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Abstract
Brazing of CoCrFeNi and CoCrFeMnNi equiatomic alloys using 70Au-8Pd-22Ni (AuPdNi) filler foil by infrared and traditional
furnaces was investigated. The wettability of AuPdNi filler on both CoCrFeNi and CoCrFeMnNi substrates is excellent at
1050 °C. CoCrFeNi/AuPdNi/CoCrFeNi joints brazed using infrared and traditional furnaces are composed of Au/Ni-rich solid
solutions of different sizes. CoCrFeMnNi/AuPdNi/CoCrFeMnNi joints brazed with an infrared furnace are composed of large
globular CoCrFeNi/Ni-rich particles in AuMn intermetallic matrix. In traditional furnace brazed CoCrFeMnNi/AuPdNi/
CoCrFeMnNi joints, the AuMn intermetallic compound is uniformly distributed in CoCrFeNi-based and Ni-rich phases. The
average shear strengths of both infrared and traditional furnace brazed CoCrFeNi/AuPdNi/CoCrFeNi joints exceed 300MPa, and
all joints fractured at the brazed zone present dimple dominated fracture. In contrast, the traditional furnace brazed CoCrFeMnNi/
AuPdNi/CoCrFeMnNi joint has a much lower average shear strength of 173MPa because of the existence of many solidification
shrinkage voids in the brazed zone.
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Introduction

High-entropy alloys (HEAs) have been reported by Yeh et al.
as alloys containing at least five elements as the major ingre-
dients, with every element in amounts of 5–35 at% [1, 2].
Numerous researches have demonstrated that HEAs have
many outstanding properties due to high entropy, sluggish
diffusion, severe lattice distortion, and cocktail effects [2, 3].
The equiatomic CoCrFeMnNi alloy, one of the most popular
HEAs, was originally unveiled by Cantor [4]. It has an FCC
(face-centered cubic) structure with a single phase below the
melting point [5, 6]. The mechanical properties of this HEA
are featured with excellent ductility and fracture toughness
below room temperatures [7–10]. The CoCrFeMnNi HEA
without Mn, i.e., CoCrFeNi equiatomic alloy, also exhibits
an FCC structure and has been reported to have mechanical

properties similar to those of CoCrFeMnNi HEA [11, 12]. It
has been reported that CoCrFeMnNi forms a face-centered
cubic solid solution with exceptional damage tolerance and
fracture toughness, especially at low temperatures [7]. It
shows potential in a cryogenic application.

Brazing is a joining technique wherein a filler metal is used
to join two substrates without melting them. Brazing is suit-
able for a few applications, which are not appropriate in
welding. For instance, a corrosion-resistant plate heat ex-
changer preferentially manufactured by brazing. Minimum
distortion of the plate heat exchanger is achieved because
hundreds of brazed joints are simultaneously formed. In con-
trast, sequential welding may result in huge distortion of the
workpiece, so the welding process is seldom used in mass
production of the plate heat exchangers. The heating rate in
traditional furnace brazing is approximately 0.01–0.2 °C/s,
which is greatly slower than that of infrared brazing [13,
14]. The filler melt reacts quickly with the base metal during
brazing. Therefore, the early stage of reaction between the
molten braze and base metal cannot be examined precisely
by using a traditional furnace. Infrared brazing, on the other
hand, is featured with a high heating rate up to 50 °C/s and
allows accurate temperature control [13, 14]. With the assis-
tance of infrared heating, the initial interfacial reaction can be
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evaluated, and the mechanism at the initial stage in brazing
can thereby be unveiled. Experimental results have indicated
that infrared brazing can be used to examine the microstruc-
tural evolution and reaction kinetics of similar/dissimilar
brazed joints.

In a previous study, non-equiatomic NiMnFeCoCu HEAwas
used as a filler metal to braze Inconel 718 superalloy and showed
good mechanical performance [15]. However, no studies have
reported the use of filler metal to braze HEA. Alloys with high
chromium content, such as 316L stainless steel andmany nickel-
based superalloys, form a protective oxide layer on their surfaces
which isolate the substrate from oxidation, but the oxide layer
keeps the Ag-based filler metals from wetting the substrate
[16–18]. To avoid this problem, a Au-based filler foil has been
applied to braze 316L, Inconel 600, and Inconel 718 with quite
good results [19–21]. Therefore, the gold-based 70Au-8Pd-22Ni
alloy is considered a potential filler metal for brazing
CoCrFeMnNi HEA and its derivative CoCrFeNi alloy. In this
study, both infrared and traditional furnaceswere applied to braze
CoCrFeNi and CoCrFeMnNi substrates using 70Au-8Pd-22Ni
filler foil. Extensive evaluations of brazed joints have been per-
formed in the experiment.

Experimental

Sample preparation

Equiatomic CoCrFeNi and CoCrFeMnNi ingots of approxi-
mately 100 g were prepared with high purity Co, Cr, Fe, Ni,
and the master alloy of Ni-Mn in 50–50 in wt%. Ni-Mnmaster

alloy with 99.9 wt% in purity was purchased from Testbourne
Ltd., (Hampshire, England, UK) and used to reduce the evap-
oration of manganese during arc remelting. The purities of the
other raw metals were higher than 99.9 wt%. The ingots were
remelted 6 times in VAR (vacuum arc remelter) under high
purity Ar protection and subsequently homogenized at
1200 °C for 24 h.

The ingots were then cold rolled into plates of 3.5 mm in
thickness at room temperature. Specimens with the dimension
of 5 × 7 × 3.5 mm3 for microstructural inspection, wetting an-
gle measurements, and shear tests were cut from the cold-
rolled plates. The brazing surfaces of the specimens were
ground with SiC papers up to 1200 grit. The 70Au-8Pd-
22Ni (in wt%) foil of 50-μm thickness was purchased from
Wesgo Company (Hayward, California, USA). The Liquidus
temperature of the foil is 1045 °C.

Wetting angle

The dynamic wetting angles of the molten filler metal on both
CoCrFeNi and CoCrFeMnNi substrates were measured by the
sessile drop test. For this test, 70Au-8Pd-22Ni filler balls of
approximately 0.15 g were prepared by VAR. Diagrams of the
wetting angle measurement facility, including the specimen
holder, can be obtained in previous literature [14, 22]. An
ULVAC SINKU-RIKO infrared furnace with a vacuum of
5 × 10−5 mbar was used for dynamic wetting angle measure-
ment. The 70Au-8Pd-22Ni ball was placed on CoCrFeNi and
CoCrFeMnNi substrates, respectively. The test conditions
used in the dynamic wetting angle measurements were
1050 °C for 300 s, as listed in Table 1.

Fig. 1 Schematic diagrams of brazed specimens used for a microstructural observation and b shear test [14, 22]

Table 1 Brazing conditions in the
test Substrate Brazing temperature (°C) Furnace type Brazing time (s) Specimens

CoCrFeNi 1050 Infrared 300 S/M/W

Traditional 600 S/M

CoCrFeMnNi 1050 Infrared 300 S/M/W

Traditional 600 S/M

S, shear test; M, metallographic observation; W, dynamic wetting angle measurement
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Brazing

The aforementioned infrared furnace with a heating rate of
15 °C/s and a traditional furnace with a heating rate of
0.33 °C/s were used to braze CoCrFeNi and CoCrFeMnNi
alloys for microstructural observations and shear tests.
During the brazing process, a vacuum of 5 × 10−5 mbar was
kept in the furnace. Specimens were preheated at 900 °C for
300 s. The brazing conditions for the microstructural observa-
tion and shear test are shown in Table 1. Figure 1a and b
present schematic diagrams of specimens enclosed in graphite
fixtures for microstructural observations and shear tests,
respectively.

Characterization

Quantitative chemical analyses of selected joints were con-
ducted with a JEOL JXA-8200 electron probe microanalyzer
(EPMA). Shear tests were performed with a Shimadzu AG-IS
universal tensile test machine at a fixed compressive

crosshead speed of 0.0167 mm/s. For each brazing condition,
three brazed specimens were evaluated in order to obtain the
standard deviation of shear strength. The fractured surfaces
and cross sections of the shear test specimens were examined
with a NOVA NANO 450 field emission scanning electron
microscope (FESEM). Selected fracture surfaces were exam-
ined with a Rigaku TTRAX III monochromatized X-ray dif-
fractometer (XRD) for structural analyses.

Results and discussion

Dynamic wetting angle measurement

Figure 2 illustrates dynamic wetting angle measurements of
70Au-8Pd-22Ni filler metal heated at 1050 °C on CoCrFeNi
and CoCrFeMnNi substrates. For the CoCrFeNi substrate, the
wetting angle is 135° at first. It drops to 100° at 4 s and then to
0° at 5 s. For the CoCrFeMnNi substrate, the wetting angle is
132° in the beginning, rapidly drops to 89° at 9 s, and then

Fig. 2 Dynamic wetting angle
measurements of AuPdNi filler
metal on the CoCrFeNi and
CoCrFeMnNi substrates at
1050 °C

Fig. 3 FESEMBEI cross sections
of CoCrFeNi/AuPdNi/CoCrFeNi
joints: a infrared brazed at
1050 °C for 300 s and b
traditional furnace brazed at
1050 °C for 600 s
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decreases to 0° after 12 s. The dynamic wetting angle is related
to the surface tension of molten metal on a substrate. It is
obvious that the oxide layers on the two substrates have no
effect on the wettability of the 70Au-8Pd-22Ni filler metal.
The Au-based filler metal shows excellent wettability on both
substrates.

Microstructural observations
of CoCrFeNi/AuPdNi/CoCrFeNi joints

Figure 3a, b and Table 2 illustrate the cross sections of
FESEM backscattered electron images (BEIs) and the WDS
quantitative chemical analysis results of CoCrFeNi/AuPdNi/
CoCrFeNi joints infrared brazing at 1050 °C for 300 s and
traditional furnace brazing at 1050 °C for 600 s, respectively.
The widths of the brazed joints in Figs. 3a and b are 43μmand
50 μm, respectively. The brazed joints consist of two phases
with different sizes, as shown by comparing Fig. 3a and b. The
microstructure of the joint in Fig. 3a is much finer than that of
the traditional furnace brazed one shown in Fig. 3b due to the

faster cooling cycle of infrared brazing. The slower cooling
rate and longer brazing time in traditional furnace brazing
result in enhanced diffusion of all ingredients in the brazed
zone, leading to the coarsening of the white Au-rich and dark
Ni-rich solid solutions (Fig. 3b).

Because themicrostructure shown in Fig. 3a is too small to be
identified byWDSquantitative chemical analysis, chemical anal-
yses are conducted to examine selected phases in the traditional
brazed joint in Fig. 3b. The EPMA analyses are illustrated in
Fig. 3b and Table 2. The substrate marked A is CoCrFeNi
equiatomic alloy, and no Au and Pd dissolved into the substrate.
In the brazed zone, the bright phase marked B is an Au-rich
phase, and the dark phase marked C is a Ni-rich phase. The
Au/Ni-rich phases are alloyed with Co, Cr, and Fe, indicating
that Co, Cr, and Fe in CoCrFeNi substrate dissolve into the Au-
rich molten braze in brazing. In contrast, limited solid-state dif-
fusion of Au and Pd from the molten braze into the CoCrFeNi is
observed in brazing. According to the binary Au-Ni diagram
shown in Fig. 4, solid solution of (Au, Ni) is observed above
810.3 °C [23]. However, it is prone to separate into Au-rich and
Ni-rich solid solutions as the temperature decreases below
810.3 °C. This separation agrees with Fig. 3b and Table 2.
Joints in Fig. 3a and b are both composed of Au-rich and Ni-
rich solid solutions, which are not miscible to each other upon
cooling below 810.3 °C. The brazed joint contains no brittle
intermetallics, so a ductile joint could be formed (Fig. 4).

Microstructural observation
of CoCrFeMnNi/AuPdNi/CoCrFeMnNi joints

Figure 5a, b and Table 3 show FESEM BEIs and quan-
titative chemical analyses of CoCrFeMnNi/AuPdNi/

Fig. 4 Au-Ni binary alloy phase
diagram [23]

Table 2 Quantitative
chemical analyses of
CoCrFeNi/AuPdNi/
CoCrFeNi joints
traditional furnace
brazing at 1050 °C for
600 s in Fig. 3b

at% A B C

Co 25.6 2.4 15.8

Cr 25.6 12.4 10.4

Fe 24.7 7.0 14.5

Ni 24.1 14.7 51.0

Au - 53.5 5.9

Pd - 10.0 2.4

Phase CoCrFeNi Au rich Ni rich
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CoCrFeMnNi joints infrared brazing at 1050 °C for
300 s and traditional furnace brazing at 1050 °C for
600 s, respectively. In Fig. 5a, the width of the joint
is 90 μm, and the brazed joint includes at least two
major phases, as well as a globular dark phase dispersed
in the white matrix. In Fig. 5b, the width of the joint is
approximately 115 μm, and it is comprised of a dark
phase and a white phase. The white phase is uniformly
dispersed in the brazed joint. According to the WDS
quantitative chemical analyses, the substrate far away
from the brazed joint has a composition of approximate-
ly equiatomic Co, Cr, Fe, Mn, and Ni. In contrast, the
substrate near the brazed zone has higher Ni and lower
Mn contents marked D in Fig. 5b. It is obvious that the
Mn in the substrate readily dissolves into the braze
melt. According to the Au-Mn diagram in Fig. 6, the
stoichiometric ratio between Au and Mn in the white
phase (marked E in Fig. 5b) is close to that of AuMn
intermetallic compound alloyed with minor Co, Cr, Fe,
Ni, and Pd [24].

Carefully examining Fig. 5b, one can find two types of
dark phase. One is rich and the other is lean in Ni content.
The dark area near the interfacial region marked F has the
composition of the CoCrFeNi-based phase, in which the Ni
content increases but theMn content decreases significantly as
the distance from the substrate increases. The large dark area
in the central brazed joint marked G has the composition of
Ni-rich phase with Ni content of about 50 at%, but those of

Co, Cr, and Fe are much lower than the composition of
CoCrFeNi equiatomic alloy. From the substrate to the central
brazed joint, the dark phases are CoCrFeMnNi-based phase
marked D, CoCrFeNi-based phase marked F, and then the Ni-
rich phase marked G. It is noted that the Mn content is signif-
icantly lower in the G phase than in the CoCrFeMnNi sub-
strate due to the consumption of Mn in forming the AuMn
intermetallic compound in the brazed zone.

XRD structural analyses of brazed joints

Figure 7a and b display XRD analyses of the fractured sur-
faces after shear tests of CoCrFeNi/AuPdNi/CoCrFeNi and
CoCrFeMnNi/AuPdNi/CoCrFeMnNi joints traditional fur-
nace brazing at 1050 °C for 600 s. From Fig. 7a, two sets of
FCC XRD peaks are identified. One is the Ni-rich solid solu-
tion and the other is the Au-rich solid solution [25]. Both
substrates, CoCrFeNi and CoCrFeMnNi, are not observed in
the XRD analyses, because cracks were initiated and propa-
gated along the brazed zone. From Fig. 7b, the XRD peaks of
AuMn intermetallic phase and Ni-rich solid solution are iden-
tified. The AuMn intermetallic compound has a tetragonal
structure with lattice constants of 0.32706 nm and
0.31659 nm [24]. From these lattice parameters, the corre-
sponding (hkl) plane for each X-Ray peak shown in Fig. 7b
is identified. Both XRD structure analyses are consistent with
the aforementioned WDS chemical analyses.

Fig. 5 FESEMBEI cross sections
of CoCrFeMnNi/AuPdNi/
CoCrFeMnNi joints: a infrared
brazed at 1050 °C for 300 s and b
traditional furnace brazed at
1050 °C for 600 s

Table 3 EPMA chemical
analyses in Fig. 5b at% Base metal D E F G

Co 20.2 21.9 0.4 23.1 15.4

Cr 20.5 22.0 1.6 20.0 15.3

Fe 20.0 22.0 0.6 20.9 15.6

Mn 19.8 9.4 41.8 3.9 3.4

Ni 19.5 24.2 3.5 30.9 47.9

Au - 0.4 43.4 0.8 1.6

Pd - 0.2 8.7 0.4 0.8

Phase HEA CoCrFeMnNi based AuMn CoCrFeNi based Ni rich
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Table 4 displays the average shear strengths of joints
brazed under various conditions. Average shear strengths
of CoCrFeNi/AuPdNi/CoCrFeNi joints brazing at
1050 °C for 300 s in an infrared furnace and at
1050 °C for 600 s in a traditional furnace are
340 MPa and 365 MPa, respectively. The size of the
immiscible Au-rich and Ni-rich phases has little effect
on the joint shear strengths. Figure 8a, b, c, and d show
BEI cross sections and SEI fractographs of specimens
infrared brazing at 1050 °C for 300 s, and specimens
traditional furnace brazing at 1050 °C for 600 s, respec-
tively. Based on Fig. 8, both brazed joints fracture at
the brazed zone and the SEI fractographs indicate duc-
tile dimple fracture. The size of dimples in the infrared
brazed joint (Fig. 8b) is much smaller than that of tra-
ditional brazed one (Fig. 8d). It is consistent with the
microstructural observations illustrated in Fig. 3.
Additionally, the presence of Au/Ni-rich solid solutions
with FCC structure increases the ductility of the brazed
joints. The 70Au-8Pd-22Ni filler foil demonstrates great
potential for brazing CoCrFeNi equiatomic alloy.

Table 4 lists the average shear strengths of the
CoCrFeMnNi/AuPdNi/CoCrFeMnNi joints brazing at
1050 °C for 300 s and traditional furnace brazing at
1050 °C for 600 s, which are 326 MPa and 173 MPa,
respectively. A huge decrease in average shear strength
is obtained in the traditional furnace brazed joint.
Figure 9a and b show a BEI cross section and an SEI
fractograph of the joint infrared brazing at 1050 °C for
300 s. According to Fig. 9a, the crack propagates along
with the white AuMn intermetallic phase, as pointed by

Fig. 6 Au-Mn binary alloy phase
diagram [23]

Fig. 7 XRD structural analyses of the fractured surfaces after shear tests:
a CoCrFeNi/AuPdNi/CoCrFeNi and b CoCrFeMnNi/AuPdNi/
CoCrFeMnNi joints traditional furnace brazed at 1050 °C for 600 s
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the arrow. Additionally, the globular dark Ni-rich solid
solution undergoes severe plastic deformation. Thus, the
SEI fractograph in Fig. 9b presents a cleavage-
dominated fracture.

Figure 9c and d show a BEI cross section and an
SEI fractograph of the joint traditional furnace brazing
at 1050 °C for 600 s. As can be seen in Fig. 9c, the
joint fractures at the interface between the brazed zone
and CoCrFeMnNi substrate. It is noted that isothermal
solidification shrinkage voids with dendritic morphology
are visible in the FESEM SEI fractograph in Fig. 9d.
The shrinkage voids are commonly observed in laser
welding of cast and rolled HEAs for low-temperature
applications in previous study [26]. According to the
experimental result, the mechanism to produce the
shrinkage voids is the same between welding and braz-
ing. The presence of many isothermal solidification
shrinkage voids significantly impairs the average shear
strength of the traditional furnace brazed one.

The amount of the CoCrFeMnNi dissolved into the molten
braze is enhanced in the traditional furnace brazed joint due to
its slower brazing cycle. In addition, the dissolution of
CoCrFeMnNi into the Au-rich braze melt could result in iso-
thermal solidification during brazing. Many solidification
shrinkage voids are found in the fractograph of the traditional
furnace brazed joint. However, the amount of solidification
shrinkage voids in the brazed zone can be inhibited by using
infrared heating, which is characterized by a much faster ther-
mal history.

Conclusions

Wettability, microstructural evolution, and shear tests of
CoCrFeNi and CoCrFeMnNi equiatomic alloys brazed in infra-
red and traditional furnaces with 70Au-8Pd-22Ni filler foil have
been investigated. The important results are summarized below.

Fig. 8 FESEM observations of
the fractured braze joints after the
shear test: a BEI cross section, b
SEI fractograph of CoCrFeNi/
AuPdNi/CoCrFeNi joint infrared
brazed at 1050 °C for 300 s, cBEI
cross section, and d SEI
fractograph of CoCrFeNi/
AuPdNi/CoCrFeNi joint
traditional furnace brazed at
1050 °C for 600 s

Table 4 Average shear strength
of brazed joints Substrate Brazing temperature

(°C)
Furnace
type

Brazing time (s) Average shear strength
(MPa)

CoCrFeNi 1050 Infrared 300 340 ± 17

Traditional 600 365 ± 9

CoCrFeMnNi 1050 Infrared 300 326 ± 6

Traditional 600 173 ± 43
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1. Dynamic wetting angle measurements indicate that the
wettability of 70Au-8Pd-22Ni filler metal on CoCrFeNi
and CoCrFeMnNi substrates is excellent at 1050 °C.

2. CoCrFeNi/AuPdNi/CoCrFeNi joints brazed with both in-
frared and traditional furnaces are composed of Au-rich
and Ni-rich solid solutions with different grain sizes. The
mixture of Au-rich and Ni-rich solid solutions coarsens in
the traditional furnace brazing due to the slower thermal
history of the brazing. The average shear strengths of the
CoCrFeNi/AuPdNi/CoCrFeNi joints exceeds 300 MPa,
and the fractograph indicates dimple dominated fracture.

3 . The in f ra red b razed CoCrFeMnNi /AuPdNi /
CoCrFeMnNi joints are composed of large CoCrFeNi/
Ni-rich particles in the AuMn intermetallic matrix. By
contrast, in the traditional brazed joints, the AuMn inter-
metallic compound is uniformly mixed with the
CoCrFeNi-based and Ni-rich solid solutions because of
the enhanced dissolution of CoCrFeMnNi base metal in-
to the Au-rich melt during brazing. The average shear
strength of infrared brazed CoCrFeMnNi/AuPdNi/
CoCrFeMnNi joint is 326 MPa, and the fractograph
shows quasi-cleavage-dominated fracture. In contrast,
the traditional furnace brazed joint has a much lower
average shear strength of 173 MPa, because many solid-
ification shrinkage voids are formed in the brazed zone.
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