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Abstract
Background Diabetes mellitus is a chronic metabolic disorder that affects 537 million of the population worldwide whereby 
continuous glucose monitoring (CGM) has been implemented in the management of diabetes.
Introduction CGM tracks glucose levels for 24 h without interruption via sensor detection which provides a large data set 
for blood glucose prediction in diabetic patients. By incorporating the Internet-of-Things healthcare systems into wearable 
CGM devices, the artificial intelligence-based CGM models facilitate diabetes management by assisting with blood glucose 
trend analysis, blood glucose profile and diabetic risk prediction, early warning of the potential glycemic events predicted, 
and insulin dose optimization.
Conclusion The development of AI-based technology has improved the overall outcome of diabetes management. The AI 
algorithms with different approaches are helpful in clinical decision-making and health-related data tracking, particularly 
in diabetes glucose management.

Keywords Continuous glucose monitoring (CGM) · Artificial intelligence (AI) · Machine learning (ML) · Glycemic event 
prediction

Background

Diabetes mellitus (DM) is a complicated long-term meta-
bolic disorder that can be further categorised into type 1, 
type 2, and gestational diabetes according to the American 
Diabetes Association (ADA) classification [1]. However, it 
is suggested that an etiologic-based classification should be 
introduced due to the emergence of atypical DM phenotypes 
including monogenic diabetes and drug or chemical-induced 
diabetes [1]. According to the current ADA classification, 
type 1 diabetes can be further categorised into type 1A and 
type 1B based on their respective causes of pancreatic beta-
cell destruction and dysfunction. Type 1A diabetes is an 
autoimmune disorder indicated by the occurrence of cir-
culating islet cell antibodies targeting the pancreatic beta 
cell antigens (ICA or GAD65), whereas type IB diabetes is 
defined as idiopathic due to the unknown cause of the beta-
cell destruction and dysfunction. On the other hand, T2D 
is characterised by absolute insulin deficiency and insulin 
resistance resulting from “glucotoxicity”, by which hyper-
glycaemia induces and exacerbates defective insulin secre-
tion and insulin resistance.
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Based on the International Diabetes Federation (IDF) 
Atlas Report [2], it is stated that the number of 20- to 
79-year-old adults currently living with diabetes is esti-
mated at 537 million, with a predicted increment of 11.3% 
to 643 million by 2030 and a 12.2% increment to 783 mil-
lion by 2045. IDF estimates that 8.75 million individu-
als worldwide currently live with T1D, where individuals 
from low-income and lower-income countries account 
for 20% of the T1D population, represented by a number 
of 1.9 million [3]. An estimation performed by the IDF 
also states that newly diagnosed T1D cases in popula-
tions < 15 years worldwide contribute to a total number 
of > 108,000, and this rises to 150,000 with an age adjust-
ment to a population of < 20 years [4]. On the other hand, 
T2D accounts for 90% of the diabetes cases reported, 
where the North African and Middle Eastern populations 
have the greatest prevalence, indicated by a rate of 16.2% 
[2].

Diabetes-related complications include macrovascu-
lar and microvascular events in which an elevated risk is 
observed in individuals with young-onset T2DM [5, 6]. 
Macrovascular (i.e., cardiovascular) complications, include 
stroke, fatal or non-fatal myocardial infarction, and hospital-
ised heart failure. On the other hand, microvascular compli-
cations mainly include nephropathy, neuropathy, retinopa-
thy, and their associated outcomes [6]. A study conducted 
by He et al. [6] in China showed that the risks of all-cause 
and cardiovascular disease CVD mortality and macrovas-
cular and microvascular complications were higher in T2D 
individuals presenting with metabolic syndrome (MetS) 
(i.e., higher blood pressure, BMI, and triglyceride level) in 
comparison with those without MetS. Furthermore, diabetic 
patients are subjected to a higher risk of foot complications 
including foot ulcerations and infections, peripheral artery 
disease (PAD) co-existing with ulceration, and Charcot’s 
arthropathy that are mostly attributable to diabetic polyneu-
ropathy, affecting around one in three diabetic patients [7].

The assimilation of AI in the healthcare sector enhances 
productivity in healthcare services. AI acts like a human 
brain to find, filter, organise, interpret, and analyse various 
types of information. Healthcare practitioners can use the 
AI database to record and quickly track medical information 
quickly [8]. In other words, AI-based electronic data sources 
replace manpower in processing complex and tedious tasks 
[9]. As such, it has greatly reduced the workload and time 
in documenting the data with the intervention of AI, thus 
enhancing the efficiency of healthcare services. For example, 
the information in electronic medical records is useful in 
detecting 6.5% out of 54,652 patients who missed radiol-
ogy examination appointments [10]. This allows healthcare 
providers to reflect on the reasons for missed appointments 
and instantly provide alternate solutions to enhance patient 
care. In brief, AI-based electronic health records support 

and leverage the efficiency of healthcare services and data 
tracking procedures.

On top of that, the AI system enables the personalisation 
of disease management strategy [11]. The applications of 
AI including wearables, mobile healthcare applications, and 
smart medical tools are good innovations that aid in formu-
lating a patient’s care plan. These applications can monitor 
and record blood pressure, heart rate, blood glucose, active 
minutes, daily steps, calories burned, etc. AI systems can 
extract the raw data from these electronic health records and 
decipher the information through machine learning without 
human assistance [9, 12]. Doctors, nurses, and pharmacists 
can understand the needs of their patients through deep 
learning AI data analysis. Next, AI is employed to help doc-
tors to predict the disease’s prognosis. The predictive model 
generated through an AI algorithm serves as a reference for 
the healthcare professional in making a clinical decision 
[13]. In a systematic review, Lee and Yoon [13] reported that 
AI-based technologies are superior to trained medical staff in 
terms of accuracy. Another study by Mitsala et al. [14] sug-
gested that the integration of AI algorithms results in better 
clinical outcomes in terms of anticipation of colon cancer 
recurrence risk, detection of gene mutation, and screening 
of missed adenomas for colorectal cancer diagnosis. The 
adaptation of AI minimises human errors and improves the 
accuracy of the diagnoses of the patients. Now, healthcare 
professionals are able to make better judgements based on 
the statistics and algorithms predicted using AI. In short, AI 
enhances a comprehensive approach toward disease manage-
ment by tailoring patients’ needs.

Moreover, the adoption of AI improves the quality of 
healthcare services. AI-based surgical robots assist surgeons 
in achieving high accuracy and precision around delicate 
organs or surgical sites such as the heart, lungs, and brain. 
The potential advantages of the surgical robots over the con-
ventional approach include less post-operative discomfort, 
smaller surgical incisions, faster recovery time, and less 
scarring. For instance, the Retzius-sparing robotic-assisted 
radical prostatectomy (RARP) demonstrated a success rate 
of 23% in a clinical trial involving 17 patients [15]. In addi-
tion, the innovation of digital voice assistants such as Alexa 
(Amazon), Siri (Apple), and Google Assistant (Google) 
functions under voice commands allows easier access to 
medical information [13, 16]. Patients can utilise this virtual 
assistance to call for help during medical emergencies. The 
robots are employed to assist the administrative workflow.

Furthermore, AI facilitates the drug discovery processes 
which significantly shortens the time required for pre-clin-
ical studies. AI-assisted drug development has accelerated 
the emergence of new formulations with improved physi-
ochemical characteristics, such as greater biodegradability 
and drug release mechanisms. For instance, Deng et al. [17] 
constructed a prediction model by incorporating machine 
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learning algorithms to predict the in vitro drug-release pro-
files of the microsphere-based drug delivery systems. Other 
than that, AI also contributed additional options for disease 
management apart from the standard therapies. For instance, 
the application of computer-aided design in 3D bioprinted 
scaffolds allows better diabetic wound healing in diabetic 
patients with foot ulceration [18]. In summary, AI-based 
technologies improve the quality of healthcare and increase 
the success rate of drug discovery processes.

The inception of AI in healthcare has automatically led 
to its significant involvement in the care of many medical 
conditions. Due to the vast improvements, AI can potentially 
contribute to many healthcare aspects such as diagnosing 
conditions, assessing risks, home monitoring, and manag-
ing lifestyle [19], along with the high prevalence of diabetes 
worldwide (463 million adults diagnosed in 2019) which is 
forecasted to increase if proper preventive-based interven-
tion is not established [20], it is clear that the diabetic popu-
lation and even the healthcare personnel would appreciate 
the immense help AI can provide to them. At the time of 
writing this paper, there have been applications and uses of 
AI in the management of diabetes.

Perhaps one of the most impressive utilisations of AI in dia-
betes management is the monitoring of health complications 
that arise from diabetes, particularly diabetic retinopathy [11, 
21, 22]. By using retinal fundus images from adult diabetic 
patients, AI can automatically diagnose and assess diabetic 
retinopathies in those patients via a deep learning algorithm 
[11, 23, 24]. The diagnosis of the eye condition using this AI-
based method was found to have a sensitivity and specificity of 
more than 93% for both parameters [11]. Moreover, a new AI 
disease grading system for the classification of the severity of 
diabetic retinopathies based on deep learning was developed 
[11]. The high reliability of AI-based diagnosis for this diabe-
tes complication together with the development of a potentially 
useful assessment tool can aid ophthalmologists in efficiently 
screening for diabetic retinopathy. Another important part of 
diabetes management is ensuring a daily diet is appropriate for 
controlling blood glucose levels, in which AI can play a huge 
role in assisting individuals with this non-pharmacological 
management. There are software applications under develop-
ment that aim to analyse dietary content such as carbohydrate 
and calorie content directly and rapidly by utilising graphic 
analysis technologies, namely mobile phone cameras [11, 25]. 
By analysing pictures of meals driven by technology involv-
ing remote communications and deep learning, patients are 
able to acquire relevant nutrition information [11]. According 
to a 12-month randomised controlled experiment, nutritional 
intervention through the usage of AI had a similar average 
variation in HbA1c level (0.3%) with a standard deviation 
of 0.3% when compared with dietitians providing in-person 
guidance about nutritional intervention [11], indicating that AI 
can complement and reduce the burden of dietitians in giving 

dietary guidance to patients as well as potentially empowering 
patients to take charge of their diabetic condition.

Besides AI applications in diabetes, AI is also used in 
various metabolic disorders. For example, electronic health 
record (EHR) data can facilitate the identification of patients 
with familial hypercholesterolaemia (FH), which is another 
example of a metabolic disorder that affects lipid metabo-
lism [26–28]. Banda et al. [27] developed a Random For-
est classifier model derived from EHR data of FH patients 
and non-FH patients, and the authors concluded that this 
supervised machine learning approach is a practical strat-
egy to detect patients that have the possibility of FH with 
an 88% positive predictive value, 99% specificity, and 75% 
sensitivity. In addition, the diagnosis aspect of hypertension, 
another type of metabolic disorder, has also seen signifi-
cant improvements thanks to advancements in AI [26, 29, 
30]. Moreover, AI approaches namely deep learning (DL), 
machine learning (ML), and artificial neural network (ANN) 
have been used in diagnosing hypertension by studying data-
sets containing specific variables from different human sub-
jects [30].

Evidently, from the examples of AI applications in the 
management of metabolic disorders above, the application 
of AI technology can lead to significant improvement in the 
care of various medical conditions in patients. In diabetic 
care, frequent blood glucose monitoring is important not 
only to ensure that the blood sugar level does not fluctu-
ate drastically and is within an acceptable limit but also to 
assess the therapeutic responses of glucose-lowering medi-
cations, especially insulin therapy, and non-pharmacological 
management and adjust them accordingly depending on the 
glycemic state of the patients [31]. In contrast to the usual 
self-monitoring blood glucose (SMBG) which requires 
frequent testing each day, CGM is a promising alternative 
blood glucose monitoring approach that can potentially solve 
some of the restrictions of SMBG, such as the incapability 
to predict imminent hypoglycaemia and/or hyperglycaemia 
[32, 33]. Similar to other management aspects of diabetic 
care mentioned above, it is postulated that incorporating AI 
into continuous glucose monitoring can drastically improve 
this aspect of diabetic care. This review is mainly focused 
on discussing AI-based prediction of glycemic events based 
on continuous glucose monitoring data to further improve 
diabetic care.

Role and application of AI in the healthcare 
sector

Digital healthcare

“AI-assisted diagnosis and treatment” of diseases in digi-
tal healthcare are defined as processes of diagnosing and 
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treating illnesses with the utilisation of AI technology by 
healthcare providers in their decision-making [34]. These 
include diagnostic criteria, therapeutic care plan designation 
and execution, monitoring criteria, and treatment optimisa-
tion [34]. AI technology plays a crucial role in the emer-
gence of digital healthcare by assisting and enabling the 
early disease diagnosis and prevention and early prediction 
of patient mortality through data-driven approaches includ-
ing ML and DL [34, 35]. For instance, a study by Musco-
giuri et al. [36] stated that the AI technology application in 
cardiovascular imaging for the diagnosis of cardiovascular 
diseases enables fast image analysis and high-quality image 
production. In addition, research by Chiou et al. [37] showed 
that AI-assisted echocardiography increases the outcome 
accuracy of the diagnosis of heart failure by minimising 
both intra- and inter-observer variation caused by clinicians 
with less experience. The AI-enabled echocardiography 
could also be used as a standalone test in the autodetection 
of pulmonary hypertension that exhibits high sensitivity and 
specificity suggested by Liu et al. [38].

Other than diagnosing use, AI application in smart health 
monitoring (SHM) plays a significant role in providing 
rapid, timely, economical, and dependable health monitoring 
services from distant locations [35]. SHM incorporates the 
Internet of Medical Things (IoMT) that allows data exchange 
through the interconnection of medical electronic devices, 
and the integration of AI enables the processing of data 
acquired, generating responses or solutions to the problem 
identified [39, 40]. For instance, AI-assisted wearable bio-
sensors in various forms such as wristbands and e-patches 
detect health-related biochemical or electrophysiological 
signals through the body surface and convert the signals into 
the recognised form for data processing by machine learning 
(ML) [41, 42]. Besides health monitoring, AI is also exten-
sively studied and utilised in epidemic monitoring including 
virus spreading patterns analysis, virus transmission predic-
tion, and pandemic risk and severity assessments [43–45].

Healthcare supply chain

A healthcare supply chain (HCM) is a sophisticated net-
work structure consisting of a series of components includ-
ing manufacturers, suppliers, hospitals, pharmacies, and 
blood banks, comprising a key component of the healthcare 
sector aimed to provide high-quality healthcare service and 
satisfy the demand [46]. The function of AI in HCM man-
agement is to facilitate supply chain efficiency by guarantee-
ing a resilient and seamless flow of materials, inventories, 
and information throughout the processes [47]. AI technol-
ogy is implemented in HCM restructuring to generate an 
omnichannel strategy which refers to a business tactic that 
provides a seamless customer purchasing experience across 
all online, mobile, and in-store platforms [48, 49]. Besides 

that, a study by Azadi et al. [46] showed that AI technolo-
gies such as network data envelopment analysis and deep 
learning could be implemented in HCM sustainability fore-
casting which predicts the future performance of the HCM 
and consequences of supply chain inefficiency by identifying 
the possible factors causing inefficient supply chain in the 
future. In addition to that, AI is applied in the innovation 
of AI-enhanced medical drones in the HCM sustainability 
approach in Ghana to promote the on-time delivery of emer-
gency healthcare supplies and reduce the mortality rates in 
emergency clinical cases [50].

Current update on diabetes management 
and limitations

The management of diabetes mellitus is constantly evolving 
in accordance with the latest evidence-based clinical prac-
tice guidelines. Yu et al. [51] reviewed the recent updates 
made by the latest clinical guidelines on diabetic care pub-
lished by the Korean Diabetes Association (KDA), Japan 
Diabetes Society (JDS), American Association of Clinical 
Endocrinology (AACE), American Diabetes Association 
(ADA), and European Association for the Study of Dia-
betes (EASD). From the review article [51], although the 
aforementioned scientific associations have slight variations 
in the recommendations regarding the target for glycemic 
control and initial glucose-lowering pharmacotherapy with 
or without existing comorbidities, there is a consensus 
made by scientific organisations on other aspects of diabe-
tes management. Firstly, the individualisation of glycemic 
control targets is strongly advocated by most of the clinical 
guidelines [51]. In other words, each diabetic patient should 
follow their target blood glucose or glycosylated haemo-
globin (HbA1c) instructed by their physicians to prevent 
complications associated with diabetes due to differences 
in clinical characteristics including the risk of extreme gly-
cemic state, comorbidities, and behavioural factors [51–53]. 
Besides, the patient-centred approach should also be applied 
to glucose-lowering pharmacotherapy and prevention of dia-
betes-associated complications [51, 52]. Due to the inherent 
heterogeneous nature of the diabetes condition, individuali-
sation of the management of this metabolic disorder should 
be implemented to enhance compliance and treatment out-
comes [52, 54]. However, perhaps the most remarkable 
update to the current guidelines on diabetes management is 
the recommendation for CGM application in the manage-
ment of diabetes, which is also the focus of this literature 
review. The updates on the new monitoring modality in the 
aforementioned clinical guidelines include an extension of 
the recommendation of CGM for different groups of dia-
betic patients such as diabetic children, patients on intensive 
insulin therapy (which is defined as greater or equal to three 
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daily injections or usage of an insulin pump) and long-acting 
(basal) insulin, and the preference of real-time CGM over 
intermittent CGM in the case of problematic hypoglycaemia 
requiring anticipating alert [51]. Most of the latest clinical 
guidelines acknowledge the advancement in technology to 
benefit diabetes management, particularly glycemic control 
by using CGM.

However, despite constant updates on diabetes manage-
ment, some limitations still exist. Although improvements 
in current diabetes management guidelines are made, the 
attainment of treatment outcomes ultimately depends on 
the patients’ initiatives to improve their health. In addition, 
there are limitations and challenges pertaining to the clini-
cal implementation of CGM. Firstly, the implementation of 
a CGM device can be very expensive. Although Wan et al. 
[55] demonstrated that CGM is cost-effective in addition 
to improved glycemic control, the noticeably higher cost 
of CGM when compared to SMBG may impede a patient’s 
decision to use CGM. Besides, as CGM measures the glu-
cose level in the interstitial fluid instead of directly measur-
ing the glucose level in the blood capillary, CGM can some-
times be unreliable as there is a lag time before the glucose 
levels in the interstitial fluid and blood capillary equilibrate 
[32, 56, 57]. This problem can be clinically significant if 
there is a high fluctuation in blood glucose levels, which 
can delay the treatment of hyperglycaemia or hypoglycaemia 
[56]. Nonetheless, as CGM can improve the quality of life 
in patients and also provide better glycemic control to pre-
vent hyperglycaemia and hypoglycaemia, the benefits should 
therefore outweigh the limitations.

Importance of continuous glucose 
monitoring in diabetic management

Continuous glucose monitoring (CGM) tracks glucose lev-
els under the skin for 24 h without interruption via sensor 
detection. Unlike blood glucose monitoring, a CGM device 
involves the insertion of a small sensor under the skin to 
detect the presence of glucose in the interstitial fluids and 
transmit signals to a monitor or smartphone directly every 
5 min [58–60]. The use of microneedle-based systems for 
diabetes has led to the emergence of painless drug delivery 
and monitoring whereby the frequent invasive blood sam-
pling procedures for BG monitoring could be avoided, sig-
nificantly contributing to an increase in patients’ compliance 
towards the management of the diseases [61–63].

The CGM system is able to present a robust diabetes 
patient glucose profile. It provides useful information about 
the glycemic status and displays the trend of glucose fluctua-
tion on the monitor screen [64, 65]. Hence, diabetic patients 
can observe and review their glycemic variability. The glu-
cose fluctuation might be due to changes in medications, 

food intake, exercise, and stress level. The device will signal 
the patients when the glucose trend reaches the minimum or 
maximum baselines [66]. As such, patients can change their 
habits accordingly and improve their glycemic control. It has 
been proven that CGM significantly impacts the reduction 
of hypoglycaemia incidents by 17% (from 33 to 50%) [65]. 
Therefore, CGM is very suitable for diabetic patients prone 
to hyperglycaemia or hypoglycaemia as it offers a bigger 
picture of the glucose profile.

Additionally, CGM data backs up other glucose meas-
urements. A study showed that CGM data is helpful when 
SMBG and HbA1c testing are insufficient to forecast glucose 
level changes. A few studies reported some improvement in 
HbA1c values for T1D patients, whereas some found that 
T2D patients have better glycemic management with the 
help of CGM [58, 66, 67]. In recent research, the use of flash 
CGM accounted for 1.1% and 1.6% of HbA1c reduction for 
the insulin group and non-insulin group, respectively, for 
T2D patients with a baseline of > 8% [68]. Although CGM 
is superior to SMBG, CGM should be carried out along with 
self-monitored blood glucose to ensure a more accurate glu-
cose reading.

Application of AI in diabetes management 
through continuous glucose monitoring 
data

Types of continuous glucose monitoring (CGM) 
systems

There are various types of CGM systems on the market. 
However, each CGM system requires a doctor’s prescrip-
tion to purchase. Each CGM device has a different work-
ing mechanism, durability, and special features as shown 
in Table 1. Therefore, the users should choose the CGM 
systems based on their preferences. An example of a CGM 
system that detects interstitial fluid glucose levels is illus-
trated in Fig. 1.

Dexcom®

Dexcom® is one of the integrated CGM systems to measure 
real-time glucose readings [69]. The function of the needle 
in the applicator of Dexcom® is to ease the insertion of the 
applicator through the skin in the interstitial fluid. Then, the 
needle will retract into the applicator and the sensor will 
remain on top of the skin. The user will experience a slight 
pinch during the insertion of this minimally invasive device. 
Upon insertion, the sensor detects the fluctuation in glucose 
levels within the interstitial fluid continuously and sends the 
real-time reading to the monitoring devices through signal 
transmission. Users are able to check their glucose data 
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through smartphones at any time. Thus, users and health-
care professionals are able to interpret the glucose trends 
and adjust the acute and long-term treatment accordingly. As 
such, this helps detect hypoglycaemia and hyperglycaemia 
incidence. The sensor is advised to be placed on the upper 
buttocks, abdomen, and back of the upper arm. Moreover, 
the Dexcom® system can communicate with digital devices 
autonomously [69]. Dexcom® CGM is suitable to be used 
in persons aged ≥ 2 years. Those users who are afraid of 
needles are encouraged to use Dexcom® CGM as it does 
not require fingersticks or calibrations in diabetes manage-
ment [69]. As such, the users have the freedom to take con-
trol of their diabetes management. The device will alert the 
users 20 min in advance when their glucose level reaches 
the maximum or minimum baselines. Pregnant women with 
T1D or gestational diabetes can also benefit from using the 
Dexcom ® CGM system [69]. However, the Dexcom® 
CGM is contraindicated with computed tomography (CT) 
scan, magnetic resonance imaging (MRI), or high-frequency 
electrical heat treatment as the magnetic field and heat may 
disturb the sensor readings, thus reducing the accuracy of 
glucose measurement. Not only that, the administration of 

acetaminophen (> 1000 mg) will affect the Dexcom® CGM 
reading [70, 71].

The overall performance of the Dexcom® CGM system 
has a remarkable enhancement from Dexcom® 5th gen-
eration (G5) to 7th generation (G7). The Dexcom® G7 is 
the easiest to insert, requires the least warm-up interval, 
covers the most data storage, and has the longest life span 
compared to other Dexcom® systems. In comparison with 
other systems that are placed on the arm and abdomen, the 
arm-placed Dexcom® G7 showed the lowest mean absolute 
relative differences (MARD) and the highest unadjusted 
and adjusted accuracy metrics [72]. Besides, the Dexcom® 
G7 system demonstrated the lowest missed hypoglycaemia 
detection rate than earlier systems at 55 mg/dL glycemic 
profile threshold [72]. However, all three systems did not 
show prominent differences in terms of hypoglycaemia 
detection rate at 70 mg/dL glycemic profile threshold and 
false hypoglycaemia alert rate at 55 mg/dL glycemic profile 
threshold [72]. The improvement and usability over different 
generations of Dexcom® CGM systems offer sustainable 
glycemic control and thus improve clinical outcomes. The 
addition of a permselective membrane in the Dexcom® G6 

Table 1  A comparison of different types of CGM systems 

Type of CGM system Dexcom® FreeStyle Libre™ DBLG1©

Type of CGM data Real-time glucose reading Flash glucose reading Real-time glucose reading
Suitable age group  ≥ 2 years old  ≥ 18 years old  ≥ 8 years old
Working mechanism The CGM sensor signals real-time glucose 

readings automatically to smartphones
The CGM sensor requires 

manual scanning to 
retrieve FGM data

The CGM sensor is paired with an auto-
mated insulin pump and a digital device 
with a Bluetooth® connection

Sensor working life (days) 10 days 14 days 14 days
Contraindication Acetaminophen (> 1000 mg) Salicylic acid (≥ 650 mg)

MRI, CT scan, high-frequency electrical 
heat treatment

Ascorbic acid (≥ 500 mg)

Features Alert alarms and a sensor Trend arrows, scannable 
sensor, and a handheld 
reader

Automated insulin pump, Bluetooth® 
connection, and a sensor

Fig. 1  Illustration of a continu-
ous glucose monitoring (CGM) 
system. The sensor of the CGM 
system measures the interstitial 
fluid glucose concentration and 
transmits the signals to a device. 
Figure comes under CC-BY 
licence [119]
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resolves the interference of acetaminophen [71]. Moreover, 
Chellan et al. [73] summarised that the implementation of 
the Dexcom® G6 can reduce HbA1C in T1D patients with 
comorbidities by 2% and reduce the development risk of 
cataracts and heart failure by 19% and 16%, respectively. 
In other words, the CGM system allows the patients to have 
better glycemic control and thus improve their overall well-
being and quality of life. Oppel et al. [74] suggested that 
the Dexcom® sensor is suitable for diabetic patients with 
allergic contact dermatitis to isobornyl acrylate found in 
Freestyle Libre™ for glucose monitoring.

Freestyle Libre™

Freestyle Libre™ is another type of CGM system that meas-
ures Flash Glucose Monitoring (FGM). In contrast with the 
CGM system’s real-time glucose monitoring, FGM requires 
manual scanning with the sensor to retrieve glucose read-
ings [75]. In 2017, the FDA approved the Freestyle Libre™ 
as a CGM system for diabetes management [69]. Similar to 
the Dexcom® system, FreeStyle Libre™ offers a complete 
picture of the glucose trend and patterns as it measures the 
interstitial glucose levels for 24 h. This FreeStyle Libre™ is 
suitable to be used for aged ≥ 18 years diabetic patients [69]. 
The features of FreeStyle Libre™ include a scannable sen-
sor that can last up to 14 days wear time, a handheld reader, 
and a trend arrow indicating the glucose change [75]. The 
trend arrow icons on the reader act as visual aids to allow the 
users to have an insight into their glucose change. Notably, 
an upward trend arrow indicates a rise in glucose concentra-
tion, a downward trend arrow refers to glucose reduction, 
and a flat trend arrow indicates slight changes in glucose. 
The directionality of the trend arrows reminds the patients 
who use multiple daily insulin injections to adjust their 
insulin therapy according to their glycemic variation to pre-
vent hypoglycaemia or hyperglycaemia incidents [75]. This 
FreeStyle Libre™ system should not be used in pregnant 
ladies and dialysis patients. Diabetic patients may need to 
take note of certain active ingredients such as salicylic acid 
(≥ 650 mg) and ascorbic acid (≥ 500 mg) that may affect 
the FreeStyle Libre™ system’s glucose readings [75]. For-
tunately, the administration of acetaminophen will not inter-
fere with the Freestyle libre™ CGM system reading [76].

Yaron et al. [77] reported that the HbA1c value of T2D 
patients on multiple daily insulin injections was reduced 
by 0.82% with the aid of the FGM system for 10 weeks. 
This FGM technology also gained high satisfaction among 
diabetic patients [77]. Miller et al. [78] found that the inter-
vention of the FreeStyle Libre™ system has shown a sig-
nificant risk reduction of 0.019 acute diabetes events per 
patient-years in T2D patients who are not receiving bolus 
insulin treatment for at least 6 months. The evidence above 
has proven the intervention of the FreeStyle Libre™ system 

to have better clinical outcomes in diabetes management. 
Evans et al. [79] demonstrated that the use of the FreeStyle 
Libre™ system shows a sustained HbA1c reduction of 
0.53% and 0.45% in T1D and T2D patients, respectively.

DBLG Diabeloop©

Diabeloop Generation 1  (DBLG1©) is another CGM creation 
that measures the real-time glucose reading at 5-min inter-
vals. This  DBLG1© technology works in a hybrid closed-
loop system by pairing a CGM device with an AID pump 
and a digital device through a Bluetooth® connection [80]. 
The interesting traits of the  DBLG1© system include flexible 
adjustment of the parameters such as target and hypoglycae-
mia or hyperglycaemia thresholds, automated optimisation 
of weight, insulin dose, basal rate profile, and meal ratios, as 
well as a comprehensive history of user’s medical, medica-
tion, meal, and exercise inputs [80].  DBLG1© has an algo-
rithm to analyse the glycemic readings from the CGM device 
and transfer the updated data to the insulin pump. Then, the 
AID pump will administer the calculated dose of insulin into 
the user’s body. The insulin pump is suitable for users aged 
8 years and above. This  DBLG1© offers a seamless insulin 
delivery process in diabetes management.

Amadou et al. [81] revealed that the  DBLG1© system 
showed a mean HbA1c reduction of 0.8% and a mean TIR 
increment of 33% over 6 months. This indicates that the 
 DBLG1© system can improve the users’ glycemic control. 
In comparison with the conventional sensor-assisted insulin 
pumps, the  DBLG1© system presented a better outcome in 
terms of reducing the mean HbA1c, increasing the propor-
tion of time spent at desired glucose concentration range, 
and decreasing the duration of hypoglycaemia incidence in 
T1D adults for 12 weeks [82]. In short, the  DBLG1© system 
can facilitate diabetes therapeutic management and ease the 
mental burden of the users.

Application of AI in diabetes management 
through continuous glucose monitoring 
data

CGM in the management of diabetes allows remote blood 
glucose level monitoring by incorporating IoT healthcare 
systems into wearable CGM devices [83]. These AI-based 
CGM models facilitate diabetes management through an 
increased understanding of the disease progression by inter-
preting the large data sets and transforming the predicted 
blood glucose profiles into therapeutic actions [84]. For 
instance, CGM system-integrated applications apply com-
puter vision to assist blood glucose trend analysis, blood 
glucose profile and diabetic risk prediction, early warning 
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of the potential glycemic events predicted, and insulin dose 
optimisation [85].

Blood glucose trend and glycemic variability 
prediction

AI-based algorithms incorporated into CGM systems can 
be trained to forecast future blood glucose (BG) profiles 
through the interpretation of the prior and current CGM 
data. For instance, machine learning (ML) is a group of 
AI algorithms that can self-learn and recognise patterns of 
the BG data, increasing its intelligence in BG prediction 
over time without human intervention [86]. The ML algo-
rithms that can be utilised for BG prediction include linear 
regression, decision trees, neural networks, random forests, 
XGBoost, support vector machines, and more, whereby their 
high prediction accuracy has been widely reported [86–88]. 
In a study by Ahmed et al. [86], high BG estimation accu-
racy from the wearable device CGM data was reported by 
incorporating a combination of traditional and deep learn-
ing ML models, in which the accuracy was validated by a 
root mean square error (RMSE) range of 0.099 to 0.197. 
Besides that, a study by Doorn et al. [88] proposed ML mod-
els for BG prediction at 15- and 60-min intervals in T1DM 
individuals and reported a 5–10% deviation from the actual 
BG values, indicating the high accuracy of the ML models. 
Among the ML algorithms available, ANNs and DL are the 
most extensively applied techniques for blood glucose pre-
diction [89].

Artificial neural network (ANN) is an ML algorithm-based 
AI inspired by the biological ability of the human brain to 
execute computations, which functions by simulating the 
neuronal activity in the human brain [90, 91]. The applica-
tion of ANN in diabetes management has been extensively 
studied, such as diabetes prediction, diabetes diagnosis and 
prognosis, and BG level prediction [91–93]. Studies on the 
application of ANN in BG-level prediction have reported 
promising results in which high prediction accuracy was 
demonstrated. For instance, a study by Ali et al. [91] sug-
gested that the ANN-predicted blood glucose values mostly 
aligned with the actual blood glucose values. This result 
was represented by the line graphs generated with minimal 
deviation occurring between peaks and troughs. The adap-
tive ANN model proposed in this study using CGM data 
as the single input outperformed other methods discussed 
in the literature as lower RMSE values were determined at 
each prediction horizon of 15 min (RMSE, 6.43 mg/dL), 
30 min (RMSE, 7.45 mg/dL), 45 min (RMSE, 8.13 mg/dL), 
and 60 min (RMSE, 9.03 mg/dL) [91]. In addition to that, 
Alfian et al. [94] reported a higher degree of BG prediction 
accuracy achieved by the proposed multi-layer perceptron 
(MLP) model, which is a type of ANN, by incorporating 
time-domain features in the model. The greater prediction 

accuracy, especially for long-term prediction (PH, 60 min), 
was represented by the higher reduction in the RMSE gener-
ated [94].

On the other hand, deep neural networks (DNNs) have 
also been incorporated in studies to perform BG predic-
tion where successful outcomes have been reported. DNN 
is a subset of ANN that involves multiple hidden layers 
between the output and input layers that are trained with 
high-performance computational resources in which the 
transparency of the computational processes is still in the 
midst of finding [95]. In a study by Dudukcu et. al [96], the 
decision-level fusion method encompassing three different 
DNNs including gated recurrent unit (GRU), long short-term 
memory (LSTM), and WaveNet were applied for BG pre-
diction. Each DNN was tested individually, followed by the 
fusion of two networks (LSTM + GRU; LSTM + WaveNet; 
GRU + WaveNet), and lastly the fusion of all three networks 
(LSTM + GRU + WaveNet) [14]. The average prediction per-
formance metrics obtained from different PHs in the study 
suggested the fusion of three networks as the most suc-
cessful method [96]. Besides that, a BG forecasting model 
involving large heterogeneous data obtained from a total of 
158 T1DM individuals was proposed by Cichosz et al. [97] 
to conquer the sample size limitation observed in published 
studies performed by other researchers. However, the NN 
model proposed failed to demonstrate the potential for a 
generalised approach due to limitations such as variations 
in CGM sensors and unidentical study cohorts [97].

Deep learning (DL) is a subset of ML that involves DNN 
as the primary algorithm, encompassing various neural 
network architectures including recurrent neural networks 
(RNNs), convolutional neural networks (CNNs), and multi-
layer perceptron (MLP) to perform different tasks [98]. DL 
has also been extensively studied for its application in BG 
prediction where promising results have been shown. For 
instance, a study by Zhu et al. [99] applied a dilated CNN 
model using four inputs, including CGM data, carbohydrate 
intake, insulin event, and time index for BG prediction. High 
prediction accuracy was shown whereby the proposed model 
outperformed the published simple autoregressive models 
utilising the same CGM data as the only input. Besides that, 
Zhang et al. [100] also studied two separate DL models, 
including a DCNN model and a sequence-to-sequence long 
short-term memory (Seq-to-Seq LSTM) model for BG fore-
casting in T1DM patients. The results showed that the Seq-
to-Seq LSTM model generated the greatest performance for 
BG prediction at the PH of 30 min [100]. Other than that, 
five RNN-based algorithms were applied in a study to gener-
ate two types of BG prediction models: univariate models 
and multivariate models, in which the former used CGM 
data as a single input, whereas the latter included carbohy-
drates and insulin information to the CGM data [101]. In this 
study, individualised BG prediction with high accuracy was 
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investigated. Additionally, another study used an LSTM-
based deep RNN model which generated BG forecasting 
data with fewer fluctuations in the BG prediction curve, 
through pre-processing of the CGM data with the Kaman 
smoothing technique [102].

Hypoglycemic risk prediction

The ability of AI-based algorithms to forecast blood glu-
cose levels from CGM data also facilitates the early warn-
ing of potential hypoglycemic or hyperglycemic episodes in 
patients. In a study by Elhadd et al. [103], five distinct ML 
techniques were applied to predict the glycemic variability 
in T2DM patients who are fasting during Ramadan while 
on multiple diabetic drug therapies. The proposed machine 
learning models suggested an increased hypoglycaemia risk 
in patients who include sulphonylurea or SGLT-2 inhibitors 
in their complex diabetic regimen [103]. In contrast, Motaib 
et al. [104] applied ML models to predict poor glycemic 
control in non-fasting patients during Ramadan, whereby 
the study suggested that non-fasting women have a greater 
hypoglycaemia risk. Although CGM data were not used as 
input, the study provides fundamental knowledge for hypo-
glycaemia risk prediction using ML models in individuals 
who perform Ramadan. On the other hand, another study 
by Mosquera-Lopez [105] investigated the hypoglycaemia 
risk during and post-physical activities using mixed-effects 
linear regression and mixed-effects random forest, in which 
high prediction accuracy was reported. The applied ML 
model identified that post-exercise hypoglycaemia risk was 
associated with several factors, including insulin exposure 
before exercise, intensity and timing of the physical activity, 
and low blood glucose index before exercise [105]. Besides 
that, Tyler et al. [106] also predicted the BG change during 
physical activity by utilising ML models with CGM data as 
the input. Consequently, ML-based models can significantly 
contribute to accurate BG prediction, facilitating optimal 
diabetes management tailored to the patient’s blood glucose 
condition, especially in those who are on a multidrug regi-
men. The comparisons of the proposed models that are in the 
literature discussed are shown in Table 2. The illustrations 
of the specific machine learning model known as random 
forest and the prediction of hypoglycemia by using machine 
learning are displayed in Figs. 2 and 3, respectively.

Technical and social challenges

Any implementation of novel ideas comes with inherent 
challenges, and AI-based continuous glucose monitoring is 
no exception. The application of AI/ML itself into continu-
ous glucose monitoring certainly has challenges before it 
is available commercially and becomes a norm in diabetes 
management. Firstly, it is important to ensure that the vast 

amount of data used to train and programme the system is 
accurate and of top quality [107]. This can be a concern 
if the data collected for AI/ML training is heterogeneous, 
which is highly variable data resulting in inaccurate, low 
quality, and ambiguous data [107, 108]. Furthermore, bias 
and noise in the data collected, especially from health 
records from different clinics, must be taken into considera-
tion as they can result in poor prediction results [107, 109]. 
Another factor that makes the implementation of AI-based 
CGM difficult is the high-cost burden that patients need to 
bear. Wan et al. [55] reported that the cost of using CGM 
was very expensive, where the total average cost for using 
CGM for 6 months was US$ 11,032, and the CGM device 
alone cost US$ 2554. Indeed, the implementation of AI into 
CGM will surely cost significantly more, further contribut-
ing to patients’ economic burden. The real-time monitoring 
of AI-based CGM requires internet connectivity, which is 
similar to any Internet of Medical Things (IoMT) device 
[107]. This can become an issue if patients live in remote 
areas where the lack of internet access can impede the uti-
lisation of AI-based CGM. As implicated in the cost and 
requirement of internet connectivity to use AI-based CGM 
for better glycemic control, there will be inequality in access 
to this monitoring device due to socio-economic factors. In 
other words, wealthy patients who live in urban settings are 
more likely to have access to AI-based CGM compared with 
poorer patients living in rural areas. To expand the usage of 
AI-based CGM, doctors, who are usually the first healthcare 
personnel, need to implement this glycemic prediction tool 
for diabetic patients and trust that the device itself functions 
properly. It can be challenging for doctors to implement AI-
based CGM if they do not trust the efficacy of the device, 
which could arise due to possible false-positive prediction 
of hyper-/hypoglycaemia; ensuring minimal false-positive 
occurrence is a challenge in AI-based CGM [110].

Privacy and security concerns

Generally, one of the primary reasons for patients’ will-
ingness to utilise a medical service is due to their trust 
towards that particular service. Any factors that can dimin-
ish patients’ confidence in that specific service can compro-
mise patients’ trust, leading to the unwillingness to use the 
particular medical service and subsequently lesser usage. In 
the case of AI-based CGM, patient data is the main concern. 
Despite the numerous benefits provided by implementing AI 
in healthcare, its implementation can also lead to challenges 
regarding patients’ data privacy. Normally, AI-based devices 
utilise the cloud to store patients’ data collected, and this can 
lead to the leaking and misuse of patients’ data [107, 111, 
112]. The leaking and misuse of data can be apparent if the 
security of the system is not robust enough to prevent cyber-
attacks; current healthcare-related AI services are generally 
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Table 2  Comparisons of the proposed models in the literature discussed 

Study Year of study Method Input Database PH (min) RMSE (mg/dL)

Ahmed et al. [86] 2023 SVR CGM data, diabetic status, 
HR,  SPO2 level, diastolic BP, 
systolic BP, body tempera-
ture, status of sweating and 
shivering

13 (Age ≤ 18 years) 0.195
RF 0.189
MLP 0.193
ANFIS 0.197
SVR 13 (Age > 18 years) 0.188
RF 0.183
MLP 0.186
ANFIS 0.193

Ben Ali et al. [91] 2018 ANN CGM data 12 T1DM 15 6.43
30 7.45
45 8.13
60 9.03

Alfian et al. [94] 2020 ANN with additional 
time-domain features

CGM data 12 T1DM 15 2.82
30 6.31
45 10.65
60 15.33

Dudukcu et al. [96] 2021 LSTM CGM data 12 T1DM 30 22.13
45 29.28
60 35.17

WaveNet 30 22.49
45 29.68
60 35.50

GRU 30 22.00
45 29.22
60 35.31

Wavenet + LSTM 30 22.35
45 29.46
60 35.31

WaveNet + GRU 30 22.21
45 29.44
60 35.43

LSTM + GRU 30 21.98
45 29.26
60 35.30

LSM + GRU + WaveNet 30 21.90
45 29.12
60 35.10

Cichosz et al. [97] 2021 ANN CGM data 68 T1DM
- Internal validation

15 9.1

210 T1DM
- External validation

15 5.9–11.3

Zhu et al. [99] 2018 Causal CNN CGM data, insulin, lifestyle/
emotional factors, CHO,

6 T1DM 30 27.73
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vulnerable to cyber threats, which can be exploited to steal 
patients’ data for various purposes, leading to a breach in 
patient confidentiality [113]. Breaching of data can result 
in severe consequences ranging from healthcare data being 
stolen or disclosed to even the death of the patients should 
data tampering occur [114]. The acquisition of datasets from 
patients to train the AI/ML models itself is also an issue of 
data privacy [114].

Patency

A patent is a legal right designed to protect the original 
inventor’s invention that is novel, non-obvious, and useful, 
while also prohibiting the making or usage of the specific 
invention by others within a stipulated period [115, 116]. 
Although the utilisation of CGM data for AI-based predic-
tion of glycemic events is certainly useful as evidenced by 

Table 2  (continued)

Study Year of study Method Input Database PH (min) RMSE (mg/dL)

Zhang et al. [100] 2021 MLR CGM data, insulin, CHO, 
lifestyle/emotional factors

12 T1DM 30 18.39

60 24.58

BRC 30 24.49

60 28.79

DCNN 30 26.96

60 38.97

Seq-to-Seq LSTM 30 17.52

60 26.44
Kim et al. [101] 2022 RNN CGM data 29 T1DM 15 11.59

30 20.20
60 32.65

LSTM 15 11.89
30 21.30
60 33.43

Stacked LSTM 15 12.57
30 20.57
60 34.63

Bidirectional LSTM 15 12.03
30 21.01
60 33.54

GRU 15 11.50
30 20.46
60 32.96

Kim et al. [101] 2022 RNN CGM data, CHO, insulin 
administration time

29 T1DM 15 11.39
30 19.45
60 31.25

LSTM 15 11.83
30 20.59
60 32.71

Stacked LSTM 15 11.59
30 20.54
60 31.91

Bidirectional LSTM 15 12.02
30 19.89
60 31.99

GRU 15 11.37
30 19.86
60 32.25
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the promising results shown in the applications of AI for 
CGM, the idea is not technically a novel and non-obvious 
invention, as there is a patent published regarding the 
application of neural network system, a type of machine 
learning, in CGM for predicting glycemic events. There is 
a patent with ongoing exclusive rights published in 2015 
by Cameron et al. [117] pertaining to the neural network 

system, in which one of its uses consists of the predic-
tion of glycemic events using CGM data (US9076107B2). 
Besides, Mikhno et al. [118] have published a patent that 
is currently awaiting an application grant regarding the 
usage of an ML-based system to estimate blood glucose 
(US20220039755A1).

Fig. 2  Illustration of random 
forest classifier model. It uses 
CGM datasets from diabetic 
patients to train the model to 
predict hypoglycemic events. 
Figure comes under CC-BY 
licence [120]

Fig. 3  Illustration of patient 
glucose level after a meal at dif-
ferent time points. a CGM data 
point showed no peaks due to 
the small carbohydrate intake by 
the patient. b Rapid decrease in 
glucose showed low peak after 
meal. c Rapid glucose depletion 
after a carbohydrate-rich diet 
showed a steep peak. d No peak 
and rapid fall after a meal after 
injecting insulin before a meal. 
Figure comes under CC-BY 
licence [121]
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Conclusion

In short, the development of AI-based technology has 
improved the overall outcome of diabetes management. 
The AI algorithms with ML, ANN, and DL approaches are 
helpful in clinical decision-making and health-related data 
tracking, particularly in diabetes glucose management. The 
innovation of CGM optimises the glucose control of diabetes 
patients without the need for human monitoring. However, 
high cost, biased data, false alarms, and patients’ data secu-
rity remain the main challenges of the usage of AI-based 
CGM. Therefore, the continuous development of AI-based 
healthcare technology serves as a foundation for sustainable 
and comprehensive diabetes care.
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