constraint that IE imposes on parameter estimation. It is true that b0, the null
eigenvector, is determined by the design matrix, but it is incorrect to conclude that
therefore b0 “should not play any role in the estimation of effect coefficients” (Yang
et al. 2008:1705). Rather, both the null eigenvector and nonnull eigenvectors (with
nonzero eigenvalues) are determined by the design matrix—that is, by the number of
age, periods, and cohort groups. To this extent, it is no less likely that the data contain
a significant component in the b0 direction than in the directions of the nonnull
eigenvectors. The fact that s, the coefficient for b0, can be any real number without
changing the fitted values Xb simply means that variation in Y in the direction of b0
is not estimable. If the data have variation in this direction, IE will mistakenly
attribute that variation to other columns in the design matrix, causing significant
errors in estimation.

The Implications of IE’s Constraint: Is IE an Unbiased and Consistent
Estimator?

Because IE imposes a constraint on the linear age, period, and cohort trends, IE yields
reliable estimates only when the true trends satisfy its constraint. However, Yang and
colleagues argued that “because of its estimability and unbiasedness properties, the IE
may provide a means of accumulating reliable estimates of the trends of coefficients
across the categories of the APC accounting model” (Yang et al. 2008:1711). In the
following discussion, I clarify that IE is not an unbiased estimator of the “true” age,
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period, and cohort effects. I also use concrete examples to illustrate that IE is not
consistent and to explain why IE appears to be converging to the truth in the Yang
et al. (2008) article. This section may be particularly helpful for nontechnical researchers.

Biasedness

By definition, an estimator δ is an unbiased estimator of a parameter θ if the
expectation of δ over the distribution that depends on θ is equal to θ, or Eθ(δ)=θ.
It follows that for an unbiased APC estimator, its expectation must be the true effects
of age, period, and cohort.7 Per this definition, if IE is an unbiased estimator, the
expected value of IE must be the true age, period, and cohort effects. The following
mathematical computation shows, however, that the expectation of the IE estimator is
not the true effects unless those true effects happen to satisfy IE’s implicit constraint.

As noted in the preceding section, the key computation of IE is to extend the
coefficient estimates in the PC space, b′,

by adding a zero element, such that

where new corresponds to the projection of the coefficient vector b in the nonnull

space, that is, b1 in Eq. (6). IE then transforms the extended coefficient vector new,
including the added zero element, back to the original age-period-cohort space to
obtain coefficient estimates for age, period, and cohort.

Given that OLS and ML estimators have been proven unbiased in simpler,
identifiable problems with normally distributed errors as in Eq. (2), and because IE
uses these methods to obtain estimates for b1, whose projection in the PC space
corresponds to the extended coefficient vector new, IE yields unbiased estimates for
b1. In other words,

E bIEð Þ ¼ b1: ð26Þ

Based on the preceding discussion of the identification problem, the true parameter
space b can be decomposed into two orthogonal subspaces corresponding to b1 and
b0 in Eq. (6), which is equivalent to

b1 ¼ b − s ⋅b0: ð27Þ

7 Yang and colleagues have used “unbiasedness” in a different sense to mean that the expectation of IE is
equal to b1, the projection of parameter vector b onto the nonnull space of design matrix X (see, e.g., Yang
et al. 2008:1709). This is an important distinction because the true parameter vector b can be very different
from its projection b1 onto the nonnull space, the vector that IE actually estimates. Because APC analysts
are usually interested in estimating the true age, period, and cohort effects, the classic concept of
unbiasedness is more relevant to APC research than that used by IE’s proponents. Thus, I use “unbiased-
ness” in its classic sense in my discussion.

′ = ′ ′ ′ ′ −b
m

b b b b
0 1 2 1
, , , , . . . (24)

′ = ′ ′ ′ ′ −bnew m
b b b b

0 1 2 1
0, , , , , , . . . (25)
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Substituting Eq. (27) in Eq. (26) results in

E bIEð Þ ¼ b1 ¼ b − s ⋅ b0: ð28Þ

Equation (28) means that the expectation of the IE estimator will be different from the
true effects b unless s ⋅b0=0—that is, unless s = 0. IE assumes s = 0; thus, IE is a
biased estimator when the true value of s is anything but 0. The larger the absolute
value of s, the more biased the IE estimates become.

For researchers who wish to investigate age, period, and cohort effects for the
purposes of substantive demographic, social, or other applied research, there exists
little theoretical or empirical knowledge about the value of s and what b0—the null
eigenvector—may imply about the outcome variable. In specific applications, then,
IE must be assumed to be biased, resulting in misleading conclusions about the true
age, period, and cohort effects unless proven otherwise.

Note that IE’s developers argue that IE satisfies the “estimability criterion” pro-
posed by Kupper et al. (1985), so IE is, in that sense, an unbiased estimator. However,
estimability of a function of b implies unbiased estimation only of the estimable
function of b, not necessarily of the true parameter b itself. The projection of the
parameter vector onto the nonnull space, b1, is indeed an estimable function of b, the
true parameter vector, and thus IE is an unbiased estimator of b1. However, IE is a
biased estimator for the true APC effects when b1 is different from b. Therefore, it is
not accurate to say that “Kupper et al. (1985) . . . suggested that an estimable function
satisfying this condition resolves the identification problem” as claimed in Yang et al.
(2008:1703). To emphasize, estimability in the nonnull space does not imply unbi-
asedness in estimating the true age, period, and cohort effects. Discovering a set of
estimable functions is not the same as solving the identification problem.

Consistency

In statistics, for an estimator δ to be a consistent estimator of an unknown parameter
space θ, δ must converge in probability to θ as the sample size grows. If δ is
unbiased, consistency usually follows immediately. A biased estimator can be con-
sistent if its bias decreases as the sample size increases. However, the bias of IE, s ⋅b0,
does not necessarily shrink as the sample size grows. Thus, IE is not a consistent
estimator of the coefficient vector b.

This theoretical argument can be illustrated with simulations. I simulate normally
distributed data using the same function as that for data set 1 in Table 3: for those at
age i in period j, the mean response is 10 +1 ⋅ agei+7 ⋅periodj+1 ⋅ cohortij, and the
standard deviation of error is 0.1. I begin with 3 age groups and 3 periods, and then
increase the number of periods to 6 and 12, respectively. For each scenario, I simulate
1,000 such data sets by drawing random errors. If IE is a consistent estimator, then as
the number of periods increases, the resulting estimates should get closer and closer
to the true effects that we know based on the simulation function.

Table 4 presents the IE estimates, averaged over 1,000 data sets, for the three
scenarios in which the number of periods is set at 3, 6, and 12, respectively. It shows
that the IE estimates are not converging to the truth, and the bias appears to increase
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as the number of periods increases from 3 to 12. Specifically, when p (the number of
periods) equals 6 and 12, although IE correctly captures the direction of the age,
period, and cohort trends, there is no evidence that these estimates are converging to the

truth; the estimated age, period, and cohort slopes are k̂a ¼ 2:144, k̂p ¼ 5:857, and

k̂c ¼ 2:144, respectively, when p = 6; and k̂a ¼ 3:017, k̂p ¼ 4:983, and k̂c ¼ 3:017,
respectively, when p increases to 12. In fact, even with an unrealistically large number
of periods (e.g., 100 periods), as I show in Fig. S1 in Online Resource 1, the IE estimates
do not appear to converge to the truth.

Table 4 Simulation results: Inconsistent IE estimates as the number of periods increases

Periods = 3 Periods = 6 Periods = 12

Truth IE Bias Truth IE Bias Truth IE Bias

Age 1 –1 –0.997 0.003 –1 –2.144 –1.144 –1 –3.016 –2.016

2 0 –0.002 –0.002 0 0.000 0.000 0 –0.000 –0.000

3 1 0.999 –0.001 1 2.144 1.144 1 3.017 2.017

Period 1 –7 –6.999 0.001 –17.5 –14.642 2.858 –38.5 –27.407 11.093

2 0 –0.002 –0.002 –10.5 –8.783 1.717 –31.5 –22.427 9.073

3 7 7.002 0.002 –3.5 –2.931 0.569 –24.5 –17.441 7.059

4 3.5 2.928 –0.572 –17.5 –12.462 5.038

5 10.5 8.785 –1.715 –10.5 –7.470 3.030

6 17.5 14.643 –2.857 –3.5 –2.493 1.007

7 3.5 2.494 –1.006

8 10.5 7.473 –3.027

9 17.5 12.455 –5.045

10 24.5 17.441 –7.059

11 31.5 22.425 –9.075

12 38.5 27.412 –11.088

Cohort 1 –2 –2.001 –0.001 –3.5 –7.497 –3.997 –6.5 –19.612 –13.112

2 –1 –0.998 0.002 –2.5 –5.362 –2.862 –5.5 –16.590 –11.090

3 0 –0.001 –0.001 –1.5 –3.214 –1.714 –4.5 –13.575 –9.075

4 1 1.004 0.004 –0.5 –1.071 –0.571 –3.5 –10.558 –7.058

5 2 1.996 –0.004 0.5 1.074 0.574 –2.5 –7.542 –5.042

6 1.5 3.215 1.715 –1.5 –4.525 –3.025

7 2.5 5.353 2.853 –0.5 –1.506 –1.006

8 3.5 7.502 4.002 0.5 1.509 1.009

9 1.5 4.529 3.029

10 2.5 7.542 5.042

11 3.5 10.559 7.059

12 4.5 13.575 9.075

13 5.5 16.589 11.089

14 6.5 19.604 13.104
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The developers of IE correctly noted that the estimation of period and cohort
effects will not improve with more time periods because “adding a period to the data
set does not add information about the previous periods or about cohorts not present
in the period just added” (Yang et al. 2008:1718). However, when they simulated
data, the IE estimates for age effects did appear to become closer and closer to
the true values as the number of periods increased. They simulated data using the
following function:

It appears that IE estimates of the age effects converge to the true effects in this
simulation as the number of periods increases because IE’s implicit LC is not satisfied
by the true age, period, and cohort effects in the simulation mechanism Eq. (29) with
five periods (b ⋅b0= − 0.339), but the true effects do approximately satisfy the LC
(b ⋅b0= −0.036) when the number of periods increases to 50. In other words, IE
appears to perform better as the number of periods increases, not because IE is a
consistent procedure but because the true effects used in the data-generating function
Eq. (29) conform better to IE’s implicit LC as the number of periods increases.

For demographic or social data in which the linear trends in the three variables are
unknown, adding more periods or cohorts promises nothing about the accuracy of the
coefficient estimation for age, period, or cohort effects. That is, even with a sufficiently
large sample, researchers using IE to estimate the true age, period, and cohort effects are
not guaranteed to have desirable results that are close to the true values.

Application Scope: IE Versus CGLM

The preceding discussions of IE’s linear constraint (LC) and statistical proper-
ties are fairly technical. In this section, I use several types of simulated data to
illustrate how the implicit LC of IE affects its ability to recover the underlying
age, period, and cohort effects in social science research.8 This exercise is
important because scholars have debated the application scope of IE in empir-
ical research. As Fu et al. (2011:455) suggested, “the important statistical issue
about APC modeling is how to identify the trend that helps to resolve the real-
world problem for a given APC data set.” Thus, I examine whether compared

8 Yang and colleagues have used empirical data, in which the true effects are unknown, to assess the
properties and performance of IE (Yang et al. 2008:1712–1716). However, it is logically impossible to
assess the performance of an estimator when the true effects are unknown. If such a cross-model validation
of IE for a specific empirical data set were to show that IE yields reasonable estimates, this can only depend
on having selected examples that are consistent with the IE’s constraint. Therefore, cross-model compar-
isons using empirical data are not an appropriate method to validate IE.

y Poisson age period
jiji

exp . . . sin0 3 0 1 5 0 1
2

+ −( ) + ( )
+ ( ) + ⋅( )0 1 0 1 10. cos . sin .cohort cohort

jiji

(29)
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with CGLM, IE yields better (if not unbiased) estimates of the true age, period,
and cohort patterns that may be observed in empirical research.

IE’s developers provided simulations in which IE estimates are closer to the
true age, period, and cohort effects than CGLM results. This, they argued,
supports their conclusion that IE has clear advantages over CGLM. However,
as noted earlier, the true age, period, and cohort effects in Yang et al.’s (2008)
simulation in fact approximately satisfy the LC that IE imposes (b ⋅ b0 =
− 0.036).9 For age, period, and cohort effects that do not satisfy IE’s implicit
constraint, IE will not necessarily perform better than CGLM and may perform
much worse. Thus, IE is no better than CGLM because the restriction that IE
imposes is essentially no different from the constraints assumed in CGLM.

To illustrate, I show simulations, as Yang and colleagues did, to compare the
CGLM and IE estimates. However, here the data-generating mechanisms satisfy
the constraint assumed by CGLM but not the constraint assumed by IE.
Moreover, I simulate data from four models that embody specific social theories
and thus conform to empirical reality. The first data set is simulated to
represent the observation that overall health for adults deteriorates as they grow
older, and that while recent developments in health knowledge and technology
have improved health conditions for the entire population, people born in more
recent years are likely to be healthier than older cohorts. On the other hand, the
demographic literature has also suggested that age, period, or cohort effects
may not all exist (Alwin 1991; Fabio et al. 2006; Preston and Wang 2006;
Winship and Harding 2008). Accordingly, the other three simulations approxi-
mate likely empirical situations in which one of the three variables has little
impact on the outcome variable.

Specifically, I fix the number of age groups at 9 and the number of periods at 50 in
all these simulations with little loss of generality. I then generate 1,000 data sets from
each of the following four models:

y Normal age age period
jiiji

10 2 0 5 1 0 0152+ ⋅ − ⋅ + ⋅ − ⋅. . pperiod
j
2

+ ⋅ + ⋅ =0 15 0 03 0 12. . , .cohort cohort
ij ij

σ (30)

y Normal period period coho
jjji

10 1 0 015 0 152+ ⋅ − ⋅ + ⋅. . rrt cohort
ij ij
+ ⋅ =0 03 0 12. , .σ

(31)

y Normal age age cohort
jijiji

10 2 0 5 0 15 0 02+ ⋅ − ⋅ + ⋅ +. . . 33 0 12⋅ =cohort
ij
, .σ (32)

y Normal age age period p
jjiji

10 2 0 5 1 0 0152+ ⋅ − ⋅ + ⋅ − ⋅. . eeriod
ij
2 0 1, . .σ = (33)

9 Although Yang and colleagues correctly pointed out that IE estimates the projection of the “true” effects
onto the nonnull space, they compared IE estimates with the “true” parameters, not to the projection (Yang
et al. 2008:1718–1722). This is key because the true parameter vector can be very different from its
projection onto the nonnull space (the vector that IE actually estimates). That is, what IE actually estimates
can be very different from the true APC effects if the true effects do not at least approximately satisfy the
LC implicit in IE.
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For instance, in Eq. (30), the outcomes for people with age i in period j are normally
distributed with mean (10 + 2 ⋅ agei − 0.5 ⋅ age j2 + 1 ⋅ periodj − 0.015 ⋅ period j

2 +
0.15 ⋅ cohortij+0.03 ⋅ cohort ij2), and standard deviation σ = 0.1. In Eqs. (31), (32), and
(33), one of the age, period, and cohort effects is not present, while the effects for the
other two variables are the same as in Eq. (30). Note that none of these models satisfies
IE’s constraint. Specifically, for the first model, b ⋅b0=115.01; and for the second, third,
and last model, b ⋅b0=115.72, 130.41, and 16.12, respectively.

Figure 1 compares, for the simulated data from the four models, IE estimates and
CGLM estimates using two different constraints. The IE estimates, averaged over
1,000 data sets, are largely different from the true effects for all models because for
all four models, the constraint that IE assumes is not satisfied. For example, in
Scenario 3 in Fig. 1, when there is no period effect in the data-generating mechanism
Eq. (32), the IE estimates suggest a substantially positive period trend on top of
inaccurate estimates for age and cohort effects. In contrast, the CGLM assuming
equal age effects for the first and third age groups produces close estimates for all
four models. It is equally important to note that the performance of the CGLM
estimator also depends on whether its assumption approximates the truth. For
instance, in Scenario 4, whereas the CGLM that assumes equal age effects for the
first and third group yields good estimates, the same method with a different
constraint—that is, the age effects are the same for the first and second
groups—results in biased estimates.

In sum, it must be concluded that (1) if there is a priori information or theoretical
justification, the constrained solution that corresponds to such information (e.g.,
CGLM estimates assuming equal effects for the first and third age groups in data-
generating functions Eqs. (30) to (33)) will yield better estimates than IE; and
(2) without such a priori knowledge, IE is not necessarily better than other
constrained estimators including CGLM. Without such knowledge, neither IE
nor CGLM results are valid.

Conclusion and Discussion

In this article, I focus on the intrinsic estimator (IE), a statistical method
intended to separate the independent effects of age, period, and cohort on
various outcomes. I discuss the nature and application scope of IE theoretically
and illustrate it with simulated data. This article shows that IE assumes a
specific constraint on the linear age, period, and cohort effects. This assumption
not only depends on the number of age, period, and cohort groups, but also is
extremely difficult, if not impossible, to verify in empirical research. This
feature of IE is no different from the constraint assumed in CGLM except that
the CGLM constraint does not change automatically as the numbers of age,
period, and cohort groups change. The conclusion is that IE is not an unbiased
or consistent estimator of the “true” age, period, and cohort effects. Therefore,
for demographers and social scientists whose goal is to understand the “true,
simultaneously independent effects” of age, period, and cohort, IE’s strategy of
circumventing the identification problem can yield biased and potentially mis-
leading estimates.
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There is no doubt that Yang and associates have revitalized APC research and
inspired many scholars. However, IE is nothing new in APC analysis. Kupper and his
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colleagues introduced the IE solution to APC analysts, calling this solution the
principal component estimator (PCE) (Kupper et al. 1983:2795–2797). As O’Brien

d. Scenario 4c. Scenario 3
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(2011a:420) noted, such an estimator “produces coefficients identical to those of the
recently introduced intrinsic estimator.” However, instead of concluding that IE is
preferable to CGLM, Kupper et al. (1983:2797) clearly stated that PCE (that is, IE)
“could lead to more bias than the use of some other constraints.” As a result, Kupper
and associates did not advocate PCE/IE as a general solution, then or subsequently.

Generally speaking, PCE/IE or any other constrained estimator provides just
one possible solution from the infinite number of solutions for an
underdetermined problem (i.e., the rank deficiency problem in APC analysis).
That said, the PCE/IE solution should not be regarded as the true solution or
the uniquely preferred solution without theoretical justification. In fact, the
statistical literature has recognized a variety of constrained estimators, including
other types of generalized inverse solutions. Demographers and sociologists
should understand that the PCE/IE estimates are not necessarily better (i.e.,
closer to the true parameters) than other constrained estimators.

What should well-intentioned researchers who wish to investigate the age,
period, and cohort patterns do? On the one hand, several alternative methods have
been developed, some of which are more theoretically driven, taking external
information into account,10 and some of which are statistical approaches.11

Although each method has advantages and limitations and a thorough examination
is a topic for future research, I caution that purely statistical techniques are unlikely
to yield accurate estimates. The methodological problem of IE and its nontrivial
implications for empirical research identified in this article are not unique to IE.
The biostatistics literature shows that use of the APC model (1), regardless of
estimation technique, precludes valid estimation and meaningful interpretations of
the linear components of age, period, and cohort effects (see, e.g., Holford 1983;
Kupper et al. 1985). Therefore, my position is to encourage development of APC
models that are informed by social theories and thus different from model (1) in
basic structure.

On the other hand, although the statistical difficulty in quantifying independent
effects of age, period, and cohort was recognized long ago, decades of effort has only
resulted in unsatisfactory solutions. Thus, it is not unreasonable to ask, Is this unusual
challenge suggesting a problem that is not statistical but theoretical in nature? In other
words, is the identification problem pointing to a more fundamental problem in the
theoretical framework of APC analysis? Should the answers to these questions be
positive, the identification problem inherent in model (1) “is a blessing for social
science” (Heckman and Robb 1985:144) because it warns scientists that they want
something—a general statistical decomposition of data—for nothing.
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