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Abstract
Background Lung adenocarcinoma (LUAD) is the most common histological type of lung cancer with lower survival
rates. Recent advancements in targeted therapies and immunotherapies targeting immune checkpoints have achieved
remarkable success, there is still a large percentage of LUAD that lacks available therapeutic options. Due to tumor
heterogeneity, the diagnosis and treatment of LUAD are challenging. Exploring the biology of LUAD and identifying new
biomarker and therapeutic targets options are essential.
Method We performed single-cell RNA sequencing (scRNA-seq) of 6 paired primary and adjacent LUAD tissues, and
integrative omics analysis of the scRNA-seq, bulk RNA-seq and whole-exome sequencing data revealed molecular subtype
characteristics. Our experimental results confirm thatCDC25C gene can serve as a potential marker for poor prognosis in LUAD.
Results We investigated aberrant gene expression in diverse cell types in LUAD via the scRNA-seq data. Moreover, multi-
omics clustering revealed four subgroups defined by transcriptional profile and molecular subtype 4 (MS4) with poor survival
probability, and immune cell infiltration signatures revealed that MS4 tended to be the immunosuppressive subtype. Our
study revealed that the CDC25C gene can be a distinct prognostic biomarker that indicates immune infiltration levels and
response to immunotherapy in LUAD patients. Our experimental results concluded that CDC25C expression affects lung
cancer cell invasion and migration, might play a key role in regulating Epithelial-Mesenchymal Transition (EMT) pathways.
Conclusions Our multi-omics result revealed a comprehensive set of molecular attributes associated with prognosis-related
genes in LUAD at the cellular and tissue level. Identification of a subtype of immunosuppressive TME and prognostic
signature for LUAD. We identified the cell cycle regulation gene CDC25C affects lung cancer cell invasion and migration,
which can be used as a potential biomarker for LUAD.
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Abbreviations
NSCLC Non-small cell lung cancer
LUAD Lung Adenocarcinoma
GEO Gene Expression Omnibus Database
TCGA The Cancer Genome Atlas

KEGG Kyoto encyclopedia of genes and genomes
ScRNA-seq Single-cell RNA sequencing
TME Tumor microenvironment
CNV Copy number variations
EMT Epithelial-mesenchymal transition
PDX patient-derived xenografts

1 Introduction

Lung cancer continues to be the foremost cause of global
cancer-related mortality and constitutes 22.7% of malig-
nant tumors [1, 2]. Lung adenocarcinoma (LUAD) is the
most common histological subtype of non-small cell lung
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cancer (NSCLC) and accounts for approximately 40% of
lung malignancies [3, 4]. Recent advancements in targeted
therapies and immunotherapies targeting immune check-
points have achieved remarkable success. Despite this pro-
gress, there is still a large percentage of LUAD that lacks
available therapeutic options. This may be due to the lack
of known genetic mutations or the difficulty in targeting
oncogenic mutations. Accordingly, the challenge of effec-
tively stratifying patients for treatment with appropriate
therapeutic approaches and finding new molecular targets
remain a crucial priority.

Varied evidence confirms that the process of tumor
progression is closely related to the tumor microenviron-
ment (TME), gene expression profiles and epigenetic
modifications [5–8]. The scRNA-seq technologies have
ushered in breakthroughs understanding TME of lung
cancer [9, 10]. Comparing the bulk RNA-seq measured
the total cell type-specific gene expression weighted by
the cell type proportions, the scRNA-seq tend to under-
stand the cell type composition and proportions in intact
tissues is critical because certain cell types are more
susceptible to tumorigenesis than others [11–13].
Though many studies have investigated abnormal gene
at the tissue level, there is still a lack of comprehensive
understanding of cell type-specific aberrant gene expres-
sion in LUAD at the cellular level.

In recent years, scRNA-seq technology has enabled
cell type-specific transcriptome analyses. Thus, several
studies have extensively characterized the LUAD TME at
a single-cell resolution. Previous studies investigating
lung cancer have focused primarily on the landscape of
immune and infiltrating cell populations or have specifi-
cally identified novel cell subtypes and altered pathways
[14–16]. These studies have unveiled distinct cellular and
transcriptional modules that are associated with survival
in lung cancer [17]. Additionally, they have shed light on
the heterogeneity of the tumor microenvironment in
early/advanced -stage LUAD harboring EGFR mutations
[18, 19]. And other studies have highlighted the expan-
sion of precursor exhausted T cells during anti-PD-1
therapy [20].

In this study, we use the scRNA-seq to characterize the
differences and similarities of transcriptome expression in
patients with LUAD by comparing with adjacent tissue,
to determine the universal law of the aberrant gene
expression at both cellular level and tissue level in
LUAD. We integrated multi-omics data, such as the
scRNA-seq, bulk mRNA-seq and genomic data collected
from LUAD patients. Comprehensive molecular attributes
associated with prognosis-related genes in the LUAD
were revealed, serving as a resource for the cancer com-
munity to further delineate the underlying biology and
address unmet clinical needs.

2 Materials and methods

2.1 Patient sample collection

Fresh tumor samples were collected from patients at West
China Hospital (WCH). Written permission was obtained
from each patient. The clinical parameters that were noted
during recruitment, such as age, sex, smoking status, clinical
subtype, and stage, are detailed in Supplementary Table S1.

2.2 Library preparation and sequencing

Freshly acquired resected tissues were washed with
Hank’s balanced salt solution (HBSS) after the proce-
dure, cut into smaller pieces on ice with collagenase I/
IV in HBSS, and incubated for 30 min at 37 °C with
manual shaking every 5 min. Following the passage of
the digested tissues through a 40 µm nylon mesh filter,
the cells that were still in suspension were centrifuged
at 500× g for 5 min. The bombarded cells were sus-
pended in red blood lysis solution after the supernatant
was removed, and after being washed with HBSS, the
cells were then resuspended in sorting buffer (0.04%
BSA + PBS). Following the manufacturer’s recommen-
dations, cell suspensions were immediately processed
for single-cell RNA-seq after dead cells were removed
by flow cytometry. The Chromium Single-cell 3′ Gel
Bead, Chip and Library Kit v3 (10X Genomics) and the
Chromium Single-cell Gene Expression Solution were
used to produce single cells in accordance with the
manufacturer’s instructions. The number of cells added
to each channel varied between 8000 and 10,000. After
the RNA was barcoded and the cells were lysed, the
cells were separated into gel beads in emulsion in
a chromium apparatus. Amplification, shearing, and
attachment of the 5′ adaptor and sample index were
subsequently performed. Libraries were sequenced at
West China Hospital using the Illumina Nova-Seq
6000 platform.

2.3 Gene expression data, somatic mutation data,
and clinical information

The mRNA expression profiles, somatic mutation data, and
related clinical data of LUAD patients were obtained from
the TCGA database via the University of California–Santa
Cruz (UCSC) Xena browser (https://xena.ucsc.edu/). The
somatic mutation data were analyzed via the “maftools”
R package (version 2.2.10). The tumor mutation burden
(TMB) scores were obtained by calculating the total num-
ber of mutations/exon length. The mRNA expression data
and related clinical parameters used for the validation
cohort were accessed from the Gene Expression Omnibus
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(GEO) database (http://www.ncbi.nlm.nih.gov//geo//), which
included the GSE30219 and GSE31210 datasets. Moreover,
we performed log 2 transformations for all the mRNA
expression data. When duplicate RNA expression values
were found, we calculated and retained the average expres-
sion value. Patients whose survival time was ≤30 days were
excluded from this study.

2.4 The scRNA-seq data clustering, dimension
reduction, and cell annotation

We employ log normalization to standardize the merged data.
Following this, we utilize the “FindVariableFeatures” func-
tion to identify the top 2000 genes with substantial variation.
This identification is based on the variance stabilization
transformation method. Additionally, all genes undergo scal-
ing via the “ScaleData” function. Subsequently, we employ
the “RunPCA” function to perform dimensionality reduction
on the PCA for the previously selected 2000 highly variable
genes. We choose a dimensionality of 20 (dims = 20).
To cluster the cells, we apply the “FindNeighbors” and
“FindClusters” functions, using a resolution of 0.5. These
steps help identify the cell clusters. Lastly, we employ the
“FindAllMarkers” function to identify the marker genes of
the subgroups, using a log fold change (log2FC) of 0.25 and
a minimum percentage (min. pct) of 0.25. We further filter
the marker genes by utilizing an adjusted p value < 0.05.

2.5 Cell type pseudo-time and trajectory analysis

Pseudo-time and trajectory analyses of the scRNA-seq
data were carried out with the ‘Monocle2’ package. In
addition, differential expression analysis was performed
between branches, and genes that exhibited differential
expression levels were defined as branch-dependent or
state-specific genes or marker genes. Then, the intracel-
lular DEGs in cells with distinct differentiation states
were defined according to the following criteria: |log2
FC| > 0.5 and FDR < 0.05. The “ClusterProfiler”, “org.
Hs.eg.db”, “enrichplot” and “ggplot2” packages were
used for GO annotation and KEGG enrichment analysis;
only Biological Processes (BP) were extracted from the
GO annotation.

2.6 Estimation of activity for diverse signatures
and pathways

The GSVA algorithm was used to evaluate the relative
activation status of a signature or pathway. GSVA scores
for cancer hallmark pathways were calculated using prede-
fined gene sets extracted from the “MSigDB” algorithms.

2.7 Based prognosis-related genes classifications
of LUAD patients in the TCGA data

Unsupervised consensus clustering, an algorithm based on
k-means machine learning, was utilized to explore the
molecular classification of both TCGA cohorts based on
the expression patterns of prognosis-related genes using
the “ConsensusClusterPlus” package in R. The optimal
number of clusters was determined by the relative change
in the area under the CDF curves of the consensus score
and consensus heatmap. K‒M survival analysis was sub-
sequently performed to evaluate the prognosis of patients
in the different subgroups.

2.8 Cell-type identification by estimating relative
subsets of RNA transcripts

The “CIBERSORT” algorithms is based on the input
matrix of a gene expression file to accurately estimate the
relative proportions of various cell subsets in tissues.
Spearman correlation analysis was performed to explore
the association between the risk score and infiltrating
immune cells. The “ggplot2” package was used to visua-
lize the differences in the abundances of immune cells and
the results of the correlation analysis.

2.9 Establishment of the survival risk-related
model

The R package “glmnet” was used to perform least absolute
shrinkage and selection operator (LASSO) Cox regression
and to predict the prognosis of patients based on genes.
First, the trajectory of change in each independent variable
was examined. Cross-validation is used to select the tuning
parameter. The outcome is simply the least squares estimate
when lambda is small. The cox.ph function of the R package
“survival” was used to create the Cox proportional hazards
model, which was subsequently used to evaluate the con-
sistency and variability of the estimates generated by the
Lasso Cox regression model. Patients were separated into
high- and low-expression groups based on the median score.
A Cox proportional hazards model was fitted with patient
death as the outcome, and a hazard ratio was computed
using the fitted model.

2.10 Survival analysis and immunotherapeutic
evaluation

Survival analysis was performed by the R package survi-
val. The hazard ratio (HR) was calculated by the Cox
proportional hazards model, the 95% CI was reported,
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and the Kaplan–Meier survival curve was modeled by the
“survfit” function. The “maxstat.test” function of the
R package “maxstat”, in which all potential cutoff points
were repeatedly tested to find the maximum rank statistic,
was used to perform dichotomization of cell population
infiltration or gene expression and then to divide the
patients into two groups according to the selected max-
imum logarithm statistics. The two-sided long-rank test
was used to compare Kaplan–Meier survival curves.

2.11 Quantitative real time-PCR (qRT-PCR)

RNA was extracted from the cells after flow cytometry
sorting using RNA-easy Isolation Reagent (Vazyme
#R701). An iScript™ Advanced cDNA Synthesis Kit
(Bio-Rad) was used for reverse transcription, and
iTaq™ Universal SYBR® Green Supermix (Bio-Rad)
was utilized for qRT‒PCR in accordance with the manu-
facturer’s instructions. The qRT‒PCR program was as
follows: initial denaturation for 30 s at 95 °C; 40 cycles
of denaturation for 5 s at 95 °C; and 40 cycles of ampli-
fication for 30 s at 60 °C. The mRNA expression in the
cells was calculated as 2−(∆∆Ct), and β-actin was used as
the internal reference. The primer sequences are shown in
Supplementary Table S2.

2.12 Cell lines and cell culture

The human lung cancer cell lines A549, H1975, HCC95,
and PC-9 were obtained from the Shanghai Cell Bank of
the Chinese Academy of Sciences (Shanghai, China). All
cells were routinely cultured in Dulbecco’s modified
Eagle’s medium supplemented with 10% FBS (PAA
Laboratories GmbH, Pasching, Austria) at 37 °C in
a humidified atmosphere of 5% CO2 in the air.

2.13 RNA interference

Short-interfering RNAs (siRNAs) specific for Cell Division
Cycle 25C (CDC25C) were purchased from RiboBio
(Guangzhou, China) and then transfected into lung cancer
cells using Lipofectamine 2000 reagent (Invitrogen,
Shanghai, China) according to the manufacturer’s protocol.
Cells transfected with the corresponding scrambled siRNA
were used as controls. The gene silencing effect was mea-
sured by Western blotting 48 h post transfection.

2.14 Western blotting

Proteins were extracted from cell lysates with RIPA buf-
fer (Thermo Fisher Scientific, Waltham, MA, USA), sepa-
rated by 10% SDS–PAGE and subsequently transferred
onto PVDF membranes (Millipore, Billerica, MA, USA).

Immunoblots were blocked with 5% BSA in TBS/Tween-20
and incubated with primary antibodies overnight at 4 °C.
The following primary antibodies were used: β-catenin
(Proteintech, Wuhan, China) and EPAS1 (Affinity
Biosciences, Cincinnati, OH, USA).

2.15 Cell invasion and migration assays

Invasion and migration assays were performed using
Corning chambers (Corning, Tewksbury, MA, USA)
coated with Matrigel (for invasion assays) or without
Matrigel (for migration assays) following the manufac-
turer’s protocol. The cells were suspended in media con-
taining 2% FBS and seeded in the upper chambers, while
media containing 20% FBS was placed in the lower
chambers. After incubating for 24 or 48 h at 37 °C, the
remaining cells on the upper surface were gently removed
with a cotton swab. Then, cells that had invaded or
migrated to the lower surface of the membrane were
fixed with methanol and stained with hematoxylin and
eosin. Cells in three random visual fields (at 100× mag-
nification) were counted. All the experiments were
repeated in triplicate independently.

2.16 Statistical analysis

The R programming language was used for all the statis-
tical studies (version 4.2.0). For the correlation analysis,
Spearman’s correlation was used. To examine the differ-
ences between these two risk groups, the Wilcoxon test
was applied. p < 0.05 indicated statistical significance.

3 Results

3.1 Single-cell transcriptome atlas and cell typing
in normal lung and LUAD tissues

To understand the cellular diversity and molecular features
of LUAD, we performed scRNA-seq on twelve libraries
from 6 paired primary LUAD and adjacent normal samples
(Figs. 1A and S1A). The detailed clinical and pathological
information of the patients is provided in Supplementary
Table 1. To perform the scRNA-seq, cells were dissociated,
sorted for viability, and profiled using 10× Chromium
Genomics protocols. As shown, cells grouped primarily
by dataset were mixed after integration by the
“Harmony” package, which provided well-integrated
scRNA-seq data (Fig. S1B). After quality control, a total
of 34,995 cells that met the inclusion criteria were selected
for subsequent analysis. These cells included 18,231 and
16,764 cells from adjacent tissue and LUAD tissue, respec-
tively (Fig. 1B). By characteristic canonical cell markers,
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Fig. 1 Single-cell transcriptome atlas and cell typing in adjacent
normal tissues and LUAD tissues. A Scheme of the overall study
design. B TSNE plots of the major LUAD cell populations, and each
point depicts a single cell, colored according to cell types. C The
Vlnplot shows the relative expression of the top 3 genes in each cell
type. The canonical markers for each cell type are color-coded and
shown on the top. D The KEGG functional enrichment analysis of

DEGs of the LUAD. E Feature plot shows that the up-regulated gene
score and down-regulated gene score, scoring of each cell type was
calculated by the “Addmodulescore” algorithms. F Dot plots that
depict how the relative expression of particular genes varies at bulk
RNA-seq. The size displays the values for average expression in the
cell types, colors are marked as percent expression in the cell types
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eleven major cell types were detected and classified as
tumor cells, epithelial cells other than carcinoma cells,
immune cell types (T cells, B cells, myeloid cells, NK
cells, mast cells, and plasma cells), and stromal cell types
(fibroblasts and endothelial cells) (Fig. 1C).

To explore the pathogenic mechanisms underlying
LUAD progression. We matched these genes with the
sequence data of LUAD-related mRNAs in the TCGA
database, GSE140343 dataset and GSE31210 dataset, and
only common mRNAs were identified [5, 21] (Fig. S1C
and D). Considering the cutoff criteria (see Methods),
a large number of DEGs were separately identified, and
only the common DEGs of the three cohorts consisting of
603 upregulated and 537 downregulated DEGs were
selected as credible DEGs. The KEGG enrichment path-
way showed that these upregulated genes were signifi-
cantly associated with signaling pathways related to
tumor progression and metabolic abnormalities in cancer,
such as the non-small cell lung cancer pathway, glycolysis/
gluconeogenesis-related pathway, and p53 signaling/PI3K-
AKT signaling pathway. Likewise, the downregulated
genes were highly enriched for the pathways responsible
for extracellular matrix (ECM) remodeling, cell adhesion,
phagocytosis, and the immune response (Fig. 1D). To
further investigate differential gene expression levels at
the cellular level, the most significant DEGs were mapped
into single cells using the “AddmoduleScore” algorithm
[22, 23]. The results indicated that the differentially
expressed genes identified from the bulk RNA-seq data
were expressed in multiple cell types, upregulated genes
are more likely to be highly expressed in tumor cells, basal
cell and macrophage cell, but down-regulated genes were
not significantly expressed in unique any cell types (Fig.
1E). The same results suggested that the DEGs identified
via bulk RNA-seq tended to be expressed predominantly in
different cell types; for example, the upregulated gene
ADAMDEC1 was expressed in myeloid cells, and SNRK
was the downregulated gene that was most highly
expressed in T cells and NK cells (Fig. 1F).

These observations strongly suggest that the pathogen-
esis of LUAD is linked to cell type-specific reprogram-
ming. Our results indicate that LUAD is associated not
only with the dysregulation of tumor proliferative signals
but also with abnormalities in the immune microenviron-
ment, suggesting the important role of microenvironmental
abnormalities in the progression of LUAD.

3.2 Cell type-specific aberrant gene expression in
LUAD and adjacent normal tissues

Bulk RNA-seq experiments typically measure total gene
expression from heterogeneous tissues but lack cell-level
heterogeneity [24]. To simultaneously define gene expression

changes at the global and cellular levels, we also com-
pared the proportions of different subpopulations
between the two groups. Similarly, the proportions of
cells in the two groups were significantly different (Fig.
2A and B). Next, to identify gene dysregulation in LUAD
at the level of cell type specificity, we detected DEGs in
each cell type between LUAD and adjacent normal sam-
ples. Several hundred to thousands of DEGs were
detected in each cell type (Fig. 2C). There were more
upregulated genes than downregulated genes in all cell
types except for tumor cells and endothelial cells.
Notably, each cell type contained several cell type-
specific upregulated and downregulated genes (Fig. 2D).
The results of the functional enrichment analysis were
consistent with the DEG results of the bulk RNA-seq
pathway enrichment analysis [25]. indicating that the
terms oxidative phosphorylation pathway, glycolysis/glu-
coneogenesis, PI3K-AKT signaling pathway, ECM orga-
nization, and immune reaction were enriched among the
DEGs in both the non-immune and immune cell types
(Fig. 2E). We further mapped the glycolysis/gluconeo-
genesis pathway score across cell types and found that
this pathway score was significantly higher in macro-
phages and AT2 cells than other cell types (Fig. 2F).
Moreover, the two cell types exhibited consistent patterns
in that the glycolysis/gluconeogenesis pathway was more
active in the tumor tissue than in the adjacent tissue (Fig.
2G). By further analyzing the DEGs of macrophages, we
identified the oxidative phosphorylation pathway and
glycolysis/gluconeogenesis pathway, which confirmed
the previous finding that the Warburg effect results in
metabolic reprogramming in macrophages (Fig. 2H)
[26–28]. These differences reflect cellular heterogeneity
in gene expression changes, further suggesting that
investigating gene expression changes in each cell type
in LUAD patients is important.

3.3 Plasticity of lung epithelial cells and their
developmental trajectories into tumor cells

Previous studies have shown that AT2 cells and club
cells can both develop into LUAD cells, the key mole-
cular events governing the cell-fate transition during
progression from normal to cancer cells are critical for
tumor progression [29, 30]. Therefore, we organized
AT2 cells, tumor cells according to their developmental
trajectory. Here, we further classified 5460 AT2 cells
and grouped them into 5 subpopulations, AT1-like 0
cells, AT1-like 1 cells, AT1-like 2 cells, AT1-like 3
cells, and AT1-like 4 cells (Fig. 3A). We further
assessed the malignancy of AT2 cells, the results of
the “inferCNV” analysis indicated that AT1-like0 cells
exhibited a reduced number of copy number alterations
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Fig. 2 Aberrant gene expression profiles in cell type-specific man-
ners in LUAD. A TSNE plots of the major LUAD cell populations.
B Stacked bar plots showing the frequencies of cell types between the
tumor and adjacent tissue. C Differential genes in each cell type
between tumor and NAT of single cell. Each panel represents
a subgroup. the horizontal axis represents significance, the vertical
axis represents log2FC, with positive There is a negative. The two
horizontal dotted lines in the middle are the thresholds of log2FC.
Only when the p-value < 0.05 and log2FC > 0.3 which marked as the
single cell DEGs. D The radar plot showed the number of different

genes identified in different cell types. The up-regulated gene is
marked as red, and the down-regulated gene is marked as blue
color. E Functional analysis of differentially expressed genes
(DEGs) based on aberrant gene expression profiles in cell type.
F Feature plot shows that the glycolysis/gluconeogenesis score of
each cell type. G Vlnplot shows that the glycolysis/gluconeogenesis
score of AT2 cells and macrophages between adjacent tissue and
tumor. ns p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ****p <
0.0001. H The GSVA enrichment pathways analysis of the DEGs
of the macrophages
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Fig. 3 ScRNA-seq analysis reveals the status and invasive trajectory
of LUAD cells. ATSNE plots of show the subpopulations of the AT2
cells, which are named as AT2-like cells (0–4). B The CNV score of
each subpopulation, the “inferCNV” was used to calculate the CNV
score. C Gene set variation analysis enrichment of DEGs among the
subpopulations. D Reconstruction of a trajectory reveals the branched
structure and the normal cell-to-tumor cell path. The single-cell
trajectory reconstructed by Monocle contains six cell types.
E Heatmap depicting genes in a branch-dependent manner for

pseudo-time trajectory. Each row represents the dynamic expression
of a gene. The heatmap center represents the root of the trajectory,
and proceeding to the left follows the kinetic curve from the root
along the trajectory to the tumor cell. F Representative gene expres-
sion levels of different marker genes. The size of each dot represents
relative expression levels. G qRT-PCR validation of the differentia-
tion genes along the pseudo-time trajectory. ns p ≥ 0.05; *p < 0.05;
**p < 0.01; ***p < 0.001
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and a relatively low CNV score. indicating that AT1-
like0 can be regarded as the normal AT2 cells (Figs. 3B
and S2A) [31, 32]. We quantified oncogenic signal
strength by pathway target gene signature expression
and found highly variable activities for Epithelial-
Mesenchymal Transition (EMT), Transforming growth
factor beta (TGF-β), JAK-STAT pathway, hypoxia, and
phosphoinositide 3-kinase (PI3K) /Akt signaling path-
way signaling across the different epithelial cell sub-
groups, which are implicated in these cell types and
play important roles in tumor progression (Fig. 3C).

To identify the key molecular events governing the
cell fate transition during progression from normal to
cancer cells, we selected cell clusters that closely
resembled those of AT2-like cells and tumor cells and
then tracked the changes in gene expression along the
trajectory. We performed pseudo-time analysis based on
Monocle and observed nonrandom expression patterns
(Fig. 3D) [33]. The transcriptional states in the trajec-
tory revealed progression-associated changes in tumors.
Tumor cells gathered on one end, while AT2-like cells
were on the other branches. Then, we ordered these
genes according to pseudo-time and reconstructed
a diffusion map (Fig. 3E). We identified 356 DEGs
that exhibited dynamic expression over pseudo-time (q
< 0.05) and classified them into four gene modules
(modules1–4). In contrast, the genes upregulated in
tumors are involved in metabolism, ribosomal activity,
or MHC class II molecule expression, which suggests
that these activities are essential during tumor progres-
sion (Fig. 3E). Notably, the genes significantly upregu-
lated in tumor cells included ELF3, ERRFI1, LRRK2,
LDHA, and LPCAT1, and the downregulated genes
S100A10, S100A9, and MRPS6, consistent with the
results of the present study (Fig. 3G). The results of
the experiment confirmed that these genes were
expressed throughout the pseudo-time trajectory (Fig.
3F). These findings suggest that genes that change in
pseudo-time trajectory are important genes involved in
tumor cell evolution and are risk genes for
tumorigenesis.

3.4 Molecular subtype 4 is associated with a worse
prognosis in LUAD patients

Bulk RNA-seq measures the average expression of genes,
and the scRNA-seq enabled cell type-specific transcrip-
tome profiling and cell type-specific aberrant gene expres-
sion. We identified statistically significant genes for
survival analysis from the DEGs for tissue, cell type-
specific aberrant genes for cell type, and pseudo-time dif-
ferentiation genes of normal cell to tumor cell (Fig. 4A).
Based on their cumulative distribution function and

functional delta area, we chose k = 4, where tumorigenesis-
and tumor progression-related genes appeared to be stably
clustered [34] (Fig. 4B). we obtained 4 tumor subtypes,
designated molecular subtype1, subtype2, subtype3, and
subtype4 (MS1, MS2, MS3, MS4). Patients with MS1,
MS2, and MS3 had better prognoses, whereas MS4 had
the poorest overall survival (Fig. 4C). Next, we compared
the DEGs between MS4 and the other subtypes, a large
number of differential genes were identified between sub-
types (Fig. 4D). The enrichment pathways of the common
up-regulated down-regulated genes result show that cyto-
kine-cytokine receptor interaction and natural killer cell
mediated cytotoxicity immune regulation and immune
resistance pathways were downregulated in MS4, which
is likely to be an immune-suppressed tumor (Fig. 4F).
Taken together, the common DEGs identified at both bulk
and single-cell resolutions can be used to predict the prog-
nosis of LUAD patients and resemble an immunosuppres-
sive TME.

3.5 Association of tumor molecular subtypes with
mutational status

To examine the mutation frequency among the four mole-
cular subtypes, we first compared their molecular gene
mutation features. The top 20 genes were more frequently
mutated in each subtype. TP53 and TTN were the most
common genes mutated in MS1, MS3 and TP53, TTN and
EGFR were the most common genes mutated in MS2.
Inversely, KRAS and KEAP1 were most frequently mutated
in MS4. The KRAS gene mutations promote immunosup-
pression (Fig. 5A). A high TMB and high mutation-allele
tumor heterogeneity (MATH) are correlated with increased
anticancer immunity. Therefore, we calculated the TMB
and number of mutations in each patient using the
Mutect2 processed mutation dataset of LUAD patients
and analyzed the same data for all subtypes. As shown in
(Fig. 5B), patients in MS1 and MS4 had significantly
greater TMB; conversely, patients in MS4 had a lower
TMB. Similar trends were also observed for the MATH
score, as MS4 had a lower MATH score. The results
suggested that immune subtype can predict the TMB and
somatic mutation rate in LUAD patients and confirmed
that MS4 immunosuppressive subtypes determine the effi-
cacy of immunotherapy.

3.6 The immune landscape of LUAD patients in
different immune subgroups

The relationships between patient subgroups and immune
infiltration in LUAD patients were investigated. Thus, we
used the “CIBERSORT” method for cell-type deconvolu-
tion and the Wilcoxon test to compare the distribution of
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Fig. 4 Identification and validation of the DEGs-based classification
of LUAD patients. A significant genes for survival analysis from the
DEGs via bulk RNA-seq, cell type-specific aberrant genes via
scRNA-seq, and pseudo-time differentiation genes. B CDF curves
of the consensus score (k = 2–7) in the TCGA-LUAD cohorts.
C Consensus clustering matrix for the ideal cluster size in the TCGA-
LUAD cohort, k = 4 which was represented by the matrix. D Kaplan-

Meier survival analyses of the patients in four subgroups of TCGA-
LUAD cohort. E The number of differential genes in the four mole-
cular subtypes. F GSEA analysis of chemokine signaling pathway,
cytokine-cytokine receptor interaction pathway, natural killer cell-
mediated cytotoxicity pathway, and p53 signaling pathway among
four subgroups
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28 infiltrating immune cells in different LUAD molecular
subgroups [35] (Fig. 6A). In particular, we found that M1
macrophages and resting memory CD8+ T cells were mark-
edly decreased in MS4, which was concordant with previous
observations linking MS4 to an immunosuppressive

microenvironment (Fig. 6B). Given the importance of
immune checkpoints (ICPs) and immunogenic cell death
(ICD) modulators in cancer immunity, we next analyzed
their expression levels among different subtypes, eighteen
ICP-related genes were detected were differentially

Fig. 5 Association between immune subtypes and TMB and muta-
tion. A Heatmap showing the top 20 gene mutation frequencies in the
high and low-risk group in the LUAD. B, C The Tumor Mutation

Burden (TMB) score and Mutant-Allele Tumor Heterogeneity
(MATH) in the different subgroups in the LUAD. ns p ≥ 0.05;
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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expressed between the immune subtypes. For instance,
CD200, CD274, CD40, CD70, CTLA4, HAVCR2, IDO1,
LAG3, NRP1, PDCD1, PDCD1LG2, TIGIT, TNFRSF25,
TNFRSF4, TNFRSF8, TNFRSF9, TNFSF4 and VSIR were

significantly upregulated in MS4 in the TCGA cohort. Five
ICD-related genes were detected were differentially
expressed among the immune subtypes, while ANXA1,
CXCL10, FPR1, MET and PANX1were overexpressed in

Fig. 6 Association between immune subtypes and ICPs and ICD
modulators. A “CIBERSORT” analysis identifying the relative
infiltration level of immune cell populations in two LRIs sub-
groups of LUAD samples in the TCGA cohort. B, C Different
cell types of proportion among distinct subtype in TCGA cohorts.

ns p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
C, D Association between immune subtypes and ICPs and ICD
modulators. Differential expression of ICP genes among the four
LUAD subgroups. ns p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001
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the MS4. Taken together, our comprehensive analysis
revealed that MS4 was significantly correlated with patient
prognosis and TME characteristics.

3.7 CDC25C gene can be a distinct prognostic
biomarker which indicates immune infiltration
levels and response to immunotherapy

To further to find the key genes for the immunosuppression
subtypes, the LASSO Cox algorithm was used to identify
the most robust prognostic genes among the candidate key
genes. Overall, by performing least absolute shrinkage and
selection operator (LASSO) Cox regression analysis, 5
genes (MSLNL, LINC01116, CDC25C, ATP8B3, and
FAM133A) that met the criterion of p < 0.05 were retained
for further analysis (Fig. 7A). Furthermore, a prognostic
risk score model was constructed using the 5 genes. Based
on two independent cohort Kaplan–Meier (KM) survival
analyses, patients in the high-risk subgroup had signifi-
cantly worse OS than did those in the low-risk subgroup
(p < 0.0001, p < 0.0001) (Fig. 7B). We found that EMT
pathways up-regulated in the high-risk group and
MTORC1 signaling down-regulated.

Previous studies have confirmed that the CDC25C parti-
cipates in regulating G2/M progression and mediating DNA
damage repair [36, 37]. Then, we extracted whole RNA
from human embryo lung fibroblasts (MRC-5) and four
lung cancer cell lines (A549, NCI-H1975, NCI-HCC95,
and PC-9) to detect the basal expression of CDC25C in
LUAD. The results showed that the mRNA level of
CDC25C was greater in lung cancer cell lines than in
normal cells, and CDC25C expression was greater in lung
adenocarcinoma than in lung squamous cell carcinoma (Fig.
7D). Thus, we selected the A549 cell line, which had the
highest expression, for further investigation. After knocking
down CDC25C in A549 cells, we evaluated the effect of
knocking down CDC25C on cell migration and invasion,
and knocking down CDC25C inhibited the migration and
invasion of A549 cells (Fig. 7E). Since the EMT pathway
influences tumor migration and invasion, we performed
a protein immunoblot analysis on the expression of EMT
markers. As shown, with the knockdown of CDC25C,
E-cadherin was upregulated, while N-cadherin and Snail
were downregulated (Fig. 7F). Based on these results, we
preliminarily demonstrated that CDC25C can promote the
metastasis of lung cancer. Compared with patients with high
and low CDC25C expression, patients with high CDC25C
expression had fewer effective therapies. Further survival
analysis revealed that CDC25C expression was significantly
correlated with OS in patients receiving immunotherapy.
These findings suggested the reliability of the immunother-
apy efficacy evaluation and prognostic model, which can be
applied to diverse LUAD patients.

4 Discussion

The tumor microenvironment (TME) has a significant
impact on therapeutic efficacy in tumor, The immunosup-
pression TME leads to the development and advancement
of tumors, as well as resistance to chemotherapy and
immunotherapy [38–40]. The scRNA-seq technology has
also been applied in lung cancer research to investigate
heterogeneity, metastasis, drug ineffectiveness and resis-
tance [41, 42]. In this study, we investigated the cellular
landscape of LUAD and adjacent tissues using scRNA-seq
data, we evaluated cell type-specific aberrant gene expres-
sion and gene expression changes along the pseudo-time
trajectory. The effectiveness of these DEGs in the diagno-
sis and prognosis of LUAD was explored by integration
with bulk RNA-seq datasets. In addition, we classified four
distinct molecular subtypes of LUAD and identified that
the MS4 immunosuppressive subtype was correlated with
poor survival outcomes. This subtype was also associated
with a more frequent KRAS mutation, higher TMB, and
upregulation of PD-L1 expression. We found that the gene
CDC25C can be distinct prognostic biomarkers, immune
infiltration levels, and responses to immunotherapy in
LUAD, our prognostic model might be a potential biomar-
ker for LUAD patient risk stratification and treatment
response prediction.

Bulk transcriptomes measure the overall gene expres-
sion in diverse tissues, thereby concealing the expression
of each cell type, proportions, and the interactions in the
tumor microenvironment [43, 44]. Single-cell sequencing
has provided the opportunity to study the heterogeneity of
tumorigenesis at the cellular level [18, 45]. Interestingly,
we identified more prognosis-related genes from 6 paired
primary LUAD patients via single-cell data than through
bulk RNA-seq data. We observe that pathway associated
with the oxidative phosphorylation pathway, non-small cell
lung cancer pathway, p53 signaling pathway, and PI3K-
AKT signaling pathway were both enriched at bulk tissue
level and the cellular type of level. Our results confirmed
that the integration of bulk RNA-seq with single cells can
bridge the shortcomings of individual techniques and pro-
vide a comprehensive understanding of lung cancer pro-
gression [46, 47].

Currently, to further confirm the effectiveness of our
typing analysis, LUAD samples were divided into four
molecular subtypes based on prognostic risk genes. The
results showed that the four molecular subtypes had sig-
nificantly different prognostic risk and that MS4 was asso-
ciated with a worse prognosis than other subtypes. pathway
analysis of DEGs between MS4 and other subtype revealed
that the immune response and inflammatory pathway were
more active in other subtypes, implying that MS4 tend to
be an immunosuppressive microenvironment. Inversely,
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Fig. 7 Identification and validation of the immunosuppressive-
related genes classification of LUAD patients. A Construction of
immunosuppressive-related genes of subtype 4 on clinical outcome
for LUAD patients. B Kaplan–Meier curves immunosuppressive-
related genes scores for patients with high and low risk in the
TCGA-LUAD cohort. C GSEA analysis of chemokine signaling
pathway, MTORC1 pathway, and Epithelial-Mesenchymal transi-
tion pathway between high or low risk. D Detecting the level of
CDC25C in MRC-5, A549, NCI-H1975, NCI-HCC95, PC-9 by

qRT-PCR. E Western-Blot detection of EMT-related markers in
A549 after knockdown of CDC25C. F Invasion and migration
assay to detect the ability of migration and invasion in A549
cells after CDC25C knockdown. G The lymphocyte infiltration
signature score and TCR richness level stratified by expression of
CDC25C gene. ns p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001 H Overall survival and treatment response of the
patients stratified by expression of CDC25C gene
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KRAS and KEAP1 were most frequently mutated in MS4
with lower TMB score and MATH score using genomics
mutational status. The results showed that we have found
a subtype with poor prognosis and suppressive tumor
microenvironment [48, 49].

The immune suppressive mechanisms in the tumor
microenvironment are very complex and involve multi-
ple aspects such as genes, metabolism, and inflamma-
tion. In order to gain a deeper comprehension of the
molecular mechanisms underlying immunosuppression
in LUAD, our research was centered on genes that are
highly expressed in the immunosuppressive subtypes.
Based on the LASSO Cox regression analysis results,
we found that MSLNL, LINC01116, CDC25C, ATP8B3,
and FAM133A can be distinct prognostic biomarkers,
immune infiltration levels, and responses to immu-
notherapy in LUAD. Our analysis results that high
expression of CDC25C affects the epithelial-
mesenchymal transition pathway. CDC25C have been
regarded as participates in regulating G2/M progression
and in mediating DNA damage repair which play an
important role in the cell cycle [50, 51]. In this study
we concluded that CDC25C expression affects lung can-
cer cell invasion and migration, and knockdown the
CDC25C, E-cadherin was upregulated, while
N-cadherin and snail were downregulated.

This study has several limitations. One limitation is that
the tissue samples used for single-cell sequencing and bulk
RNA-seq were not the same surgical specimens, so there
might be potential differences in the biological complex-
ities of these parts. the other is that our findings could be
further validated and extended with patient-derived xeno-
grafts (PDX) approaches, preferably through the integra-
tion of genomics, transcriptomics, and proteomics, to
comprehensively capture feature on the regulation of
gene expression [52, 53].

5 Conclusion

Our study unveiled the detailed landscape of LUAD
together with bulk and single-cellRNA transcriptome data
contributed to understanding TME heterogeneity. We
believe that will contribute to a more reliable interpretation
of LUAD development at the single-cell level and provide
valid biomarkers for the diagnosis and prognosis of
LUAD.
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